1
|
Wassink G, Cho KHT, Mathai S, Lear CA, Dean JM, Gunn AJ, Bennet L. White matter protection with insulin-like growth factor-1 after hypoxia-ischaemia in preterm foetal sheep. Brain Commun 2024; 6:fcae373. [PMID: 39507274 PMCID: PMC11539755 DOI: 10.1093/braincomms/fcae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Perinatal hypoxia-ischaemia in extremely preterm infants is associated with long-term neurodevelopmental impairment, for which there is no specific treatment. Insulin-like growth factor-1 can reduce acute brain injury, but its effects on chronic white matter injury after hypoxia-ischaemia are unclear. Preterm-equivalent foetal sheep (0.6 gestation) received either sham-asphyxia or asphyxia induced by umbilical cord occlusion for 30 min, and recovered for either 3 or 35 days after asphyxia. The 35 day recovery groups received either an intracerebroventricular infusion of insulin-like growth factor-1 (1 µg/24 h) or vehicle, from 3 to 14 days after asphyxia. Asphyxia was associated with ventricular enlargement, and loss of frontal and parietal white matter area (P < 0.05 versus sham-asphyxia). This was associated with reduced area fraction of myelin basic protein and numbers of oligodendrocyte transcription factor 2 and mature, anti-adenomatous polyposis coli-positive oligodendrocytes in periventricular white matter (P < 0.05), with persistent inflammation and caspase-3 activation (P < 0.05). Four of eight foetuses developed cystic lesions in temporal white matter. Prolonged infusion with insulin-like growth factor-1 restored frontal white matter area, improved numbers of oligodendrocyte transcription factor 2-positive and mature, anti-adenomatous polyposis coli-positive oligodendrocytes, with reduced astrogliosis and microgliosis after 35 days recovery (P < 0.05 versus asphyxia). One of four foetuses developed temporal cystic lesions. Functionally, insulin-like growth factor-1-treated foetuses had faster recovery of EEG power, but not spectral edge. Encouragingly, these findings show that delayed, prolonged, insulin-like growth factor-1 treatment can improve functional maturation of periventricular white matter after severe asphyxia in the very immature brain, at least in part by suppressing chronic neural inflammation.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Kenta H T Cho
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Chen C, Cao J, Zhang T, Zhang H, Shi Q, Li X, Wang L, Tian J, Huang G, Wang Y, Zhao L. Alterations in corpus callosum subregions morphology and functional connectivity in patients with adult-onset hypothyroidism. Brain Res 2024; 1840:149110. [PMID: 38964705 DOI: 10.1016/j.brainres.2024.149110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) brain abnormalities have been reported in the corpus callosum (CC) of patients with adult-onset hypothyroidism. However, no study has directly compared CC-specific morphological or functional alterations among subclinical hypothyroidism (SCH), overt hypothyroidism (OH), and healthy controls (HC). Moreover, the association of CC alterations with cognition and emotion is not well understood. METHODS Demographic data, clinical variables, neuropsychological scores, and MRI data of 152 participants (60 SCH, 37 OH, and 55 HC) were collected. This study investigated the clinical performance, morphological and functional changes of CC subregions across three groups. Moreover, a correlation analysis was performed to explore potential relationships between these factors. RESULTS Compared to HC, SCH and OH groups exhibited lower cognitive scores and higher depressive/anxious scores. Notably, rostrum and rostral body volume of CC was larger in the SCH group. Functional connectivity between rostral body, anterior midbody and the right precentral and dorsolateral superior frontal gyrus were increased in the SCH group. In contrast, the SCH and OH groups exhibited a decline in functional connectivity between splenium and the right angular gyrus. Within the SCH group, rostrum volume demonstrated a negative correlation with Montreal Cognitive Assessment and visuospatial/executive scores, while displaying a positive correlation with 24-item Hamilton Depression Rating Scale scores. In the OH group, rostral body volume exhibited a negative correlation with serum thyroid stimulating hormone levels, while a positive correlation with serum total thyroxine and free thyroxine levels. CONCLUSIONS This study suggests that patients with different stages of adult-onset hypothyroidism may exhibit different patterns of CC abnormalities. These findings offer new insights into the neuropathophysiological mechanisms in hypothyroidism.
Collapse
Affiliation(s)
- Chen Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Taotao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China.
| | - Qian Shi
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Xiaotao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Liting Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jinghe Tian
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510000, China.
| | - Lianping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
3
|
Haneda A, Hoots JK, Hagy HA, Lacy M. Case report: Neuropsychological assessment in a patient with 4H leukodystrophy. Clin Neuropsychol 2024; 38:1272-1289. [PMID: 37974060 DOI: 10.1080/13854046.2023.2279697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Objective: POLR3-HLD or 4H leukodystrophy is an autosomal recessive disorder characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, and caused by variants in POLR3A, POLR3B, POLR1C, or POLR3K genes. Neurological and non-neurological clinical features and disease severity vary. While previous studies reference variable cognition, this is the first report of 4H detailing a comprehensive neuropsychological assessment. Method: The current study presents a 20-year-old, English-speaking, right-handed, non-Hispanic White female with 12 years of education with genetically confirmed 4H POLR3B-related leukodystrophy without hormonal replacement treatment. Results: At age 4, developmental delays, ataxia, hearing loss, and abnormal dentition were present. Imaging, endocrinology, and neurologic examinations revealed hypomyelination, reduced cerebellar volume, delayed bone age density, osteopenia, and evidence of adrenarche without signs of true puberty. Neuropsychological assessment at age 20 revealed global cognitive impairment with intellectual, attention, verbal memory retrieval, construction, executive (e.g. processing speed, sustained attention) and math computation deficits, along with behavioral dysregulation. Conclusion: We present the first detailed neuropsychological assessment of a patient with 4H leukodystrophy. The neuropsychological assessment revealed cognitive and behavioral dysexecutive deficits aligning with hypomyelination observed on imaging. Further longitudinal studies are needed to shed light on the neurobehavioral presentation associated with this disorder to assist care providers, patients, and their families.
Collapse
Affiliation(s)
- Aya Haneda
- Department of Psychology, Roosevelt University, Chicago, IL, USA
- University of Chicago Medical Center, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, USA
| | - Jennifer K Hoots
- University of Chicago Medical Center, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, USA
- Department of Psychology, University of Illinois Chicago, Chicago, IL, USA
| | - Hannah A Hagy
- University of Chicago Medical Center, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, USA
- Loyola University, Chicago, IL, USA
| | - Maureen Lacy
- University of Chicago Medical Center, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, USA
| |
Collapse
|
4
|
Thurston LT, Skorska MN, Lobaugh NJ, Zucker KJ, Chakravarty MM, Lai MC, Chavez S, VanderLaan DP. White matter microstructure in transmasculine and cisgender adolescents: A multiparametric and multivariate study. PLoS One 2024; 19:e0300139. [PMID: 38470896 DOI: 10.1371/journal.pone.0300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Adolescence is a sensitive developmental period for neural sex/gender differentiation. The present study used multiparametric mapping to better characterize adolescent white matter (WM) microstructure. WM microstructure was investigated using diffusion tensor indices (fractional anisotropy; mean, radial, and axial diffusivity [AD]) and quantitative T1 relaxometry (T1) in hormone therapy naïve adolescent cisgender girls, cisgender boys, and transgender boys (i.e., assigned female at birth and diagnosed with gender dysphoria). Diffusion indices were first analyzed for group differences using tract-based spatial statistics, which revealed a group difference in AD. Thus, two multiparametric and multivariate analyses assessed AD in conjunction with T1 relaxation time, and with respect to developmental proxy variables (i.e., age, serum estradiol, pubertal development, sexual attraction) thought to be relevant to adolescent brain development. The multivariate analyses showed a shared pattern between AD and T1 such that higher AD was associated with longer T1, and AD and T1 strongly related to all five developmental variables in cisgender boys (10 significant correlations, r range: 0.21-0.73). There were fewer significant correlations between the brain and developmental variables in cisgender girls (three correlations, r range: -0.54-0.54) and transgender boys (two correlations, r range: -0.59-0.77). Specifically, AD related to direction of sexual attraction (i.e., gynephilia, androphilia) in all groups, and T1 related to estradiol inversely in cisgender boys compared with transgender boys. These brain patterns may be indicative of less myelination and tissue density in cisgender boys, which corroborates other reports of protracted WM development in cisgender boys. Further, these findings highlight the importance of considering developmental trajectory when assessing the subtleties of neural structure associated with variations in sex, gender, and sexual attraction.
Collapse
Affiliation(s)
- Lindsey T Thurston
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Malvina N Skorska
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nancy J Lobaugh
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth J Zucker
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Doug P VanderLaan
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Kalakh S, Mouihate A. The Effects of Neuroactive Steroids on Myelin in Health and Disease. Med Princ Pract 2024; 33:198-214. [PMID: 38350432 PMCID: PMC11175611 DOI: 10.1159/000537794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/12/2024] [Indexed: 02/15/2024] Open
Abstract
Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
- School of Engineering and Computing, American International University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Chen S, Liang J, Chen D, Huang Q, Sun K, Zhong Y, Lin B, Kong J, Sun J, Gong C, Wang J, Gao Y, Zhang Q, Sun H. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2024; 115:209-222. [PMID: 37858739 DOI: 10.1016/j.bbi.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dingqiang Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyuan Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxia Zhong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Chengfang Gong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Ekanayake A, Peiris S, Ahmed B, Kanekar S, Grove C, Kalra D, Eslinger P, Yang Q, Karunanayaka P. A Review of the Role of Estrogens in Olfaction, Sleep and Glymphatic Functionality in Relation to Sex Disparity in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2024; 39:15333175241272025. [PMID: 39116421 PMCID: PMC11311174 DOI: 10.1177/15333175241272025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Several risk factors contribute to the development of Alzheimer's disease (AD), including genetics, metabolic health, cardiovascular history, and diet. It has been observed that women appear to face a higher risk of developing AD. Among the various hypotheses surrounding the gender disparity in AD, one pertains to the potential neuroprotective properties of estrogen. Compared to men, women are believed to be more susceptible to neuropathology due to the significant decline in circulating estrogen levels following menopause. Studies have shown, however, that estrogen replacement therapies in post-menopausal women do not consistently reduce the risk of AD. While menopause and estrogen levels are potential factors in the elevated incidence rates of AD among women, this review highlights the possible roles estrogen has in other pathways that may also contribute to the sex disparity observed in AD such as olfaction, sleep, and glymphatic functionality.
Collapse
Affiliation(s)
- Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Grodno State Medical University, Grodno, Belarus
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Deepak Kalra
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Datta A, Saha C, Godse P, Sharma M, Sarmah D, Bhattacharya P. Neuroendocrine regulation in stroke. Trends Endocrinol Metab 2023; 34:260-277. [PMID: 36922255 DOI: 10.1016/j.tem.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
The neuroendocrine system, a crosstalk between the central nervous system and endocrine glands, balances and controls hormone secretion and their functions. Neuroendocrine pathways and mechanisms often get dysregulated following stroke, leading to altered hormone secretion and aberrant receptor expression. Dysregulation of the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-adrenal (HPA) axis often led to severe stroke outcomes. Post-stroke complications such as cognitive impairment, depression, infection etc. are directly or indirectly influenced by the altered neuroendocrine activity that plays a crucial role in stroke vulnerability and susceptibility. Therefore, it is imperative to explore various neurohormonal inter-relationships in regulating stroke, its outcome, and prognosis. Here, we review the biology of different hormones associated with stroke and explore their regulation with a view towards prospective therapeutics.
Collapse
Affiliation(s)
- Aishika Datta
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Chandrima Saha
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pratiksha Godse
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Muskaan Sharma
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pallab Bhattacharya
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
9
|
The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury. Neurosci Biobehav Rev 2023; 146:105074. [PMID: 36736846 DOI: 10.1016/j.neubiorev.2023.105074] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) occurs when the spinal cord is damaged from either a traumatic event or disease. SCI is characterised by multiple injury phases that affect the transmission of sensory and motor signals and lead to temporary or long-term functional deficits. There are few treatments for SCI. Estrogens and estrogenic compounds, however, may effectively mitigate the effects of SCI and therefore represent viable treatment options. This review systematically examines the pre-clinical literature on estrogen and estrogenic compound neuroprotection after SCI. Several estrogens were examined by the included studies: estrogen, estradiol benzoate, Premarin, isopsoralen, genistein, and selective estrogen receptor modulators. Across these pharmacotherapies, we find significant evidence that estrogens indeed offer protection against myriad pathophysiological effects of SCI and lead to improvements in functional outcomes, including locomotion. A STRING functional network analysis of proteins modulated by estrogen after SCI demonstrated that estrogen simultaneously upregulates known neuroprotective pathways, such as HIF-1, and downregulates pro-inflammatory pathways, including IL-17. These findings highlight the strong therapeutic potential of estrogen and estrogenic compounds after SCI.
Collapse
|
10
|
Tran KM, Kawauchi S, Kramár EA, Rezaie N, Liang HY, Sakr JS, Gomez-Arboledas A, Arreola MA, Cunha CD, Phan J, Wang S, Collins S, Walker A, Shi KX, Neumann J, Filimban G, Shi Z, Milinkeviciute G, Javonillo DI, Tran K, Gantuz M, Forner S, Swarup V, Tenner AJ, LaFerla FM, Wood MA, Mortazavi A, MacGregor GR, Green KN. A Trem2 R47H mouse model without cryptic splicing drives age- and disease-dependent tissue damage and synaptic loss in response to plaques. Mol Neurodegener 2023; 18:12. [PMID: 36803190 PMCID: PMC9938579 DOI: 10.1186/s13024-023-00598-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.
Collapse
Affiliation(s)
- Kristine M. Tran
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Narges Rezaie
- Department of Developmental and Cell Biology, University of California, Irvine, USA
- Center for Complex Biological Systems, Irvine, USA
| | - Heidi Yahan Liang
- Department of Developmental and Cell Biology, University of California, Irvine, USA
- Center for Complex Biological Systems, Irvine, USA
| | - Jasmine S. Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| | | | - Miguel A. Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Shuling Wang
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Amber Walker
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
| | - Ghassan Filimban
- Department of Developmental and Cell Biology, University of California, Irvine, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Dominic I. Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Katelynn Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Magdalena Gantuz
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, USA
- Center for Complex Biological Systems, Irvine, USA
| | - Andrea J. Tenner
- Department of Neurobiology and Behavior, University of California, Irvine, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, USA
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, USA
- Center for Complex Biological Systems, Irvine, USA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, Office of Research, ULAR, Irvine, USA
- Department of Developmental and Cell Biology, University of California, Irvine, USA
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, USA
| |
Collapse
|
11
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
12
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
13
|
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, Muller DCY, Roan VD, Misra R, Toth CE, Breton JM, Casazza W, Mostafavi S, Huber BR, Woodward SH, Neylan TC, Kaufer D. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 2021; 11:631. [PMID: 34903726 PMCID: PMC8668977 DOI: 10.1038/s41398-021-01745-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.
Collapse
Affiliation(s)
- Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry and Behavioral Sciences, University of California, SanFrancisco, San Francisco, CA, 94143, USA
| | - Linda L Chao
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yurika Kazama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anjile An
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelsey Y Hu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lior Peretz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dyana C Y Muller
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Vivian D Roan
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rhea Misra
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Claire E Toth
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry, Columbia University, New York, NY, 10027, USA
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Bertrand R Huber
- Department of Neurology, Boston University, Boston, MA, 02215, USA
- National Center for PTSD, VA New England Health Care System, Boston, MA, 02130, USA
| | - Steven H Woodward
- National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- San Francisco VA Health Care System, San Francisco, CA, 94121, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Design and In Vitro Study of a Dual Drug-Loaded Delivery System Produced by Electrospinning for the Treatment of Acute Injuries of the Central Nervous System. Pharmaceutics 2021; 13:pharmaceutics13060848. [PMID: 34201089 PMCID: PMC8227370 DOI: 10.3390/pharmaceutics13060848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95–1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells—OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.
Collapse
|
15
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
16
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|