1
|
Santos M, Maurício T, Domingues R, Domingues P. Impact of oxidized phosphatidylcholine supplementation on the lipidome of RAW264.7 macrophages. Arch Biochem Biophys 2025; 768:110384. [PMID: 40090440 DOI: 10.1016/j.abb.2025.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Oxidized phospholipids (OxPLs) have emerged as critical damage-associated molecular patterns (DAMPs) and modulators of numerous biological processes, including inflammation, playing a significant role in health and disease. Despite their recognized influence on macrophage polarization, the precise mechanisms by which distinct OxPL species shape macrophage behavior remains poorly understood. The present study investigates the impact of two oxidized phosphatidylcholines (OxPC): omega 3 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine (OxPC22:6), and omega 6 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (OxPC18:2), on the lipidomic profile of RAW264.7 macrophages, through an LC-MS lipidomic analysis. Our findings demonstrate that the OxPCs under study modulate macrophage lipidome differently, highlighting the significance of the sn-2 acyl chain composition for their biological function. When administered alone, neither of the OxPCs induced a pro-inflammatory phenotype in macrophages. OxPC22:6 appears to induce a preparatory pro-inflammatory state in macrophages, improving their subsequent inflammatory responses, while OxPC18:2 seems to induce a resting state on macrophages. Under LPS stimulation, both OxPCs were found to selectively attenuate certain LPS-driven lipidomic changes (PC.O, PC.P, PI.P, PE.P) while amplifying others (DG, Cer, LPC, PE.O, PI.O, TG, PC, PI) and introducing unique alterations to the macrophage lipidome (SM, PE, LPE). Core lipidomic changes, crucial for macrophages' LPS response, were identified, with sustained elevation of TG, DG, Cer, PC, LPC, and PI.O and reduction of PE.O, PI, and CAR. These observations suggest that, in the presence of LPS, mainly OxPC22:6 amplifies the pro-inflammatory lipidomic signature of macrophages. Further research is needed to clarify whether the observed lipidomic adaptations improve, impair, or inhibit macrophages' inflammatory capacities and response.
Collapse
Affiliation(s)
- Matilde Santos
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tatiana Maurício
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Rodríguez JP, Casas J, Balboa MA, Balsinde J. Bioactive lipid signaling and lipidomics in macrophage polarization: Impact on inflammation and immune regulation. Front Immunol 2025; 16:1550500. [PMID: 40028333 PMCID: PMC11867965 DOI: 10.3389/fimmu.2025.1550500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Macrophages, crucial innate immune cells, defend against pathogens and resolve inflammation, maintaining tissue balance. They perform phagocytosis, present antigens to T cells, and bond innate and adaptive immunity through various activation states. Classical activation is associated with Th1 responses and interferon γ production, while alternative activation, induced by interleukin 4, is characterized by increased endocytosis, reduced secretion of pro-inflammatory cytokines, and roles in immunoregulation and tissue remodeling. Although these represent opposite extremes observed in vitro, the remarkable plasticity of macrophages allows for a wide spectrum of activation phenotypes that are complex to characterize experimentally. While the application of omics techniques has resulted in significant advances in the characterization of macrophage polarization, lipidomic studies have received lesser attention. Beyond their role as structural components and energy sources, lipids function as signaling molecules that regulate macrophage activation and polarization, thereby shaping immune responses. This work reviews the interaction between lipid signaling and macrophage polarization, exploring how lipid metabolism influences macrophage phenotype and function. These insights offer potential therapeutic strategies for immune-mediated diseases and inflammation-related disorders, including inflammaging.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
4
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
5
|
Koganesawa M, Dwyer D, Alhallak K, Nagai J, Zaleski K, Samuchiwal S, Hiroaki H, Nishida A, Hirsch TI, Brennan PJ, Puder M, Balestrieri B. Pla2g5 contributes to viral-like-induced lung inflammation through macrophage proliferation and LA/Ffar1 lung cell recruitment. Immunology 2024; 172:144-162. [PMID: 38361249 PMCID: PMC11057362 DOI: 10.1111/imm.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.
Collapse
Affiliation(s)
- Masaya Koganesawa
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Daniel Dwyer
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kinan Alhallak
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Kendall Zaleski
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Sachin Samuchiwal
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Hayashi Hiroaki
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Airi Nishida
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Thomas I. Hirsch
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Patrick J. Brennan
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| | - Mark Puder
- Department of Surgery and Vascular Biology Program Boston Children’s Hospital, Boston, MA
| | - Barbara Balestrieri
- Division of Allergy and Clinical Immunology, Vinik Center for Translational Immunology Research, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
6
|
Han H, Xie Q, Shao R, Li J, Du X. Alveolar macrophage-derived gVPLA2 promotes ventilator-induced lung injury via the cPLA2/PGE2 pathway. BMC Pulm Med 2023; 23:494. [PMID: 38057837 DOI: 10.1186/s12890-023-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a clinical complication of mechanical ventilation observed in patients with acute respiratory distress syndrome. It is characterized by inflammation mediated by inflammatory cells and their secreted mediators. METHODS To investigate the mechanisms underlying VILI, a C57BL/6J mouse model was induced using high tidal volume (HTV) mechanical ventilation. Mice were pretreated with Clodronate liposomes to deplete alveolar macrophages or administered normal bone marrow-derived macrophages or Group V phospholipase A2 (gVPLA2) intratracheally to inhibit bone marrow-derived macrophages. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to assess lung injury and measure Ca2 + concentration, gVPLA2, downstream phosphorylated cytoplasmic phospholipase A2 (p-cPLA2), prostaglandin E2 (PGE2), protein expression related to mitochondrial dynamics and mitochondrial damage. Cellular experiments were performed to complement the animal studies. RESULTS Depletion of alveolar macrophages attenuated HTV-induced lung injury and reduced gVPLA2 levels in alveolar lavage fluid. Similarly, inhibition of alveolar macrophage-derived gVPLA2 had a similar effect. Activation of the cPLA2/PGE2/Ca2 + pathway in alveolar epithelial cells by gVPLA2 derived from alveolar macrophages led to disturbances in mitochondrial dynamics and mitochondrial dysfunction. The findings from cellular experiments were consistent with those of animal experiments. CONCLUSIONS HTV mechanical ventilation induces the secretion of gVPLA2 by alveolar macrophages, which activates the cPLA2/PGE2/Ca2 + pathway, resulting in mitochondrial dysfunction. These findings provide insights into the pathogenesis of VILI and may contribute to the development of therapeutic strategies for preventing or treating VILI.
Collapse
Affiliation(s)
- Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Qiuwen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Rongge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jinju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
7
|
Ghorbani P, Kim SY, Smith TKT, Minarrieta L, Robert-Gostlin V, Kilgour MK, Ilijevska M, Alecu I, Snider SA, Margison KD, Nunes JRC, Woo D, Pember C, O’Dwyer C, Ouellette J, Kotchetkov P, St-Pierre J, Bennett SAL, Lacoste B, Blais A, Nair MG, Fullerton MD. Choline metabolism underpins macrophage IL-4 polarization and RELMα up-regulation in helminth infection. PLoS Pathog 2023; 19:e1011658. [PMID: 37747879 PMCID: PMC10553840 DOI: 10.1371/journal.ppat.1011658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/05/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.
Collapse
Affiliation(s)
- Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Tyler K. T. Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucía Minarrieta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Victoria Robert-Gostlin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marisa K. Kilgour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Maja Ilijevska
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shayne A. Snider
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kaitlyn D. Margison
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia R. C. Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Woo
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Ciara Pember
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steffany A. L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
- Éric Poulin Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022; 13:936167. [PMID: 36341426 PMCID: PMC9633986 DOI: 10.3389/fimmu.2022.936167] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the lungs, macrophages constitute the first line of defense against pathogens and foreign bodies and play a fundamental role in maintaining tissue homeostasis. Activated macrophages show altered immunometabolism and metabolic changes governing immune effector mechanisms, such as cytokine secretion characterizing their classic (M1) or alternative (M2) activation. Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages inhibits IL-1β secretion, but not TNF-α, indicating metabolic pathway specificity that determines cytokine production. In contrast to LPS, the nature of the immunometabolic responses induced by non-organic particles, such as silica, in macrophages, its contribution to cytokine specification, and disease pathogenesis are not well understood. Silica-stimulated macrophages activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and release IL-1β, TNF-α, and interferons, which are the key mediators of silicosis pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and the persistent macrophage activation results in an increased NADPH oxidase (Phox) activation and mitochondrial reactive oxygen species (ROS) production, ultimately leading to macrophage death and release of silica particles that perpetuate inflammation. In this manuscript, we reviewed the effects of silica on macrophage mitochondrial respiration and central carbon metabolism determining cytokine specification responsible for the sustained inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
11
|
Alonazi M, Karray A, Jallouli R, Ben Bacha A. Biochemical, Kinetic and Biological Properties of Group V Phospholipase A2 from Dromedary. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113437. [PMID: 35684381 PMCID: PMC9182273 DOI: 10.3390/molecules27113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Secretory group V phospholipase A2 (PLA2-V) is known to be involved in inflammatory processes in cellular studies, nevertheless, the biochemical and the enzymatic characteristics of this important enzyme have been unclear yet. We reported, as a first step towards understanding the biochemical properties, catalytic characteristics, antimicrobial and cytotoxic effects of this PLA2, the production of PLA2-V from dromedary. The obtained DrPLA2-V has an absolute requirement for Ca2+ and NaTDC for enzymatic activity with an optimum pH of 9 and temperature of 45 °C with phosphatidylethanolamine as a substrate. Kinetic parameters showed that Kcat/Kmapp is 2.6 ± 0.02 mM−1 s−1. The enzyme was found to display potent Gram-positive bactericidal activity (with IC50 values of about 5 µg/mL) and antifungal activity (with IC50 values of about 25 µg/mL)in vitro. However, the purified enzyme did not display a cytotoxic effect against cancer cells.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, Université de Sfax-Tunisia, Sfax 3038, Tunisia;
| | - Raida Jallouli
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia
- Correspondence: ; Tel.: +966-504-784-639
| |
Collapse
|
12
|
Multi-Omic Profiling of Macrophages Treated with Phospholipids Containing Omega-3 and Omega-6 Fatty Acids Reveals Complex Immunomodulatory Adaptations at Protein, Lipid and Metabolic Levels. Int J Mol Sci 2022; 23:ijms23042139. [PMID: 35216253 PMCID: PMC8879791 DOI: 10.3390/ijms23042139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.
Collapse
|
13
|
Macrophage-Mediated Immune Responses: From Fatty Acids to Oxylipins. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010152. [PMID: 35011385 PMCID: PMC8746402 DOI: 10.3390/molecules27010152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023]
Abstract
Macrophages have diverse functions in the pathogenesis, resolution, and repair of inflammatory processes. Elegant studies have elucidated the metabolomic and transcriptomic profiles of activated macrophages. However, the versatility of macrophage responses in inflammation is likely due, at least in part, to their ability to rearrange their repertoire of bioactive lipids, including fatty acids and oxylipins. This review will describe the fatty acids and oxylipins generated by macrophages and their role in type 1 and type 2 immune responses. We will highlight lipidomic studies that have shaped the current understanding of the role of lipids in macrophage polarization.
Collapse
|
14
|
Phospholipases: From Structure to Biological Function. Biomolecules 2021; 11:biom11030428. [PMID: 33803937 PMCID: PMC8001435 DOI: 10.3390/biom11030428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
|