1
|
Yang Y, Chen Y, Feng D, Wu H, Long C, Zhang J, Wang J, Zhou B, Li S, Xiang S. Ficus hirta Vahl. ameliorates liver fibrosis by triggering hepatic stellate cell ferroptosis through GSH/GPX4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118557. [PMID: 39009327 DOI: 10.1016/j.jep.2024.118557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hirta Vahl., a traditional Chinese medicine commonly used in the Lingnan region, has been extensively used for liver disease treatment in China. Its notable antioxidant and anti-inflammatory properties have been reported in previous studies. However, its potential effect and underlying mechanism on liver fibrosis remains unclear. AIM OF STUDY This study was aimed to investigate the effect and its underlying mechanism of Ficus hirta Vahl on liver fibrosis in vitro and in vivo. MATERIALS AND METHODS The main components of Ficus hirta Vahl in blood were investigated by using UPLC-Q/TOF-MS/MS. Two animal models of liver fibrosis, the CCl4 and MCD induced mice, were used to assess the efficacy of Ficus hirta Vahl on liver fibrosis. Metabolomics was used to detect the level of metabolites in the serum of liver fibrosis mice after Ficus hirta Vahl treatment. Furthermore, the mechanism was validated in vitro using the human liver stellate cell line LX-2. The binding affinities of the active ingredients of Ficus hirta Vahl to the main targets of liver fibrosis were also determined. Finally, we identified the key active ingredients responsible for the treatment of liver fibrosis in vivo. RESULTS Fibrosis and inflammatory markers were significant down-regulation in both CCl4 and MCD induced liver fibrosis mice after Ficus hirta Vahl administration in a dose-dependent manner. We found that Ficus hirta Vahl may primarily exert its effect on liver fibrosis through the glutathione metabolic pathway. Importantly, the glutathione metabolic pathway is closely associated with ferroptosis, and our subsequent in vitro experiments provided evidence supporting this association. Ficus hirta Vahl was found to modulate the GSH/GPX4 pathway, ultimately leading to the amelioration of liver fibrosis. Moreover, using serum pharmacochemistry and molecular docking, we successfully identified apigenin as a probable efficacious monomer for the management of liver fibrosis and subsequently validated its efficacy in mice with CCl4-induced hepatic fibrosis. CONCLUSION Ficus hirta Vahl triggered the ferroptosis of hepatic stellate cell by regulating the GSH/GPX4 pathway, thereby alleviating liver fibrosis in mice. Moreover, apigenin is a key compound in Ficus hirta Vahl responsible for the effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yuxuan Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanchun Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Dongge Feng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huixing Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Changrui Long
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jianping Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| |
Collapse
|
2
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
3
|
Montoya-Buelna M, Ramirez-Lopez IG, San Juan-Garcia CA, Garcia-Regalado JJ, Millan-Sanchez MS, de la Cruz-Mosso U, Haramati J, Pereira-Suarez AL, Macias-Barragan J. Contribution of extracellular vesicles to steatosis-related liver disease and their therapeutic potential. World J Hepatol 2024; 16:1211-1228. [PMID: 39351515 PMCID: PMC11438597 DOI: 10.4254/wjh.v16.i9.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/23/2024] Open
Abstract
Extracellular vesicles (EVs) are small particles released by many cell types in different tissues, including the liver, and transfer specific cargo molecules from originating cells to receptor cells. This process generally culminates in activation of distant cells and inflammation and progression of certain diseases. The global chronic liver disease (CLD) epidemic is estimated at 1.5 billion patients worldwide. Cirrhosis and liver cancer are the most common risk factors for CLD. However, hepatitis C and B virus infection and obesity are also highly associated with CLD. Nonetheless, the etiology of many CLD pathophysiological, cellular, and molecular events are unclear. Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release. Here, we aimed to present an overview of EV features, from definition to types and biogenesis, with particular focus on the molecules related to steatosis-related liver disease, diagnosis, and therapy.
Collapse
Affiliation(s)
- Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Inocencia G Ramirez-Lopez
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico
| | - Cesar A San Juan-Garcia
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose J Garcia-Regalado
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariana S Millan-Sanchez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ulises de la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Ana L Pereira-Suarez
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose Macias-Barragan
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico.
| |
Collapse
|
4
|
Sun M, Tang M, Qian Y, Zong G, Zhu G, Jiang Y, Mu Y, Zhou M, Ding Q, Wang H, Zhu F, Yang C. Extracellular vesicles-derived ferritin from lipid-induced hepatocytes regulates activation of hepatic stellate cells. Heliyon 2024; 10:e33741. [PMID: 39027492 PMCID: PMC11255497 DOI: 10.1016/j.heliyon.2024.e33741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction and objectives: Extracellular vesicles (EVs) have emerged as key players in intercellular communication within the context of non-alcoholic fatty liver disease (NAFLD). This study aims to explore the intricate crosstalk between hepatocytes and hepatic stellate cells (HSCs) mediated by EVs in NAFLD. Materials and methods EVs ferritin was detected in hepatocytes stimulated with free fatty acids (FFA) as well as in NAFLD mice. Deferoxamine (DFO) was employed to reduce ferritin levels, while GW4869 was utilized to inhibit EVs. The impact of EVs ferritin on the HSCs activation was evaluated both in vitro and in vivo. Additionally, serum EVs ferritin levels were compared between NAFLD patients and controls. Results FFA treatment induces the formation and secretion of EVs and facilitates the release of ferritin from hepatocytes via EVs. Subsequently, EVs ferritin is hijacked by HSCs, prompting accelerated HSCs activation. Silencing ferritin with DFO and inhibiting EVs formation and secretion with GW4869 can reverse the effects of FFA treatment and disrupt the communication between hepatocytes and HSCs. Accumulation of ferritin leads to excessive reactive oxygen species (ROS) production, promoting HSCs fibrogenesis. Conversely, depleting EVs ferritin cargo restores liver function, concurrently mitigating NAFLD-associated fibrosis. Notably, NAFLD patients exhibit significantly elevated levels of serum EVs ferritin. Conclusions This study unveils a previously underestimated role of ferritin in HSCs upon its release from hepatocytes, emphasizing DFO as a promising compound to impede NAFLD advancement.
Collapse
Affiliation(s)
- Mengxue Sun
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaowang Zhu
- Department of Gastroenterology, Luodian Hospital, Baoshan District, Shanghai, China
| | - Yan Jiang
- Department of Infectious Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Mu
- Department of Cadre Ward, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minjun Zhou
- Kunshan Maternal and Child Health Care Hospital, Suzhou, China
| | - Qin Ding
- Nutrition Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Hao Wang
- Department of Oncology, The Air Force Hospital of Northern Theater PLA, Shenyang, China
| | - Fengshang Zhu
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia & Xinjiang Key Laboratory of Neurological Disorder Research, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Gastroenterology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wu Z, Xia M, Wang J, Aguilar MM, Buist-Homan M, Moshage H. Extracellular vesicles originating from steatotic hepatocytes promote hepatic stellate cell senescence via AKT/mTOR signaling. Cell Biochem Funct 2024; 42:e4077. [PMID: 38881228 DOI: 10.1002/cbf.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing rapidly due to the obesity epidemic. In the inflammatory stages of MASLD (MASH), activation of hepatic stellate cells (HSCs) leads to initiation and progression of liver fibrosis. Extracellular vesicles (EVs) are released from all cell types and play an important role in intercellular communication. However, the role of EVs released from hepatocytes in the context of MASLD is largely unknown. Therefore, the present study aimed to investigate the role of EVs derived from both normal and steatotic (free fatty acid-treated) hepatocytes on the phenotype of HSCs via the senescence pathway. Primary rat hepatocytes were treated with free fatty acids (FFAs: oleic acid and palmitic acid). EVs were collected by ultracentrifugation. EVs markers and HSCs activation and senescence markers were assessed by Western blot analysis, qPCR and cytochemistry. Reactive oxygen species (ROS) production was assessed by fluorescence assay. RNA profiles of EVs were evaluated by sequencing. We found that EVs from hepatocytes treated with FFAs (FFA-EVs) inhibit collagen type 1 and α-smooth muscle actin expression, increase the production of ROS and the expression of senescence markers (IL-6, IL-1β, p21 and senescence-associated β-galactosidase activity) in early activating HSCs via the AKT-mTOR pathway. Sequencing showed differentially enriched RNA species between the EVs groups. In conclusion, EVs from FFA-treated hepatocytes inhibit HSC activation by inducing senescence via the AKT-mTOR signaling pathway. Determining the components in EVs from steatotic hepatocytes that induce HSC senescence may lead to the identification of novel targets for intervention in the treatment of MASLD in the future.
Collapse
Affiliation(s)
- Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
7
|
Li S, Yang F, Cheng F, Zhu L, Yan Y. Lipotoxic hepatocyte derived LIMA1 enriched small extracellular vesicles promote hepatic stellate cells activation via inhibiting mitophagy. Cell Mol Biol Lett 2024; 29:82. [PMID: 38822260 PMCID: PMC11140962 DOI: 10.1186/s11658-024-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Zhu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine, Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
8
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Petagine L, Zariwala MG, Patel VB. Non-alcoholic fatty liver disease: Immunological mechanisms and current treatments. World J Gastroenterol 2023; 29:4831-4850. [PMID: 37701135 PMCID: PMC10494768 DOI: 10.3748/wjg.v29.i32.4831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) causes significant global disease burden and is a leading cause of mortality. NAFLD induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of NAFLD is widely recognised, the precise triggers for disease progression are still to be fully elucidated. Furthermore, the propagation to cirrhosis is poorly understood. Whilst some progress in terms of treatment options have been explored, an incomplete understanding of the hepatic cellular and molecular alterations limits their clinical utility. We have therefore reviewed some of the key pathways responsible for the pathogenesis of NAFLD such as innate and adaptative immunity, lipotoxicity and fibrogenesis, and highlighted current trials and treatment options for NAFLD patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Vinood B Patel
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| |
Collapse
|
11
|
Yang F, Wu Y, Chen Y, Xi J, Chu Y, Jin J, Yan Y. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis. JHEP Rep 2023; 5:100746. [PMID: 37274776 PMCID: PMC10232730 DOI: 10.1016/j.jhepr.2023.100746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/07/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) affects nearly a quarter of the population with no approved pharmacological therapy. Liver steatosis is a primary characteristic of NAFLD. Recent studies suggest that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) may provide a promising strategy for treating liver injury; however, the role and underlying mechanisms of MSC-ex in steatosis are not fully understood. Methods Oleic-palmitic acid-treated hepatic cells and high-fat diet (HFD)-induced NAFLD mice were established to observe the effect of MSC-ex. Using non-targeted lipidomics and transcriptome analyses, we analysed the gene pathways positively correlated with MSC-ex. Mass spectrometry and gene knockdown/overexpression analyses were performed to evaluate the effect of calcium/calmodulin-dependent protein kinase 1 (CAMKK1) transferred by MSC-ex on lipid homoeostasis regulation. Results Here, we demonstrate that MSC-ex promote fatty acid oxidation and reduce lipogenesis in oleic-palmitic acid-treated hepatic cells and HFD-induced NAFLD mice. Non-targeted lipidomics and transcriptome analyses suggested that the effect of MSC-ex on lipid accumulation positively correlated with the phosphorylation of AMP-activated protein kinase. Furthermore, mass spectrometry and gene knockdown/overexpression analyses revealed that MSC-ex-transferred CAMKK1 is responsible for ameliorating lipid accumulation in an AMP-activated protein kinase-dependent manner, which subsequently inhibits SREBP-1C-mediated fatty acid synthesis and enhances peroxisome proliferator-activated receptor alpha (PPARα)-mediated fatty acid oxidation. Conclusions MSC-ex may prevent HFD-induced NAFLD via CAMKK1-mediated lipid homoeostasis regulation. Impact and Implications NAFLD includes many conditions, from simple steatosis to non-alcoholic steatohepatitis, which can lead to fibrosis, cirrhosis, and even hepatocellular carcinoma. So far, there is no approved drug for treating liver steatosis of NAFLD. Thus, better therapies are needed to regulate lipid metabolism and prevent the progression from liver steatosis to chronic liver disease. By using a combination of non-targeted lipidomic and transcriptome analyses, we revealed that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) effectively reduced lipid deposition and improved liver function from HFD-induced liver steatosis. Our study highlights the importance of exosomal CAMKK1 from MSC-ex in mediating lipid metabolism regulation via AMPK-mediated PPARα/CPT-1A and SREBP-1C/fatty acid synthase signalling in hepatocytes. These findings are significant in elucidating novel mechanisms related to MSC-ex-based therapies for preventing NAFLD.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanshuang Wu
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianbo Xi
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Jianhua Jin
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, China
| |
Collapse
|
12
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
13
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
14
|
Niu Q, Wang T, Wang Z, Wang F, Huang D, Sun H, Liu H. Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver disease via delivering miR-223-3p. Adipocyte 2022; 11:572-587. [PMID: 36093813 PMCID: PMC9481107 DOI: 10.1080/21623945.2022.2098583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Increasing studies have identified the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in non-alcoholic fatty liver disease (NAFLD) treatment. Hence, we further focused on the potential of adipose-derived MSC (ADSC)-EVs in NAFLD by delivering miR-223-3p. The uptake of isolated ADSC-EVs by hepatocytes was assessed, and the expression of miR-223-3p in ADSC-EVs and hepatocytes was characterized. It was established that miR-223-3p, enriched in ADSC-EVs, could be delivered by ADSC-EVs into hepatocytes. Using co-culture system and gain-of-function approach, we evaluated the effect of ADSC-EVs carrying miR-223-3p on lipid accumulation and liver fibrosis in pyrrolizidine alkaloids (PA)-induced hepatocytes and a high-fat diet-induced NAFLD mouse model. Bioinformatics websites and dual-luciferase reporter gene assay were performed to determine the interactions between miR-223-3p and E2F1, which was further validated by rescue experiments. ADSC-EVs containing miR-223-3p displayed suppressive effects on lipid accumulation and liver fibrosis through E2F1 inhibition, since E2F1 was demonstrated as a target gene of miR-223-3p. The protective role of ADSC-EVs by delivering miR-223-3p was then confirmed in the mouse model. Collectively, this study elucidated that ADSC-EVs delayed the progression NAFLD through the delivery of anti-fibrotic miR-223-3p and subsequent E2F1 suppression, which may suggest miR-223-3p-loaded ADSC-EVs to be a potential therapeutic approach for NAFLD.
Collapse
Affiliation(s)
- Qinghui Niu
- Department of Liver Center, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Ting Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Zhiqiang Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Feng Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Deyu Huang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Huali Sun
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Hanyun Liu
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China,CONTACT Hanyun Liu Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao266003, Shandong Province, P.R. China
| |
Collapse
|
15
|
Qi X, Lai J. Exosomal microRNAs and Progression of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2022; 23:13501. [PMID: 36362287 PMCID: PMC9654542 DOI: 10.3390/ijms232113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD)/metabolic associated fatty liver disease (MAFLD) is becoming a public health problem worldwide. Steatosis as the simple form and nonalcoholic steatohepatitis (NASH) as its progression form are commonly seen in liver biopsy specimens from patients with obesity, diabetes, hyperlipidemia, hypertension, and the use of certain drugs. Patients with NASH and advanced fibrosis were associated with increased risks of liver-related complications, including hepatocellular carcinoma (HCC). However, the mechanisms regarding the progression from simple steatosis to NASH fibrosis remain incompletely understood. Because NASH-caused liver injury is a complex process and multiple cell types are involved, intercellular communication is likely mediated by extracellular vesicles. Exosomes are a type of small extracellular vesicles and contain various cellular molecules, including proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs). MiRNAs are short, non-coding RNA species that are important post-transcriptional regulators of gene expression and may play an important role in the pathogenesis of NALFD/NASH. In this article, we review the articles about NASH and exosomal miRNAs published in the most recent English literature through PubMed search and discuss the most recent criteria for histological diagnosis, pathogenesis from steatosis to NASH, roles of exosomal miRNAs in NASH pathogenesis and progression, as well as their potential in future clinical diagnosis and treatment for patients with NASH.
Collapse
Affiliation(s)
- Xiaoyan Qi
- Department of Endocrinology and Metabolism, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32601, USA
| | - Jinping Lai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32601, USA
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, USA
| |
Collapse
|
16
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Deutsch M, Aloizos G, Fortis SP, Papageorgiou EG, Tsagarakis A, Manolakopoulos S. The Emerging Role of Extracellular Vesicles and Autophagy Machinery in NASH-Future Horizons in NASH Management. Int J Mol Sci 2022; 23:12185. [PMID: 36293042 PMCID: PMC9603426 DOI: 10.3390/ijms232012185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most frequent chronic hepatic disease in the general population, while it is the first cause of liver transplantation in the US. NAFLD patients will subsequently develop non-alcoholic steatohepatitis (NASH), which is characterized by aberrant hepatocellular inflammation with or without the presence of fibrosis. The lack of specific biomarkers and therapeutic strategies makes non-alcoholic steatohepatitis (NASH) management a difficult task for clinicians. Extracellular vesicles (EVs) constitute a heterogenic population of vesicles produced by inward or outward plasma-membrane budding. There is an emerging connection between autophagy EVs production, via an unconventional non-degradative procedure. Alterations in the amount of the secreted EVs and the cargo they carry are also involved in the disease progression and development of NASH. Autophagy constitutes a multistep lysosomal degradative pathway that reassures cell homeostasis and survival under stressful conditions, such as oxygen and energy deprivation. It prevents cellular damage by eliminating defected proteins or nοn-functional intracellular organelles. At the same time, it reassures the optimal conditions for the cells via a different mechanism that includes the removal of cargo via the secretion of EVs. Similarly, autophagy machinery is also associated with the pathogenetic mechanism of NAFLD, while it has a significant implication for the progression of the disease and the development of NASH. In this review, we will shed light on the interplay between autophagy and EVs in NASH, the emerging connection of EVs production with the autophagy pathway, and their possible manipulation for developing future therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Evangelos Koustas
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Melanie Deutsch
- 2nd Department of Internal Medicine, Hippokration General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias Avenue Str., 11527 Athens, Greece
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Spilios Manolakopoulos
- 2nd Department of Internal Medicine, Hippokration General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias Avenue Str., 11527 Athens, Greece
| |
Collapse
|
17
|
Devaraj E, Perumal E, Subramaniyan R, Mustapha N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology 2022; 76:275-285. [PMID: 34773651 DOI: 10.1002/hep.32239] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Elumalai Perumal
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raghunandhakumar Subramaniyan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Najimi Mustapha
- Laboratory of Pediatric Hepatology and Cell Therapy, IREC Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
18
|
Moayedfard Z, Sani F, Alizadeh A, Bagheri Lankarani K, Zarei M, Azarpira N. The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2022; 13:242. [PMID: 35672797 PMCID: PMC9175371 DOI: 10.1186/s13287-022-02929-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by intra-hepatocyte triglyceride accumulation and concomitant involvement of the immune system with subsequent histological changes, tissue damage, and clinical findings. There are various molecular pathways involved in the progression of NAFLD including lipotoxicity, endoplasmic reticulum stress, and the immune response. Both innate and adaptive immune systems are involved in the NAFLD pathogenesis, and crosstalk between the immune cells and liver cells participates in its initiation and progression. Among the various treatments for this disease, new cell based therapies have been proposed. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC) (MSC-EVs) are new cell-free vehicles with low immunogenicity, which can suppress detrimental immune responses in inflamed tissues. This review aimed to express the immune system's molecular pathways associated with the initiation and progression of NAFLD. Then, the possible role of MSC-EVs in the treatment of this entity through immune response modulation was discussed. Finally, engineered EVs enhanced by specific therapeutic miRNA were suggested for alleviating the pathological cellular events in liver disease.
Collapse
Affiliation(s)
- Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Zarei
- Renal Division, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
19
|
Zhang B, Zhao J, Jiang M, Peng D, Dou X, Song Y, Shi J. The Potential Role of Gut Microbial-Derived Exosomes in Metabolic-Associated Fatty Liver Disease: Implications for Treatment. Front Immunol 2022; 13:893617. [PMID: 35634340 PMCID: PMC9131825 DOI: 10.3389/fimmu.2022.893617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence and incidence of metabolic-associated fatty liver disease (MAFLD), a clinically heterogeneous disease whose primary clinical therapies include dietary control and exercise therapy, is increasing worldwide and constitutes a significant medical burden. Gut microbes influence the physiopathological processes of the liver through different mechanisms based on the gut-liver axis. Exosomes are essential carriers of intercellular communication. Most previous studies have focused on adipocyte- and hepatocyte-derived exosomes, while the critical role of microbial-derived exosomes and the molecular mechanisms behind them in MAFLD have received little attention. Therefore, we searched and screened the latest relevant studies in the PubMeb database to elucidate the link between microbial-derived exosomes and the pathogenesis of MAFLD, mainly in terms of insulin resistance, intestinal barrier, inflammatory response, lipid metabolism, and liver fibrosis. The aim was to provide a theoretical framework and support for clinical protocols and innovative drug development.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Dandan Peng
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaobing Dou
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
20
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
21
|
Chen H, Ma J, Liu J, Dou L, Shen T, Zuo H, Xu F, Zhao L, Tang W, Man Y, Ma Y, Li J, Huang X. Lysophosphatidylcholine disrupts cell adhesion and induces anoikis in hepatocytes. FEBS Lett 2022; 596:510-525. [PMID: 35043979 DOI: 10.1002/1873-3468.14291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Chen
- Peking University Fifth School of Clinical Medicine Beijing 100730 China
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Jiarui Ma
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development Laboratory of Neuroscience and Brain Development College of Life Sciences Beijing Normal University Beijing 100875 China
| | - Lin Dou
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Tao Shen
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Huiyan Zuo
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Fangzhi Xu
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Li Zhao
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Yong Man
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Yanyan Ma
- Department of Scientific Research Qinghai University Affiliated Hospital Xining 810001 China
| | - Jian Li
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| | - Xiuqing Huang
- Peking University Fifth School of Clinical Medicine Beijing 100730 China
- The Key Laboratory of Geriatrics Beijing Institute of Geriatrics Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing Hospital/National Center of Gerontology National Health Commission Beijing 100730 China
| |
Collapse
|
22
|
New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
24
|
Abstract
Hepatic fibrosis is a reversible wound healing process following liver injury. Although this process is necessary for maintaining liver integrity, severe excessive extracellular matrix accumulation (ECM) could lead to permanent scar formation and destroy the liver structure. The activation of hepatic stellate cells (HSCs) is a key event in hepatic fibrosis. Previous studies show that most antifibrotic therapies focus on the apoptosis of HSCs and the prevention of HSC activation. Noncoding RNAs (ncRNAs) play a substantial role in HSC activation and are likely to be biomarkers or therapeutic targets for the treatment of hepatic fibrosis. This review summarizes and discusses the previously reported ncRNAs, including the microRNAs, long noncoding RNAs, and circular RNAs, highlighting their regulatory roles and interactions in the signaling pathways that regulate HSC activation in hepatic fibrosis.
Collapse
|
25
|
Romero A, Eckel J. Organ Crosstalk and the Modulation of Insulin Signaling. Cells 2021; 10:cells10082082. [PMID: 34440850 PMCID: PMC8394808 DOI: 10.3390/cells10082082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
A highly complex network of organ communication plays a key role in regulating metabolic homeostasis, specifically due to the modulation of the insulin signaling machinery. As a paradigm, the role of adipose tissue in organ crosstalk has been extensively investigated, but tissues such as muscles and the liver are equally important players in this scenario. Perturbation of organ crosstalk is a hallmark of insulin resistance, emphasizing the importance of crosstalk molecules in the modulation of insulin signaling, potentially leading to defects in insulin action. Classically secreted proteins are major crosstalk molecules and are able to affect insulin signaling in both directions. In this review, we aim to focus on some crosstalk mediators with an impact on the early steps of insulin signaling. In addition, we also summarize the current knowledge on the role of extracellular vesicles in relation to insulin signaling, a more recently discovered additional component of organ crosstalk. Finally, an attempt will be made to identify inter-connections between these two pathways of organ crosstalk and the potential impact on the insulin signaling network.
Collapse
|
26
|
Jiang H, Qian Y, Shen Z, Liu Y, He Y, Gao R, Shen M, Chen S, Fu Q, Yang T. Circulating microRNA‑135a‑3p in serum extracellular vesicles as a potential biological marker of non‑alcoholic fatty liver disease. Mol Med Rep 2021; 24:498. [PMID: 33955511 PMCID: PMC8127071 DOI: 10.3892/mmr.2021.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is a widespread threat to human health. However, the present screening methods for NAFLD are time‑consuming or invasive. The present study aimed to assess the potential of microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) as a biomarker of NAFLD. C57BL/6J mice were fed either a 12‑week high‑fat diet (HFD) or standard chow to establish NAFLD and control groups, respectively. Serum samples were obtained from the mouse model of NAFLD, as well as 50 patients with NAFLD and 50 healthy individuals, and EVs were extracted and verified. Using reverse transcription‑quantitative PCR, the mRNA expression level of selected miRNAs in the serum and EVs was analyzed. In order to determine the diagnostic value, receiver operating characteristic (ROC) curves were used. The mice treated with HFD showed notable hepatic steatosis and higher concentrations of serum alanine aminotransferase (ALT). There was also a significant decrease in the expression levels of miR‑135a‑3p, miR‑129b‑5p and miR‑504‑3p, and an increase in miR‑122‑5p expression levels in circulating EVs in mice treated with HFD and patients with NAFLD. There were also similar miR‑135a‑3p and miR‑122‑5p expression patterns in the serum. ROC analysis demonstrated that miR‑135a‑3p in circulating EVs was highly accurate in diagnosing NAFLD, with the area under the curve value being 0.849 (95% CI, 0.777‑0.921; P<0.0001). Bioinformatics analysis indicated that dysregulated miR‑135a‑3p was associated with 'platelet‑derived growth factor receptor signaling pathway' and 'AMP‑activated protein kinase signaling pathway'. In summary, circulating miR‑135a‑3p in EVs may serve as a potential non‑invasive biomarker to diagnose NAFLD. This miRNA was a more sensitive and specific biological marker for NAFLD compared with ALT.
Collapse
Affiliation(s)
- Hemin Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyang Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwei Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
27
|
Ipsen DH, Tveden-Nyborg P. Extracellular Vesicles as Drivers of Non-Alcoholic Fatty Liver Disease: Small Particles with Big Impact. Biomedicines 2021; 9:biomedicines9010093. [PMID: 33477873 PMCID: PMC7832840 DOI: 10.3390/biomedicines9010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the leading chronic liver disease, negatively affecting the lives of millions of patients worldwide. The complex pathogenesis involves crosstalk between multiple cellular networks, but how the intricate communication between these cells drives disease progression remains to be further elucidated. Furthermore, the disease is not limited to the liver and includes the reprogramming of distant cell populations in different organs. Extracellular vesicles (EVs) have gained increased attention as mediators of cellular communication. EVs carry specific cargos that can act as disease-specific signals both locally and systemically. Focusing on NAFLD advancing to steatohepatitis (NASH), this review provides an update on current experimental and clinical findings of the potential role of EVs in hepatic inflammation and fibrosis, the main contributors to progressive NASH. Particular attention is placed on the characteristics of EV cargos and potential specificity to disease stages, with putative value as disease markers and treatment targets for future investigations.
Collapse
|