1
|
Liu J, Bai S, Wu C, Tian C, Fu Q, Gao X, Zhang B, Li J, La X. RNA-seq reveals Lysyl oxidase as a potential biomarker of glomerular function in diabetic nephropathy in rats. Gene 2025; 943:149274. [PMID: 39870122 DOI: 10.1016/j.gene.2025.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
PURPOSE We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease. METHODS An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique. We further examined body weightchanges and detected the levels of blood glucose, 24-hour urine microalbumin, and expression ofIL-6 and TNF-α.We also measured the levels of Lysyl oxidase (LOX) using quantitative real-time PCR and western blotting. RESULTS We found that LOX was among the top 10 significantly differentially expressed genes in both the GEO database and transcriptome. Moreover, the levels of fasting blood glucose,24-h urine microalbumin, and expression of TNF-α and IL-6 were significantlyincreasedin the DNthanin the normal group (P < 0.05). CONCLUSIONS Our study demonstrates that the LOX gene is extensively expressed in diabetic nephropathy,with significantly upregulated expression and accompanying notable physiological markers such as TNF-α, IL-6, fasting blood glucose, and 24-hour urine microalbumin. The observed alterations indicate that the LOX gene has a potential biomarker function in the advancement of the disease.
Collapse
Affiliation(s)
- Jiaxuan Liu
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Sufen Bai
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Chenxi Wu
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Chunyu Tian
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Qianru Fu
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Xiujuan Gao
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Biwei Zhang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Ji'an Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China.
| |
Collapse
|
2
|
Xu Q, Ma L, Streuer A, Altrock E, Schmitt N, Rapp F, Klär A, Nowak V, Obländer J, Weimer N, Palme I, Göl M, Zhu HH, Hofmann WK, Nowak D, Riabov V. Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer. Cell Commun Signal 2025; 23:169. [PMID: 40186284 PMCID: PMC11971788 DOI: 10.1186/s12964-025-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights cancer types where targeting these enzymes and developing LOX/LOXL-based prognostic models could have significant clinical relevance. METHODS We assessed the association of LOX/LOXL expression with survival and drug sensitivity via analyzing public datasets (including bulk and single-cell RNA sequencing data of six datasets from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA) and Cancer Genome Atlas Program (TCGA)). We performed comprehensive machine learning-based bioinformatics analyses, including unsupervised consensus clustering, a total of 10 machine-learning algorithms for prognostic prediction and the Connectivity map tool for drug sensitivity prediction. RESULTS The clinical significance of the LOX/LOXL family was evaluated across 33 cancer types. Overexpression of LOX/LOXL showed a strong correlation with tumor progression and poor survival, particularly in glioma. Therefore, we developed a novel prognostic model for glioma by integrating LOX/LOXL expression and its co-expressed genes. This model was highly predictive for overall survival in glioma patients, indicating significant clinical utility in prognostic assessment. Furthermore, our analysis uncovered a distinct LOXL2-overexpressing malignant cell population in recurrent glioma, characterized by activation of collagen, laminin, and semaphorin-3 pathways, along with enhanced epithelial-mesenchymal transition. Apart from glioma, our data revealed the role of LOXL3 overexpression in macrophages and in predicting the response to immune checkpoint blockade in bladder and renal cancers. Given the pro-tumor role of LOX/LOXL genes in most analyzed cancers, we identified potential therapeutic compounds, such as the VEGFR inhibitor cediranib, to target pan-LOX/LOXL overexpression in cancer. CONCLUSIONS Our study provides novel insights into the potential value of LOX/LOXL in cancer pathogenesis and treatment, and particularly its prognostic significance in glioma.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany.
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Ling Ma
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alessa Klär
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Melda Göl
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| |
Collapse
|
3
|
Castello-Pons M, Ramirez-Gonzalez MA, Iglesias-Hernández P, Lendo NL, Rodriguez-Martín C, Quiralte L, Sepúlveda-Sánchez JM, de Dios O, Gil C, Martínez A, Sánchez-Gómez P, Casas-Tinto S. VP3.15, a dual GSK-3β/PDE7 inhibitor, reduces glioblastoma tumor growth though changes in the tumor microenvironment in a PTEN wild-type context. Neurotherapeutics 2025:e00576. [PMID: 40157890 DOI: 10.1016/j.neurot.2025.e00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Glioblastoma (GB) is an incurable cancer of the brain, and there is an urgent need to identify effective treatments. This may be achieved by either identifying new molecules or through drug repurposing. To ascertain the therapeutic potential of known GSK-3β and/or PDE7 inhibitors in GB, a drug screening was conducted using a Drosophila melanogaster glioma model. VP3.15, a dual inhibitor with anti-inflammatory and neuroprotective roles in multiple sclerosis, was selected for further investigation. VP3.15 demonstrated robust anti-tumor efficacy against a panel of human and mouse GB cells; however, its capacity to inhibit orthotopic growth was only observed in a wild-type PTEN cell line. The in vivo dependence on PTEN was further suggested with the results in fly gliomas. The analysis of the VP3.15-treated tissues revealed a notable reduction in the number of myeloid cells and in the degree of vascularization. Mechanistic studies indicate that VP3.15 diminishes the production of GAL9, a key molecule that stimulates pro-angiogenic macrophages. Our findings substantiate the pro-tumoral function of GSK-3β, which might depend on the PTEN genetic status. Furthermore, we have delineated the therapeutic potential of VP3.15, which acts through the inhibition of the supportive role of the GB microenvironment. This molecule could be safely and effectively utilized after PTEN characterization in GB patients.
Collapse
Affiliation(s)
- Maria Castello-Pons
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain; PhD Programme on Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia, UNED-ISCIII 28040 Madrid, Spain
| | | | - Patricia Iglesias-Hernández
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain; PhD Programme on Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia, UNED-ISCIII 28040 Madrid, Spain
| | | | | | - Laura Quiralte
- Instituto Cajal-CSIC, Avda. Doctor Arce 37, 28002 Madrid, Spain
| | | | - Olaya de Dios
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | | | - Sergio Casas-Tinto
- Instituto Cajal-CSIC, Avda. Doctor Arce 37, 28002 Madrid, Spain; Drosophila Models of Human Disease Unit, Instituto de Salud Carlos III-IIER, Madrid, Spain.
| |
Collapse
|
4
|
Sun S, Han B, Ren G, Fan L, Sun J, Li H, Huang J. MTHFD2 stabilizes LOX expression through RNA methylation modification to promote sepsis-induced acute kidney injury progression. Hum Cell 2025; 38:62. [PMID: 40009304 DOI: 10.1007/s13577-025-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Myofibroblasts combine features of fibroblasts and smooth muscle cells, and they are reactive cells present under injury conditions. This study was performed to explore the mechanism that methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) mediated m6A modification in sepsis-induced AKI (SAKI) through regulating the collagen accumulation in myofibroblasts. Gene expression microarrays related to SAKI were obtained from the GEO database, and the hub protein involved was screened using PPI. The SAKI mice were induced by cecal ligation and puncture (CLP). MTHFD2 expression was significantly elevated in the kidneys of CLP-induced mice, and SAKI was ameliorated by knocking down MTHFD2 in kidney tissues. MTHFD2 promoted N6-methyladenosine (m6A) modification in kidney tissues of CLP-induced mice by increasing the content of methylated donor s-adenosylmethionine (SAM). MTHFD2 enhanced LOX mRNA stability in an m6A modification-dependent manner, thereby promoting its expression. Knockdown of MTHFD2 inhibited collagen accumulation in myofibroblasts, whereas overexpression of LOX accelerated fibrosis and SAKI in mice in the presence of sh-MTHFD2. In conclusion, our results show that MTHFD2 promotes LOX expression in an m6A-dependent manner, thereby mediating SAKI progression.
Collapse
Affiliation(s)
- Shudong Sun
- The School of Clinical Medicine, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, People's Republic of China
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Baoyi Han
- Department of Anesthesiology, Guangdong Woman and Child Health Hospital, Guangzhou, 511450, Guangdong, People's Republic of China
| | - Guohui Ren
- Medical Department of Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Lei Fan
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Junchao Sun
- The School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Huiling Li
- Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
| | - Jiyi Huang
- The School of Clinical Medicine, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, People's Republic of China.
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, 361101, Fujian, People's Republic of China.
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
5
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female fibroblast activation is estrogen-mediated in sex-specific 3D-bioprinted pulmonary artery adventitia models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633670. [PMID: 39896610 PMCID: PMC11785021 DOI: 10.1101/2025.01.17.633670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) impacts male and female patients in different ways. Female patients exhibit a greater susceptibility to disease (4:1 female-to-male ratio) but live longer after diagnosis than male patients. This complex sexual dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex-differences in PAH remain unclear. PAH is a form of a pulmonary vascular disease that results in scarring of the small blood vessels, leading to impaired blood flow and increased blood pressure. Over time, this increase in blood pressure causes damage to the heart. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here we present a dynamic, 3D-bioprinted model that incorporates cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling. Poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from idiopathic PAH (IPAH) or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator reduced expression hPAAF activation markers, demonstrating that hPAAF activation is a one pathologic response mediated by estrogen signaling in the vasculature, validating that drugs currently in clinical trials could be evaluated in sex-specific 3D-bioprinted pulmonary artery adventitia models.
Collapse
|
6
|
Kanazawa Y, Takahashi T, Inoue T, Nagano M, Koinuma S, Eiyo H, Tamura Y, Miyachi R, Iida N, Miyahara K, Shigeyoshi Y. Effects of Aging on Intramuscular Collagen-Related Factors After Injury to Mouse Tibialis Anterior Muscle. Int J Mol Sci 2025; 26:801. [PMID: 39859514 PMCID: PMC11766099 DOI: 10.3390/ijms26020801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling. Although it is well known that aging leads to delayed recovery of muscle fibers, the impact of aging on the remodeling of intramuscular collagen is not well understood. In this study, we investigated the impact of aging on collagen remodeling during muscle injury recovery using young and old mouse models. Muscle injury was induced in the right tibialis anterior (TA) muscle of male C57BL/6J mice [aged 21 weeks (young) and 92 weeks (old)] using intramuscular cardiotoxin injection, with the left TA serving as a sham with saline injection. Following a one-week recovery period, aging was found to delay the recovery of the fiber cross-sectional area. The intensity and area of immunoreactivity for collagen I were significantly increased in old mice compared to young mice post-injury. Additionally, Lox expression and the number of LOX (+) cells in the extracellular matrix significantly increased in old mice compared to young mice post-injury. Furthermore, Mmp9 and MMP9 expression levels after muscle injury were higher in old mice than in young mice. These results suggest that muscle injury in old mice can lead to increased collagen I accumulation, enhanced collagen cross-link formation, and elevated MMP9 expression compared to young mice.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Japan; (R.M.); (K.M.)
- Well-Being Research Team, Hokuriku University, Kanazawa 920-1180, Japan;
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan; (M.N.); (S.K.); (N.I.); (Y.S.)
| | - Tatsuo Takahashi
- Well-Being Research Team, Hokuriku University, Kanazawa 920-1180, Japan;
- Department of Clinical Pharmacology, Hokuriku University, Kanazawa 920-1181, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan;
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan; (M.N.); (S.K.); (N.I.); (Y.S.)
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan; (M.N.); (S.K.); (N.I.); (Y.S.)
| | - Haruki Eiyo
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, Nikko 321-1298, Japan; (H.E.); (Y.T.)
| | - Yuma Tamura
- Department of Rehabilitation, Dokkyo Medical University Nikko Medical Center, Nikko 321-1298, Japan; (H.E.); (Y.T.)
| | - Ryo Miyachi
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Japan; (R.M.); (K.M.)
- Well-Being Research Team, Hokuriku University, Kanazawa 920-1180, Japan;
| | - Naoya Iida
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan; (M.N.); (S.K.); (N.I.); (Y.S.)
| | - Kenichiro Miyahara
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Japan; (R.M.); (K.M.)
- Well-Being Research Team, Hokuriku University, Kanazawa 920-1180, Japan;
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan; (M.N.); (S.K.); (N.I.); (Y.S.)
| |
Collapse
|
7
|
Lu Y, Li H, Chen M, Lin Y, Zhang X. LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice. J Transl Med 2025; 23:35. [PMID: 39789539 PMCID: PMC11716213 DOI: 10.1186/s12967-024-06056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally. METHODS The bulk RNA sequencing and single-nuclei RNA sequencing (snRNA-seq) analysis were explored to find the role of LOX in diabetic nephropathy. We then investigated the partial EMT and the possible signaling pathway of LOX, both in vivo and in vitro by LOX inhibition experiments in diabetic mice and HK-2 cells. Besides, we further assessed kidney fibrosis and renal function. RESULTS LOX expression was elevated in kidneys of diabetic mice. Additionally, snRNA-seq results indicated that LOX expression was higher in partial epithelial-mesenchymal transition proximal tubular (PemtPT) epithelial cells. Moreover, we found that increased LOX prompted partial EMT of renal tubular epithelial cells (RTECs) by modulating the transcription factor Snail both in vivo and in vitro. Remarkably, inhibition of LOX effectively mitigated the partial EMT of RTECs in diabetic mice, thereby attenuating kidney fibrosis and enhancing renal function. Additionally, we identified the TGF-β signaling pathway as an upstream regulator of LOX, and inhibiting LOX partially reversed the partial EMT program in HK-2 cells induced by the TGF-β signaling pathway. CONCLUSIONS Hyperglycemia induces partial EMT of RTECs via the TGF-β/LOX/Snail axis, thereby contributing to diabetic kidney fibrosis. Inhibiting LOX can effectively reverse the partial EMT of RTECs, diminish diabetic kidney fibrosis, and improve renal function.
Collapse
Affiliation(s)
- Yicheng Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mohan Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yicheng Lin
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Xiaoming Zhang
- Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yun H, Dong F, Wei X, Yan X, Zhang R, Zhang X, Wang Y. Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review). Oncol Rep 2025; 53:14. [PMID: 39611496 PMCID: PMC11622107 DOI: 10.3892/or.2024.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Gastric cancer (GC) is characterized by a complex and heterogeneous tumor microenvironment (TME) that significantly influences disease progression and treatment outcomes. The tumor stroma, which is composed of a variety of cell types such as cancer‑associated fibroblasts, immune cells and vascular components, displays significant spatial and temporal diversity. These stromal elements engage in dynamic crosstalk with cancer cells, shaping their proliferative, invasive and metastatic potential. Furthermore, the TME is instrumental in facilitating resistance to traditional chemotherapy, specific treatments and immunotherapy strategies. Understanding the underlying mechanisms by which the GC microenvironment evolves and supports tumor growth and therapeutic resistance is critical for developing effective treatment strategies. The present review explores the latest progress in understanding the intricate interactions between cancer cells and their immediate environment in GC, highlighting the implications for disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Fangde Dong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiaoqin Wei
- Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China
| | - Xinyong Yan
- Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Ronglong Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Yulin Wang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| |
Collapse
|
9
|
Kennedy KV, Wang JX, McMillan E, Zhou Y, Teranishi R, Semeao A, Mirchandani L, Umeweni CN, Dhakal D, Baccarella A, Ishikawa S, Sasaki M, Itami T, Harman AC, Joannas L, Karakasheva TA, Nakagawa H, Muir AB. Lysyl Oxidase Mediates Proliferation and Differentiation in the Esophageal Epithelium. Biomolecules 2024; 14:1560. [PMID: 39766266 PMCID: PMC11674119 DOI: 10.3390/biom14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In homeostatic conditions, the basal progenitor cells of the esophagus differentiate into a stratified squamous epithelium. However, in the setting of acid exposure or inflammation, there is a marked failure of basal cell differentiation, leading to basal cell hyperplasia. We have previously shown that lysyl oxidase (LOX), a collagen crosslinking enzyme, is upregulated in the setting of allergic inflammation of the esophagus; however, its role beyond collagen crosslinking is unknown. Herein, we propose a non-canonical epithelial-specific role of LOX in the maintenance of epithelial homeostasis using 3D organoid and murine models. We performed quantitative reverse transcriptase PCR, Western blot, histologic analysis, and RNA sequencing on immortalized non-transformed human esophageal epithelial cells (EPC2-hTERT) with short-hairpin RNA (shRNA) targeting LOX mRNA in both monolayer and 3D organoid culture. A novel murine model with a tamoxifen-induced Lox knockout specific to the stratified epithelium (K5CreER; Loxfl/fl) was utilized to further define the role of epithelial LOX in vivo. We found that LOX knockdown decreased the proliferative capacity of the esophageal epithelial cells in monolayer culture, and dramatically reduced the organoid formation rate (OFR) in the shLOX organoids. LOX knockdown was associated with decreased expression of the differentiation markers filaggrin, loricrin, and involucrin, with RNA sequencing analysis revealing 1224 differentially expressed genes demonstrating downregulation of pathways involved in cell differentiation and epithelial development. Mice with Lox knockout in their stratified epithelium demonstrated increased basaloid content of their esophageal epithelium and decreased Ki-67 staining compared to the vehicle-treated mice, suggesting reduced differentiation and proliferation in the Lox-deficient epithelium in vivo. Our results demonstrate, both in vivo and in vitro, that LOX may regulate epithelial homeostasis in the esophagus through the modulation of epithelial proliferation and differentiation. Understanding the mechanisms of perturbation in epithelial proliferation and differentiation in an inflamed esophagus could lead to the development of novel treatments that could promote epithelial healing and restore homeostasis.
Collapse
Affiliation(s)
- Kanak V. Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joshua X. Wang
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Emily McMillan
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Yusen Zhou
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Ryugo Teranishi
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Ann Semeao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Leena Mirchandani
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Chizoba N. Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Diya Dhakal
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Alyssa Baccarella
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Satoshi Ishikawa
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Takefumi Itami
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Adele C. Harman
- Transgenic Core, CHOP Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Tatiana A. Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA (E.M.); (Y.Z.); (R.T.); (A.S.); (L.M.); (D.D.); (A.B.); (S.I.); (M.S.); (T.I.); (T.A.K.)
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Faure E, Busso N, Nasi S. Roles of Lysyl oxidases (LOX(L)) in pathologic calcification. Biomed Pharmacother 2024; 181:117719. [PMID: 39603039 DOI: 10.1016/j.biopha.2024.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Calcification of tissues involves the formation and deposition of calcium-containing crystals in the extracellular matrix (ECM). While this process is normal in bones, it becomes pathological when it occurs in cardiovascular and musculoskeletal soft tissues. Pathological calcification (PC) triggers detrimental pathways such as inflammation and oxidative stress, contributing to tissue damage and dysregulated tissue biomechanics, ultimately leading to severe complications and even death. The underlying mechanisms of PC remain elusive. Emerging evidence suggests a significant role of lysyl oxidases (LOX(L)) in PC. LOX(L) are a group of five enzymes involved in collagen cross-linking and ECM maturation. Beyond their classical role in bone mineralization, recent investigations propose new non-classical roles for LOX(L) that could be relevant in PC. In this review, we analyzed and summarized the functions of LOX(L) in cardiovascular and musculoskeletal PC, highlighting their deleterious roles in most studies. To date, specific inhibitors targeting LOX(L) isoforms are under development. New therapeutic tools targeting LOX(L) are warranted in PC and must avoid adverse effects on physiological bone mineralization.
Collapse
Affiliation(s)
- Elodie Faure
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Patrick CC, Roztocil E, Husain F, Feldon SE, Woeller CF. Tapinarof, an Aryl Hydrocarbon Receptor Ligand, Mitigates Fibroblast Activation in Thyroid Eye Disease: Implications for Novel Therapy. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39560627 DOI: 10.1167/iovs.65.13.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose In thyroid eye disease (TED), activation and proliferation of orbital fibroblasts (OFs) promotes remodeling and causes an increase in the volume of orbital tissue. Platelet-derived growth factors (PDGFs) are elevated in TED and promote OF activation. The aryl hydrocarbon receptor (AHR), a ligand activated nuclear receptor, is important in regulating OF activation. AHR ligands have been evaluated as therapeutic agents for inflammatory diseases. Here, we hypothesize that AHR ligands will block PDGF-induced signaling in TED OFs. Methods OFs from both non-TED and TED patients were treated with PDGFβ, with or without the AHR ligands 6-Formylindolo[3,2-b]carbazole (FICZ) or tapinarof. Cell viability was measured by the Alamar Blue assay. Cell proliferation was quantified using the BrdU assay. Cell lysates were collected and analyzed by Western blotting and real-time quantitative PCR (RT-qPCR) to measure PDGF and AHR signaling. Scratch assays were used to measure OF migration. Results PDGFβ induced proliferation in TED OFs significantly more than in non-TED OFs. Additionally, PDGFβ increased phosphorylation of AKT and expression of thymidylate synthase (TYMS). PDGFβ dependent proliferation and downstream signaling were attenuated by FICZ or tapinarof. TYMS and other PDGF target genes were upregulated by PDGFβ and reduced by AHR activation. PDGFβ induced TED OF migration while both FICZ and tapinarof diminished this effect. Conclusions PDGF signaling led to increased proliferation and activation of TED OFs. Treatment of TED OFs with the AHR ligands, FICZ and tapinarof, mitigated PDGF induced effects. These studies support the concept that AHR and PDGF signaling could form the basis for new TED therapeutics.
Collapse
Affiliation(s)
- Charkira C Patrick
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Farha Husain
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Center for Visual Sciences, University of Rochester, Rochester, New York, United States
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Center for Visual Sciences, University of Rochester, Rochester, New York, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| |
Collapse
|
12
|
Małyszko M, Przybyłkowski A. Copper and Colorectal Cancer. Cancers (Basel) 2024; 16:3691. [PMID: 39518128 PMCID: PMC11544869 DOI: 10.3390/cancers16213691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Minerals constitute only 5% of the typical human diet but are vital for health and functionality. Copper, a trace element, is absorbed by the human gut at 30-40% from diets typical of industrialized countries. The liver produces metallothioneins, which store copper. Copper is crucial for mitochondrial respiration, pigmentation, iron transport, antioxidant defense, hormone production, and extracellular matrix biosynthesis. Copper deficiency, often caused by mutations in the ATP7A gene, results in Menkes disease, an X-linked recessive disorder. On the contrary, Wilson disease is characterized by toxic copper accumulation. Cuproptosis, a unique form of cell death regulated by copper, is a subtype of necrosis induced by enhanced mitochondrial metabolism and intracellular copper accumulation. This process can reduce the malignant potential of tumor cells by inhibiting glucose metabolism. Therapeutically, copper and its complexes have shown efficacy in malignancy treatments. The disruption of copper homeostasis and excessive cuproplasia are significant in colorectal cancer development and metastasis. Therefore, manipulating copper status presents a potential therapeutic target for colorectal cancer, using copper chelators to inhibit copper formation or copper ion carriers to promote cuproptosis. This review highlights the role of copper in human physiology and pathology, emphasizing its impact on colorectal cancer and potential therapeutic strategies. Future AI-based approaches are anticipated to accelerate the development of new compounds targeting cuproptosis and copper disruption in colorectal cancer.
Collapse
Affiliation(s)
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| |
Collapse
|
13
|
Upadhyay A, Bakkalci D, Micalet A, Butler M, Bergin M, Moeendarbary E, Loizidou M, Cheema U. Dense Collagen I as a Biomimetic Material to Track Matrix Remodelling in Renal Carcinomas. ACS OMEGA 2024; 9:41419-41432. [PMID: 39398183 PMCID: PMC11465592 DOI: 10.1021/acsomega.4c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Aims: Renal tissue is a dynamic biophysical microenvironment, regulating healthy function and influencing tumor development. Matrix remodelling is an iterative process and aberrant tissue repair is prominent in kidney fibrosis and cancer. Biomimetic 3D models recapitulating the collagen composition and mechanical fidelity of native renal tissue were developed to investigate cell-matrix interactions in renal carcinomas. Methods: Collagen I and laminin hydrogels were engineered with renal cancer cells (ACHN and 786-O), which underwent plastic compression to generate dense matrices. Mechanical properties were determined using shear rheology and qPCR determined the gene expression of matrix markers. Results: The shear modulus and phase angle of acellular dense collagen I gels (474 Pa and 10.7) are similar to human kidney samples (1410 Pa and 10.5). After 21 days, 786-O cells softened the dense matrix (∼155 Pa), with collagen IV downregulation and upregulation of matrix metalloproteinases (MMP7 and MMP8). ACHN cells were found to be less invasive and stiffened the matrix to ∼1.25 kPa, with gene upregulation of collagen IV and the cross-linking enzyme LOX. Conclusions: Renal cancer cells remodel their biophysical environment, altering the material properties of tissue stroma in 3D models. These models can generate physiologically relevant stiffness to investigate the different matrix remodelling mechanisms utilized by cancer cells.
Collapse
Affiliation(s)
- Anuja Upadhyay
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Deniz Bakkalci
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Auxtine Micalet
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Matt Butler
- UCB
Pharma, 216 Bath Road, SL1 3WE Slough, United Kingdom
| | | | - Emad Moeendarbary
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, University
College London, Royal
Free Campus, Rowland Hill Street, NW3
2PF London, United
Kingdom
| | - Umber Cheema
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| |
Collapse
|
14
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
15
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
16
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
17
|
Zhang Y, Cao J, Yuan Z, Zuo H, Yao J, Tu X, Gu X. Construction and validation of prognostic signatures related to mitochondria and macrophage polarization in gastric cancer. Front Oncol 2024; 14:1433874. [PMID: 39132501 PMCID: PMC11310369 DOI: 10.3389/fonc.2024.1433874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Increasing evidence reveals the involvement of mitochondria and macrophage polarisation in tumourigenesis and progression. This study aimed to establish mitochondria and macrophage polarisation-associated molecular signatures to predict prognosis in gastric cancer (GC) by single-cell and transcriptional data. Methods Initially, candidate genes associated with mitochondria and macrophage polarisation were identified by differential expression analysis and weighted gene co-expression network analysis. Subsequently, candidate genes were incorporated in univariateCox analysis and LASSO to acquire prognostic genes in GC, and risk model was created. Furthermore, independent prognostic indicators were screened by combining risk score with clinical characteristics, and a nomogram was created to forecast survival in GC patients. Further, in single-cell data analysis, cell clusters and cell subpopulations were yielded, followed by the completion of pseudo-time analysis. Furthermore, a more comprehensive immunological analysis was executed to uncover the relationship between GC and immunological characteristics. Ultimately, expression level of prognostic genes was validated through public datasets and qRT-PCR. Results A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) associated with mitochondria and macrophage polarisation was developed, which was efficient in forecasting the survival of GC patients. The GC patients were categorized into high-/low-risk subgroups in accordance with median risk score, with the high-risk subgroup having lower survival rates. Afterwards, a nomogram incorporating risk score and age was generated, and it had significant predictive value for predicting GC survival with higher predictive accuracy than risk model. Immunological analyses revealed showed higher levels of M2 macrophage infiltration in high-risk subgroup and the strongest positive correlation between risk score and M2 macrophages. Besides, further analyses demonstrated a better outcome for immunotherapy in low-risk patients. In single-cell and pseudo-time analyses, stromal cells were identified as key cells, and a relatively complete developmental trajectory existed for stromal C1 in three subclasses. Ultimately, expression analysis revealed that the expression trend of RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-GC dataset. Conclusion Our findings demonstrated that a novel prognostic model constructed in accordance with six prognostic genes might facilitate the improvement of personalised prognosis and treatment of GC patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jian Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jiacong Yao
- Alliance Biotechnology Company, Hangzhou, China
| | - Xiaodie Tu
- Alliance Biotechnology Company, Hangzhou, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China
| |
Collapse
|
18
|
Suliman M, Nagasawa M, Al-Omari FA, Uoshima K. The effects of collagen cross-link deficiency on osseointegration process of pure titanium implants. J Prosthodont Res 2024; 68:449-455. [PMID: 37793821 DOI: 10.2186/jpr.jpr_d_22_00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
PURPOSE This study aimed to investigate the effect of collagen cross-link deficiency on collagen fiber formation around an implant and its effect on the osseointegration process. METHODS Wistar rats were fed 0.1% beta-aminopropionitrile (BAPN) dissolved in water to induce collagen cross-link deficiency. Custom-made mini-implants with machined surfaces were placed proximal to the tibia. At 1, 2, and 4 weeks postoperatively, the bone area around the implant, bone-implant contact ratio, osteoclast/osteocyte activity, and osseointegration strength were evaluated using histological and immunohistochemical analyses and biomechanical tests. RESULTS Long-term disturbance of collagen cross-link formation in the BAPN group resulted in faster collagen fiber maturation than that in controls, with a defective collagen structure, low bone formation quantity, and low bone-implant contact values. Deficiency of collagen cross-links resulted in increased bone resorption and decreased osteocyte activity. CONCLUSIONS Collagen cross-linking is important for the formation of the collagen matrix, and their deficiency may impair bone activity around implants, affecting the osseointegration process.
Collapse
Affiliation(s)
- Mubarak Suliman
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Farah A Al-Omari
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Lv L, Li Y, Chen X, Qin Z. Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice. J Environ Sci (China) 2024; 141:304-313. [PMID: 38408830 DOI: 10.1016/j.jes.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
Collapse
Affiliation(s)
- Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Kuehu DL, Fu Y, Nasu M, Yang H, Khadka VS, Deng Y. Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers. Animals (Basel) 2024; 14:1932. [PMID: 38998041 PMCID: PMC11240551 DOI: 10.3390/ani14131932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The gastrointestinal tract has a pivotal role in nutrient absorption, immune function, and overall homeostasis. The ileum segment of the small intestine plays respective roles in nutrient breakdown and absorption. The purpose of this study was to investigate the impact of heat-induced oxidative stress and the potential mitigating effects of an astaxanthin antioxidant treatment on the ileum of broilers. By comparing the growth performance and gene expression profiles among three groups-thermal neutral, heat stress, and heat stress with astaxanthin-thermal neutral temperature conditions of 21-22 °C and heat stress temperature of 32-35 °C, this research aims to elucidate the role of astaxanthin in supporting homeostasis and cellular protection in the ileum. Results showed both treatments under heat stress experienced reduced growth performance, while the group treated with astaxanthin showed a slightly lesser decline. Results further showed the astaxanthin treatment group significantly upregulated in the cytoprotective gene expression for HSF2, SOD2, GPX3, and TXN, as well as the upregulation of epithelial integrity genes LOX, CLDN1, and MUC2. In conclusion, our experimental findings demonstrate upregulation of cytoprotective and epithelial integrity genes, suggesting astaxanthin may effectively enhance the cellular response to heat stress to mitigate oxidative damage and contribute to cytoprotective capacity.
Collapse
Affiliation(s)
- Donna Lee Kuehu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
| | - Hua Yang
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (D.L.K.); (Y.F.); (M.N.); (H.Y.); (V.S.K.)
| |
Collapse
|
21
|
Chuang TD, Ton N, Rysling S, Khorram O. In Vivo Effects of Bay 11-7082 on Fibroid Growth and Gene Expression: A Preclinical Study. Cells 2024; 13:1091. [PMID: 38994944 PMCID: PMC11240737 DOI: 10.3390/cells13131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Current medical therapies for fibroids have major limitations due to their hypoestrogenic side effects. Based on our previous work showing the activation of NF-kB in fibroids, we hypothesized that inhibiting NF-kB in vivo would result in the shrinkage of tumors and reduced inflammation. Fibroid xenografts were implanted in SCID mice and treated daily with Bay 11-7082 (Bay) or vehicle for two months. Bay treatment led to a 50% reduction in tumor weight. RNAseq revealed decreased expression of genes related to cell proliferation, inflammation, extracellular matrix (ECM) composition, and growth factor expression. Validation through qRT-PCR, Western blotting, ELISA, and immunohistochemistry (IHC) confirmed these findings. Bay treatment reduced mRNA expression of cell cycle regulators (CCND1, E2F1, and CKS2), inflammatory markers (SPARC, TDO2, MYD88, TLR3, TLR6, IL6, TNFα, TNFRSF11A, and IL1β), ECM remodelers (COL3A1, FN1, LOX, and TGFβ3), growth factors (PRL, PDGFA, and VEGFC), progesterone receptor, and miR-29c and miR-200c. Collagen levels were reduced in Bay-treated xenografts. Western blotting and IHC showed decreased protein abundance in certain ECM components and inflammatory markers, but not cleaved caspase three. Ki67, CCND1, and E2F1 expression decreased with Bay treatment. This preclinical study suggests NF-kB inhibition as an effective fibroid treatment, suppressing genes involved in proliferation, inflammation, and ECM remodeling.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
22
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
23
|
Qiao Q, Liu X, Xue W, Chen L, Hou X. Analysis of the association between high antioxidant diet and lifestyle habits and diabetic retinopathy based on NHANES cross-sectional study. Sci Rep 2024; 14:11868. [PMID: 38789523 PMCID: PMC11126608 DOI: 10.1038/s41598-024-62707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a crucial role in increasing the risk of developing diabetic retinopathy (DR). The oxidative balance score (OBS) and the composite dietary antioxidant index (CDAI) are two tools for assessing the effects of diet and lifestyle on oxidative stress. The aim of this study was to investigate the association between OBS, CDAI and the occurrence of DR. After controlling for potential confounders, OBS was negatively associated with DR with an odds ratio (OR) of 0.976 and a 95% confidence interval (CI) of 0.956-0.996, suggesting that for every unit increase in OBS, the risk of DR was reduced by 2.4%. In contrast, the relationship between OBS and CDAI was not significant (P > 0.05), suggesting that it was OBS, not CDAI, that contributed to the reduced risk of diabetic retinopathy. After adjusting for potential confounders, OBS was negatively associated with DR (OR: 0.976; 95% CI 0.956-0.996), but this association was not found in CDAI (P > 0.05), suggesting that for every one-unit increase in OBS, there was a 2.4% reduction in the risk of developing DR. This study suggests that a diet and lifestyle high in OBS reduces the risk of developing DR, which provides a rationale for nutritional interventions to prevent DR.
Collapse
Affiliation(s)
- Qincheng Qiao
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xingjian Liu
- The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Xue
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
24
|
Yıldız G, İlgün S, Şeker Karatoprak G, Köse YB, Göger F, Temel HE, Demirci B. Chemical profile, in vitro pharmacological activity and Satureja cuneifolia Ten. evaluation of essential oil based on distillation time. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1944-1960. [PMID: 36938717 DOI: 10.1080/09603123.2023.2190960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The medicinal plant Satureja cuneifolia Ten. was widely utilized as spice, tea and traditional medicine. The objective of the current study was to examine the chemical composition and in vitro biological activities (LOX, MMP-1, and MMP-12 enzyme inhibition activity and cytotoxicity on A549 cell line) of Satureja cuneifolia extracts and essential oils. The essential oils of the flowering aerial parts were hydro-distilled at four different distillation times (5, 30, 60, and 180 min) using the Clevenger apparatus. The total essential oil and four fragments were compared in terms of the major component, yield, and distillation time. Volatile compounds of the infusion were extracted by using HS-SPME. Ethanolic extract had the strongest inhibition activity on the LOX enzyme (84.50%), while the essential oils exhibited more cytotoxic activity on the A549 cell line than the extracts. The oils and the infusion were analyzed using GC-MS and the primary chemicals identified by LC-MS/MS.
Collapse
Affiliation(s)
- Gülsüm Yıldız
- Faculty of Pharmacy, Department of Pharmacognosy, Van Yuzuncu Yil University, Van, Turkiye
| | - Selen İlgün
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Erciyes University, Kayseri, Turkiye
| | | | - Yavuz Bülent Köse
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Anadolu University, Eskişehir, Turkiye
| | - Fatih Göger
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkiye
| | - Halide Edip Temel
- Faculty of Pharmacy, Department of Biochemistry, Eskişehir, Anadolu University, Eskişehir, Turkiye
| | - Betül Demirci
- Faculty of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir, Turkiye
| |
Collapse
|
25
|
Wang Q, Goracci C, Sundar IK, Rahman I. Environmental tobacco smoke exposure exaggerates bleomycin-induced collagen overexpression during pulmonary fibrogenesis. J Inflamm (Lond) 2024; 21:9. [PMID: 38509574 PMCID: PMC10956237 DOI: 10.1186/s12950-024-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Environmental tobacco smoke (ETS) is known to cause lung inflammatory and injurious responses. Smoke exposure is associated with the pathobiology related to lung fibrosis, whereas the mechanism that ETS exposure augments pulmonary fibrogenesis is unclear. We hypothesized that ETS exposure could exacerbate fibrotic responses via collagen dynamic dysregulation and complement activation. C57BL/6J and p16-3MR mice were exposed to ETS followed by bleomycin administration. ETS exposure exacerbated bleomycin-induced collagen and lysyl oxidase overexpression in the fibrotic lesion. ETS exposure also led to augmented bleomycin-induced upregulation of C3 and C3AR, which are pro-fibrotic markers. Moreover, overexpressed collagens and C3 levels were highly significant in males than females. The old mice (17 months old) were exposed to ETS and treated with bleomycin to induce fibrogenesis which is considered as an aging-associated disease. Fewer gene and protein dysregulations trends were identified between ETS exposure with the bleomycin group and the bleomycin alone group in old mice. Based on our findings, we suggested that ETS exposure increases the risk of developing severe lung fibrotic responses via collagen overexpression and lysyl oxidase-mediated collagen stabilization in the fibrotic lesion, and potentially affected the complement system activation induced by bleomycin. Further, male mice were more susceptible than females during fibrogenesis exacerbation. Thus ETS and bleomycin induced lung fibrotic changes via collagen-lysyl oxidase in an age-dependent mechanism.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
26
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni CN, Alston MA, Spergel ZC, Ishikawa S, Teranishi R, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl Oxidase Regulates Epithelial Differentiation and Barrier Integrity in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2024; 17:923-937. [PMID: 38340809 PMCID: PMC11026689 DOI: 10.1016/j.jcmgh.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
Affiliation(s)
- Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Takeo Hara
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yusen Zhou
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kanak V Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chizoba N Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maiya A Alston
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zachary C Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Satoshi Ishikawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryugo Teranishi
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ritsu Nakagawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily A Mcmillan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Tatiana A Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie A Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol 2024; 14:1340634. [PMID: 38332915 PMCID: PMC10850336 DOI: 10.3389/fimmu.2023.1340634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM.
Collapse
Affiliation(s)
- Wei Du
- Department of Targeting Therapy and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayun Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Sun D, Wei S, Wang D, Zeng M, Mo Y, Li H, Liang C, Li L, Zhang JW, Wang L. Integrative analysis of potential diagnostic markers and therapeutic targets for glomerulus-associated diabetic nephropathy based on cellular senescence. Front Immunol 2024; 14:1328757. [PMID: 38390397 PMCID: PMC10881763 DOI: 10.3389/fimmu.2023.1328757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction Diabetic nephropathy (DN), distinguished by detrimental changes in the renal glomeruli, is regarded as the leading cause of death from end-stage renal disease among diabetics. Cellular senescence plays a paramount role, profoundly affecting the onset and progression of chronic kidney disease (CKD) and acute kidney injuries. This study was designed to delve deeply into the pathological mechanisms between glomerulus-associated DN and cellular senescence. Methods Glomerulus-associated DN datasets and cellular senescence-related genes were acquired from the Gene Expression Omnibus (GEO) and CellAge database respectively. By integrating bioinformatics and machine learning methodologies including the LASSO regression analysis and Random Forest, we screened out four signature genes. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance of the selected genes. Rigorous experimental validations were subsequently conducted in the mouse model to corroborate the identification of three signature genes, namely LOX, FOXD1 and GJA1. Molecular docking with chlorogenic acids (CGA) was further established not only to validate LOX, FOXD1 and GJA1 as diagnostic markers but also reveal their potential therapeutic effects. Results and discussion In conclusion, our findings pinpointed three diagnostic markers of glomerulus-associated DN on the basis of cellular senescence. These markers could not only predict an increased risk of DN progression but also present promising therapeutic targets, potentially ushering in innovative treatments for DN in the elderly population.
Collapse
Affiliation(s)
- Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuqi Wei
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dandan Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Min Zeng
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Lu Li
- Publicity Department, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jun Wei Zhang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Li Wang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| |
Collapse
|
29
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
30
|
Yan X, Zhang N, Wei L, Zhang W, Huang T, Li W, Chen W, Yang A, You H. Selective inhibition of hepatic stellate cell and fibroblast-derived LOXL1 attenuates BDL- and Mdr2-/--induced cholestatic liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G608-G621. [PMID: 37873581 DOI: 10.1152/ajpgi.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Lysyl oxidase-like 1 (LOXL1) proteins are amine oxidases that play a crucial role in extracellular matrix remodeling due to their collagen cross-linking and intracellular functions. The role of LOXL1 in cholestatic liver fibrosis remains unexplored. We measured LOXL1 expression in two murine models of cholestasis [Mdr2 knockout (Mdr2-/-) and bile duct ligation (BDL)]. We used adeno-associated virus (AAV) serotype 6-mediated hepatic delivery against LOXL1 (AAV2/6-shLoxl1) to investigate the therapeutic efficacy of targeting LOXL1 in cholestatic liver fibrosis. NIH-3T3 murine fibroblasts were used to investigate the function and regulatory mechanisms of LOXL1 in vitro. LOXL1 expression was significantly upregulated in Mdr2-/- and BDL mice compared with their corresponding controls, predominantly in collagen-rich fibrous septa and portal areas. AAV2/6-shLoxl1 significantly reduced LOXL1 levels in Mdr2-/- and BDL mice, mainly in desmin-positive hepatic stellate cells (HSCs) and fibroblasts. Concomitant with reduced LOXL1 expression, there was reduced ductular reaction, inflammation, and fibrosis in both Mdr2-/- and BDL mice. In addition, Loxl1 intervention decreased Ki-67-positive cells in the desmin-positive areas in both Mdr2-/- and BDL mice. Overexpression of LOXL1 significantly promoted fibroblast proliferation by activating the platelet-derived growth factor receptor and extracellular signal-regulated kinase signaling pathways in vitro. Our findings demonstrated that selective inhibition of LOXL1 derived from HSCs/fibroblasts attenuated cholestatic liver/biliary fibrosis, inflammation, ductal reaction, and HSC/fibroblast proliferation. Based on our findings, LOXL1 could be a potential therapeutic target for cholestatic fibrosis.NEW & NOTEWORTHY Selectively, inhibition of HSC/fibroblasts-derived LOXL1 by AAV2/6-shLoxl1 could reduce collagen deposition, HSC/fibroblasts proliferation, and cholestatic liver fibrosis progression. In addition, overexpression of LOXL1 significantly promoted HSC/fibroblast proliferation by activating the PDGFRß/PI3K and ERK signaling pathways in vitro.
Collapse
Affiliation(s)
- Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Ning Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Luyang Wei
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Weiyu Li
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Hong You
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| |
Collapse
|
31
|
Kas SM, Mundra PA, Smith DL, Marais R. Functional classification of DDOST variants of uncertain clinical significance in congenital disorders of glycosylation. Sci Rep 2023; 13:17648. [PMID: 37848450 PMCID: PMC10582084 DOI: 10.1038/s41598-023-42178-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events. Using proximity labelling, we identified OST48 as a protein that transiently interacts with lysyl oxidase (LOX), a secreted enzyme that cross-links the fibrous extracellular matrix. OST48 is a non-catalytic component of the oligosaccharyltransferase (OST) complex, which transfers glycans to substrate proteins. OST48 is encoded by DDOST, and 43 variants of DDOST are described in CDG patients, of which 34 are classified as variants of uncertain clinical significance (VUS). We developed an assay based on LOX N-glycosylation that confirmed two previously characterised DDOST variants as pathogenic. Notably, 39 of the 41 remaining variants did not have impaired activity, but we demonstrated that p.S243F and p.E286del were functionally impaired, consistent with a role in driving CDG in those patients. Thus, we describe a rapid assay for functional testing of clinically relevant CDG variants to complement genome sequencing and support clinical diagnosis of affected individuals.
Collapse
Affiliation(s)
- Sjors M Kas
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Oncodrug Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
32
|
Wang Q, Goracci C, Sundar IK, Rahman I. Environmental tobacco smoke exposure exaggerates bleomycin- induced collagen overexpression during pulmonary fibrogenesis. RESEARCH SQUARE 2023:rs.3.rs-3406872. [PMID: 37886473 PMCID: PMC10602094 DOI: 10.21203/rs.3.rs-3406872/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Environmental tobacco smoke (ETS) is known to cause lung inflammatory and injurious responses. Smoke exposure is associated with the pathobiology related to lung fibrosis, whereas the mechanism by which ETS exposure augments lung fibrogenesis is unclear. We hypothesized that ETS exposure could exacerbate fibrotic responses via collagen dynamic dysregulation and complement activation. C57BL/6J and p16-3MR mice were exposed to ETS followed by bleomycin administration. ETS exposure exacerbated bleomycin-induced collagen and lysyl oxidase overexpression in the fibrotic lesion. ETS exposure also led to augmented bleomycin-induced upregulation of C3 and C3AR, which are pro-fibrotic markers. Moreover, overexpressed collagens and C3 levels were highly significant in males than females. The old mice (17 months old) were exposed to ETS and treated with bleomycin to induce fibrogenesis, since fibrogenesis is an aging-associated disease. Fewer gene and protein dysregulations trends were identified between ETS exposure with the bleomycin group and the bleomycin alone group in old mice. Based on our findings, we suggested that ETS exposure increases the risk of developing severe lung fibrotic responses via collagen overexpression and lysyl oxidase-mediated collagen stabilization in the fibrotic lesion. ETS exposure also potentially affected the complement system activation induced by bleomycin. Further, male mice were more susceptible than females during fibrogenesis exacerbation.
Collapse
|
33
|
Xu M, Zhao C, Song H, Wang C, Li H, Qiu X, Jing H, Zhuang W. Inhibitory effects of Schisandrin C on collagen behavior in pulmonary fibrosis. Sci Rep 2023; 13:13475. [PMID: 37596361 PMCID: PMC10439186 DOI: 10.1038/s41598-023-40631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-β1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-β1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.
Collapse
Affiliation(s)
- Mingchen Xu
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chenghe Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Haiming Song
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xudong Qiu
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - He Jing
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
34
|
Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Kempisty B, Antosik P. New Gene Markers of Exosomal Regulation Are Involved in Porcine Granulosa Cell Adhesion, Migration, and Proliferation. Int J Mol Sci 2023; 24:11873. [PMID: 37511632 PMCID: PMC10380331 DOI: 10.3390/ijms241411873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
35
|
NikhalaShree S, George RJ, Shantha B, Vijaya L, Sulochana KN, Coral K. Copper, Lysyl Oxidase Activity, and Collagen in Aqueous Humour of Primary Glaucoma: An Association with Clinical Parameters. Ophthalmic Res 2023; 66:949-957. [PMID: 37253350 DOI: 10.1159/000531247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION To measure copper (Cu), lysyl oxidase (LOX) activity, and collagen levels in aqueous humour (AH) of primary glaucoma patients and correlate with clinical parameters. METHODS 120 patients with 40 each of primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG), and cataract controls were recruited in this case-control study. AH samples were collected during the trabeculectomy and cataract surgeries. Cu levels were measured using an atomic absorption spectrophotometer. LOX unit activity was determined by Amplex Red assay and collagen concentration by Sirius red assay. RESULTS Significantly higher levels of Cu expressed as median (IQR) µmol/L were observed in POAG (p = 0.008) and PACG (p = 0.005) compared to controls. The LOX activity was increased in POAG and PACG (p = 0.04) compared to controls represented as median (IQR) µmol/min. The collagen levels given as median (IQR) mg/ml showed an insignificant increase in POAG and PACG compared to controls (p = 0.78). The LOX unit activity was correlated with visual field index (VFI), which showed a significant increase with the progression of the diseases (p < 0.05), whereas Cu levels were negatively correlated with LOX activity in AH. Cu and LOX activity showed weak correlation with YAG peripheral iridotomy (YAGPI), duration of anti-glaucoma medications, and highest preoperative intraocular pressure. CONCLUSION Elevated Cu and LOX activity was observed in both POAG and PACG groups compared to controls. LOX activity showed notable increase with VFI as the severity of the disease. Although Cu levels are increased in glaucoma, it's insufficient to significantly increase the activity of LOX.
Collapse
Affiliation(s)
- Sampath NikhalaShree
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | - Ronnie Jacob George
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Balekudaru Shantha
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Lingam Vijaya
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karunakaran Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
36
|
Narciso M, Martínez Á, Júnior C, Díaz-Valdivia N, Ulldemolins A, Berardi M, Neal K, Navajas D, Farré R, Alcaraz J, Almendros I, Gavara N. Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin. Cancers (Basel) 2023; 15:cancers15082404. [PMID: 37190331 DOI: 10.3390/cancers15082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.
Collapse
Affiliation(s)
- Maria Narciso
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - África Martínez
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Constança Júnior
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Optics11, Hettenheuvelweg 37-39, 1101 BM Amsterdam, The Netherlands
| | - Kate Neal
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Núria Gavara
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
37
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni NN, Alston MA, Spergel ZC, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl oxidase regulates epithelial differentiation and barrier integrity in eosinophilic esophagitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534387. [PMID: 37034590 PMCID: PMC10081173 DOI: 10.1101/2023.03.27.534387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background & Aims Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. Methods We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity. Results Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. Conclusions Our data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
Affiliation(s)
- Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Takeo Hara
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua X. Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yusen Zhou
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanak V. Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole N. Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maiya A. Alston
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zachary C. Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ritsu Nakagawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily A. Mcmillan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly A. Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana A. Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melanie A. Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Applewhite B, Gupta A, Wei Y, Yang X, Martinez L, Rojas MG, Andreopoulos F, Vazquez-Padron RI. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats. Front Cardiovasc Med 2023; 10:1124106. [PMID: 36926045 PMCID: PMC10011136 DOI: 10.3389/fcvm.2023.1124106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Background Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of β-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-β while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.
Collapse
Affiliation(s)
- Brandon Applewhite
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Aavni Gupta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel G. Rojas
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | |
Collapse
|
39
|
Tanrıverdi LH, Özhan O, Ulu A, Yıldız A, Ateş B, Vardı N, Acet HA, Parlakpinar H. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam Clin Pharmacol 2023; 37:60-74. [PMID: 36117326 DOI: 10.1111/fcp.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The MrgD receptor agonist, alamandine (ALA) and Mas receptor agonist, AVE0991 have recently been identified as protective components of the renin-angiotensin system. We evaluated the effects of ALA and AVE0991 on cardiovascular function and remodeling in angiotensin (Ang) II-induced hypertension in rats. Sprague Dawley rats were subject to 4-week subcutaneous infusions of Ang II (80 ng/kg/min) or saline after which they were treated with ALA (50 μg/kg), AVE0991 (576 μg/kg), or ALA+AVE0991 during the last 2 weeks. Systolic blood pressure (SBP) and heart rate (HR) values were recorded with tail-cuff plethysmography at 1, 15, and 29 days post-treatment. After euthanization, the heart and thoracic aorta were removed for further analysis and vascular responses. SBP significantly increased in the Ang II group when compared to the control group. Furthermore, Ang II also caused an increase in cardiac and aortic cyclophilin-A (CYP-A), monocyte chemoattractant protein-1 (MCP-1), and cardiomyocyte degeneration but produced a decrease in vascular relaxation. HR, matrix metalloproteinase-2 and -9, NADPH oxidase-4, and lysyl oxidase levels were comparable among groups. ALA, AVE0991, and the drug combination produced antihypertensive effects and alleviated vascular responses. The inflammatory and oxidative stress related to cardiac MCP-1 and CYP-A levels decreased in the Ang II+ALA+AVE0991 group. Vascular but not cardiac angiotensin-converting enzyme-2 levels decreased with Ang II administration but were similar to the Ang II+ALA+AVE0991 group. Our experimental data showed the combination of ALA and AVE0991 was found beneficial in Ang II-induced hypertension in rats by reducing SBP, oxidative stress, inflammation, and improving vascular responses.
Collapse
Affiliation(s)
| | - Onural Özhan
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hacı Ahmet Acet
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
40
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
41
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
42
|
Serra-Bardenys G, Peiró S. Enzymatic lysine oxidation as a posttranslational modification. FEBS J 2022; 289:8020-8031. [PMID: 34535954 PMCID: PMC10078733 DOI: 10.1111/febs.16205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Oxidoreductases catalyze oxidation-reduction reactions and comprise a very large and diverse group of enzymes, which can be subclassified depending on the catalytic mechanisms of the enzymes. One of the most prominent oxidative modifications in proteins is carbonylation, which involves the formation of aldehyde and keto groups in the side chain of lysines. This modification can alter the local macromolecular structure of proteins, thereby regulating their function, stability, and/or localization, as well as the nature of any protein-protein and/or protein-nucleic acid interactions. In this review, we focus on copper-dependent amine oxidases, which catalyze oxidative deamination of amines to aldehydes. In particular, we discuss oxidation reactions that involve lysine residues and that are regulated by members of the lysyl oxidase (LOX) family of proteins. We summarize what is known about the newly identified substrates and how this posttranslational modification regulates protein function in different contexts.
Collapse
Affiliation(s)
| | - Sandra Peiró
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
43
|
Urbanowicz T, Hanć A, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Michalak M, Perek B, Haneya A, Jemielity M. Serum copper concentration reflect inflammatory activation in the complex coronary artery disease - A pilot study. J Trace Elem Med Biol 2022; 74:127064. [PMID: 36058104 DOI: 10.1016/j.jtemb.2022.127064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Coronary artery disease possess inflammatory background related to enzymatic processes with trace elements involvements as co-factors. The aim of the study was to compare serum, urine and salivary copper, magnesium, calcium and zinc levels with inflammatory indices obtained from the whole blood count in patients with complex coronary artery disease. MATERIAL AND METHOD Fifty-two (42(81 %) males, 10 (19 %) females) consecutive patients (mean (SD) age 68 (9) years with symptomatic complex coronary artery disease were enrolled into prospective single center study in 2021. Serum, saliva and urine samples were collected at the day of admission for trace elements concentration (copper, zinc, magnesium, calcium) and compared with inflammatory indexes obtained from preoperative and perioperative period. RESULTS Multivariable regression analysis revealed relation between the copper serum concentration and neutrophil to lymphocyte ratio (NLR) and systemic inflammatory index (SII). CONCLUSION Serum copper concentration interplay with preoperative inflammatory activation in complex coronary disease measured by NLR and SII. The copper serum concentration possesses the strongest relation to preoperative inflammatory activation in patients reffered for off-pump coronary artery bypass grafting.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Assad Haneya
- Klinik für Herz, und Gefäßchirurgie, Universitat Klinikum Schleswig-Holstein, Germany
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
44
|
de Carpentier F, Maes A, Marchand CH, Chung C, Durand C, Crozet P, Lemaire SD, Danon A. How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. PLANT PHYSIOLOGY 2022; 190:1927-1940. [PMID: 35775951 PMCID: PMC9614484 DOI: 10.1093/plphys/kiac321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 05/05/2023]
Abstract
Multicellular organisms implement a set of reactions involving signaling and cooperation between different types of cells. Unicellular organisms, on the other hand, activate defense systems that involve collective behaviors between individual organisms. In the unicellular model alga Chlamydomonas (Chlamydomonas reinhardtii), the existence and the function of collective behaviors mechanisms in response to stress remain mostly at the level of the formation of small structures called palmelloids. Here, we report the characterization of a mechanism of abiotic stress response that Chlamydomonas can trigger to form massive multicellular structures. We showed that these aggregates constitute an effective bulwark within which the cells are efficiently protected from the toxic environment. We generated a family of mutants that aggregate spontaneously, the socializer (saz) mutants, of which saz1 is described here in detail. We took advantage of the saz mutants to implement a large-scale multiomics approach that allowed us to show that aggregation is not the result of passive agglutination, but rather genetic reprogramming and substantial modification of the secretome. The reverse genetic analysis we conducted allowed us to identify positive and negative regulators of aggregation and to make hypotheses on how this process is controlled in Chlamydomonas.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | - Céline Chung
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Cyrielle Durand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Polytech-Sorbonne, Sorbonne Université, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
45
|
Lu PY, Niu GJ, Hong PP, Wang JX. Lysyl Oxidase-like Protein Recognizes Viral Envelope Proteins and Bacterial Polysaccharides against Pathogen Infection via Induction of Expression of Antimicrobial Peptides. Viruses 2022; 14:2072. [PMID: 36146878 PMCID: PMC9500624 DOI: 10.3390/v14092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidases (LOXs) are copper-dependent monoamine oxidases, and they play critical roles in extracellular matrix (ECM) remodeling. The LOX and LOX-like (LOXL) proteins also have a variety of biological functions, such as development and growth regulation, tumor suppression, and cellular senescence. However, the functions of LOXLs containing repeated scavenger receptor cysteine-rich (SRCR) domains in immunity are rarely reported. In this study, we characterized the antiviral and antibacterial functions of a lysyl oxidase-like (LOXL) protein containing tandem SRCR domains in Marsupenaeus japonicus. The mRNA level of LoxL was significantly upregulated in the hemocytes and intestines of shrimp challenged using white spot syndrome virus (WSSV) or bacteria. After the knockdown of LoxL via RNA interference, WSSV replication and bacterial loads were apparently increased, and the survival rate of the shrimp decreased significantly, suggesting that LOXL functions against pathogen infection in shrimp. Mechanistically, LOXL interacted with the envelope proteins of WSSV or with lipopolysaccharide and peptidoglycan from bacteria in shrimp challenged using WSSV or bacteria, and it promoted the expression of a battery of antimicrobial peptides (AMPs) via the induction of Dorsal nuclear translocation against viral and bacterial infection. Moreover, LOXL expression was also positively regulated by Dorsal in the shrimp challenged by pathogens. These results indicate that, by acting as a pattern recognition receptor, LOXL plays vital roles in antiviral and antibacterial innate immunity by enhancing the expression of AMPs in shrimp.
Collapse
Affiliation(s)
- Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
46
|
Mahapatra S, Sharma MVR, Brownson B, Gallicano VE, Gallicano GI. Cardiac inducing colonies halt fibroblast activation and induce cardiac/endothelial cells to move and expand via paracrine signaling. Mol Biol Cell 2022; 33:ar96. [PMID: 35653297 DOI: 10.1091/mbc.e22-02-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardial fibrosis (MF), a common event that develops after myocardial infarction, initially is a reparative process but eventually leads to heart failure and sudden cardiac arrest. In MF, the infarct area is replaced by a collagenous-based scar induced by "excessive" collagen deposition from activated cardiac fibroblasts. The scar prevents ventricular wall thinning; however, over time it expands to noninfarcted myocardium. Therapies to prevent fibrosis include reperfusion, anti-fibrotic agents, and ACE inhibitors. Paracrine factor (PF)/stem cell research has recently gained significance as a therapy. We consistently find that cardiac inducing colonies (CiCs) (derived from human germline pluripotent stem cells) secrete PFs at physiologically relevant concentrations that suppress cardiac fibroblast activation and excessive extracellular matrix protein secretion. These factors also affect human cardiomyocytes and endothelial cells by inducing migration/proliferation of both populations into a myocardial wound model. Finally, CiC factors modulate matrix turnover and proinflammation. Taking the results together, we show that CiCs could help tip the balance from fibrosis toward repair.
Collapse
Affiliation(s)
- Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| | | | - Breanna Brownson
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Rye High School, Rye, NY 10580
| | - Vaughn E Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Thomas Edison High School, Alexandria, VA 22310
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| |
Collapse
|
47
|
Ntambiyukuri A, Li X, Xiao D, Wang A, Zhan J, He L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081271. [PMID: 36013450 PMCID: PMC9410085 DOI: 10.3390/life12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Peanut is among the most important oil crops in the world. In the southern part of China, peanut is highly produced; however, the arable land is acidic. In acidic soils, aluminum (Al) inhibits plant growth and development by changing the properties of the cell wall and causing the disorder of the intracellular metabolic process. Circadian rhythm is an internal mechanism that occurs about every 24 h and enables plants to maintain internal biological processes with a daily cycle. To investigate the effect of photoperiod and Al stress on the Al-induced programmed cell death (PCD), two peanut varieties were treated with 100 μM AlCl3 under three photoperiodic conditions (8/16, SD; 12/12, ND; 16/8 h, LD). The results show that Al toxicity was higher in ZH2 than in 99-1507 and higher under LD than under SD. Root length decreased by 30, 37.5, and 50% in ZH2 and decreased by 26.08, 34.78, and 47.82% in 99-1507 under SD, ND, and LD, respectively, under Al stress. Photoperiod and Al induced cell death and ROS production. MDA content, PME activity, and LOX activity increased under SD, ND, and LD, respectively, under Al stress both in ZH2 and 99-1507. APX, SOD, CAT, and POD activities were higher under SD, ND, and LD, respectively. Al stress increased the level of AhLHY expression under SD and ND but decreased it under LD in both ZH2 and 99-1507. Contrastingly, AhSTS expression levels increased exponentially and were higher under SD, LD, and ND, respectively, under Al stress. Our results will be a useful platform to research PCD induced by Al and gain new insights into the genetic manipulation of the circadian clock for plant stress response.
Collapse
Affiliation(s)
- Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| |
Collapse
|
48
|
Liu Y, Zhu J, Yang L, Wu Q, Zhou Z, Zhang X, Zeng W. Lysyl Oxidase-Like Protein-2 Silencing Suppresses the Invasion and Proliferation of Esophageal Cancer Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
This study explores the effect of silencing lysyl oxidase-like protein-2 (LOXL2) gene on TE-1 cells. TE-1 cells were transfected by LOXL2-siRNA. E-cadherin, LOXL2, and Snail were detected using Western blot and Real-time PCR. Transwell invasion and migration assay was performed. Flow
cytometry detected apoptosis. Cell growth was analyzed with CCK-8 and colony formation. After48 h of transfection, compared with control groups, LOXL2 mRNA in the LOXL2-siRNA group (0.40±0.01) lowered significantly (P < 0.05). Consistently, LOXL2 protein in LOXL2-siRNA group
was (0.48± 0.02), significantly lower than that in blank control (1.04± 0.03) and negative control (1.02± 0.02) (P < 0.05). After 72 h of cell culture, the absorbance of LOXL2-siRNA group was (0.43±0.04), which reduced significantly than blank control
(0.81±0.05) and negative control (0.84±0.06) (P < 0.05). Similarly, cell clone number after LOXL2-siRNA transfection (72.3±4.2)increased significantly than the negative control (178.8±4.6) and blank control (167.3±3.5) (P < 0.05). However,
LOXL2 silencing did not significantly affect cell apoptosis. Furthermore, LOXL2 silencing inhibited Snail while increased E-cadherin (P < 0.05). Conclusively, LOXL2 silencing may suppress the invasion and proliferation of esophageal cancer cells via down-regulating Snail, and up-regulating
E-cadherin to inhibit EMT in esophageal cancer cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Jinfeng Zhu
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Longhai Yang
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Qiang Wu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Zizi Zhou
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Xiaoming Zhang
- Department of Thoracic and Cardiovascular Surgery, Shenzhen University General Hospital, Shenzhen 518055, P. R. China
| | - Wei Zeng
- Department of Oncology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
49
|
Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical Force and Cellular Stiffness in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:750-761. [PMID: 35183510 PMCID: PMC9088200 DOI: 10.1016/j.ajpath.2022.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023]
Abstract
Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.
Collapse
Affiliation(s)
- Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
50
|
Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods. Genes (Basel) 2022; 13:genes13040595. [PMID: 35456401 PMCID: PMC9027236 DOI: 10.3390/genes13040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production is an essential indicator of poultry fertility. The ovary is a crucial organ involved in egg production; however, little is known about the key genes and signaling pathways involved in the whole egg-laying cycle of hens. In order to explore the mechanism of egg production at different stages of the egg-laying process, ovarian tissues from four chickens were randomly selected for transcriptome analysis at each of the three ages (145 d, 204 d, and 300 d in the early, peak, and late stages of egg laying). A total of 12 gene libraries were constructed, and a total of 8433 differential genes were identified from NH145d vs. NH204d, NH145d vs. NH300d and NH300d vs. NH204d (Ninghai 145-day-old, Ninghai 204-day-old, and Ninghai 300-day-old), with 1176, 1653 and 1868 up-regulated genes, and 621, 1955 and 1160 down-regulated genes, respectively. In each of the two comparison groups, 73, 1004, and 1030 differentially expressed genes were found to be co-expressed. We analyzed the differentially expressed genes and predicted nine genes involved in egg production regulation, including LRP8, BMP6, ZP4, COL4A1, VCAN, INHBA, LOX, PTX3, and IHH, as well as several essential egg production pathways, such as regulation adhesion molecules (CAMs), calcium signaling pathways, neuroactive ligand–receptor interaction, and cytokine–cytokine receptor interaction. Transcriptional analysis of the chicken ovary during different phases of egg-lay will provide a useful molecular basis for study of the development of the egg-laying ovary.
Collapse
|