1
|
Grivalský T, Lakatos GE, Štěrbová K, Manoel JAC, Beloša R, Divoká P, Kopp J, Kriechbaum R, Spadiut O, Zwirzitz A, Trenzinger K, Masojídek J. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater. Appl Microbiol Biotechnol 2024; 108:44. [PMID: 38180554 DOI: 10.1007/s00253-023-12924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.
Collapse
Affiliation(s)
- Tomáš Grivalský
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic.
| | - Gergely Ernő Lakatos
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Karolína Štěrbová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - João Artur Câmara Manoel
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice, Czech Republic
| | - Romana Beloša
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Petra Divoká
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Julian Kopp
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Ricarda Kriechbaum
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Oliver Spadiut
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Alexander Zwirzitz
- Biosciences Research Group, University of Applied Sciences, Stelzhamerstraße 23, Wels, Austria
| | - Kevin Trenzinger
- Biosciences Research Group, University of Applied Sciences, Stelzhamerstraße 23, Wels, Austria
| | - Jiří Masojídek
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| |
Collapse
|
2
|
Rodrigues F, Reis M, Ferreira L, Grosso C, Ferraz R, Vieira M, Vasconcelos V, Martins R. The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives. Molecules 2024; 29:4799. [PMID: 39459167 PMCID: PMC11510616 DOI: 10.3390/molecules29204799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neurodegenerative diseases are linked to the process of neurodegeneration. This can be caused by several mechanisms, including inflammation and accumulation of reactive oxygen species. Despite their high incidence, there is still no effective treatment or cure for these diseases. Cyanobacteria have been seen as a possible source for new compounds with anti-inflammatory and antioxidant potential, such as polysaccharides (sacran), phycobiliproteins (phycocyanin) and lipopeptides (honaucins and malyngamides), which can be interesting to combat neurodegeneration. As a promising case of success, Arthrospira (formerly Spirulina) has revealed a high potential for preventing neurodegeneration. Additionally, advantageous culture conditions and sustainable production of cyanobacteria, which are allied to the development of genetic, metabolic, and biochemical engineering, are promising. The aim of this review is to compile and highlight research on the anti-inflammatory and antioxidant potential of cyanobacteria with focus on the application as neuroprotective agents. Also, a major goal is to address essential features that brand cyanobacteria as an ecoefficient and economically viable option, linking health to sustainability.
Collapse
Affiliation(s)
- Flávia Rodrigues
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| | - Leonor Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Clara Grosso
- LAQV/REQUIMTE, School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Ricardo Ferraz
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Mónica Vieira
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| |
Collapse
|
3
|
Miao R, Légeret B, Cuine S, Burlacot A, Lindblad P, Li-Beisson Y, Beisson F, Peltier G. Absence of alka(e)nes triggers profound remodeling of glycerolipid and carotenoid composition in cyanobacteria membrane. PLANT PHYSIOLOGY 2024; 196:397-408. [PMID: 38850059 PMCID: PMC11376386 DOI: 10.1093/plphys/kiae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Alka(e)nes are produced by many living organisms and exhibit diverse physiological roles, reflecting a high functional versatility. Alka(e)nes serve as waterproof wax in plants, communicating pheromones for insects, and microbial signaling molecules in some bacteria. Although alka(e)nes have been found in cyanobacteria and algal chloroplasts, their importance for photosynthetic membranes has remained elusive. In this study, we investigated the consequences of the absence of alka(e)nes on membrane lipid composition and photosynthesis using the cyanobacterium Synechocystis PCC6803 as a model organism. By following the dynamics of membrane lipids and the photosynthetic performance in strains defected and altered in alka(e)ne biosynthesis, we show that drastic changes in the glycerolipid contents occur in the absence of alka(e)nes, including a decrease in the membrane carotenoid content, a decrease in some digalactosyldiacylglycerol (DGDG) species and a parallel increase in monogalactosyldiacylglycerol (MGDG) species. These changes are associated with a higher susceptibility of photosynthesis and growth to high light in alka(e)ne-deficient strains. All these phenotypes are reversed by expressing an algal photoenzyme producing alka(e)nes from fatty acids. Therefore, alkenes, despite their low abundance, are an essential component of the lipid composition of membranes. The profound remodeling of lipid composition that results from their absence suggests that they play an important role in one or more membrane properties in cyanobacteria. Moreover, the lipid compensatory mechanism observed is not sufficient to restore normal functioning of the photosynthetic membranes, particularly under high-light intensity. We conclude that alka(e)nes play a crucial role in maintaining the lipid homeostasis of thylakoid membranes, thereby contributing to the proper functioning of photosynthesis, particularly under elevated light intensities.
Collapse
Affiliation(s)
- Rui Miao
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Bertrand Légeret
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Stéphan Cuine
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Adrien Burlacot
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | - Peter Lindblad
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Yonghua Li-Beisson
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Fred Beisson
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Gilles Peltier
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
4
|
Pfennig T, Kullmann E, Zavřel T, Nakielski A, Ebenhöh O, Červený J, Bernát G, Matuszyńska AB. Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803. PLoS Comput Biol 2024; 20:e1012445. [PMID: 39264951 PMCID: PMC11421815 DOI: 10.1371/journal.pcbi.1012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.
Collapse
Affiliation(s)
- Tobias Pfennig
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Kullmann
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Andreas Nakielski
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Gábor Bernát
- Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Barbara Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Wood PL. Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria. Metabolites 2024; 14:378. [PMID: 39057701 PMCID: PMC11278827 DOI: 10.3390/metabo14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| |
Collapse
|
6
|
Kwidzińska K, Zalewska M, Aksmann A, Kobos J, Mazur-Marzec H, Caban M. Multi-biomarker response of cyanobacteria Synechocystis salina and Microcystis aeruginosa to diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134373. [PMID: 38678710 DOI: 10.1016/j.jhazmat.2024.134373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.
Collapse
Affiliation(s)
- Klaudia Kwidzińska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Martyna Zalewska
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Aksmann
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Justyna Kobos
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Thevarajah B, Piyatilleke S, Nimarshana PHV, Koushalya S, Malik A, Ariyadasa TU. Exploring effective light spectral conversion techniques for enhanced production of Spirulina-derived blue pigment protein, c-phycocyanin. BIORESOURCE TECHNOLOGY 2024; 399:130612. [PMID: 38508281 DOI: 10.1016/j.biortech.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Spirulina is a promising feedstock for c-phycocyanin, a blue pigment-protein, commercially incorporated in many food products for its desirable bright blue attributes, exceptional bioavailability, and inherent therapeutic properties. Remarkably, enhancing c-phycocyanin synthesis in Spirulina would facilitate economic viability and sustainability at large-scale production, as the forecasted market value is $ 409.8 million by 2030. Notably, the lighting source plays a key role in enhancing c-phycocyanin in Spirulina, and thus, strategies to filter/concentrate the photons of respective wavelengths, influencing light spectra, are beneficial. Enveloping open raceway ponds and greenhouses by luminescent solar concentrators and light filtering sheets enables solar spectral conversion of the sunlight at desirable wavelengths, emerges as a promising strategy to enhance synthesis of c-phycocyanin in Spirulina. Nevertheless, the conduction of techno-economic assessments and evaluation of scalability at large-scale cultivation of Spirulina are essential for the real-time implementation of lighting strategies.
Collapse
Affiliation(s)
- Bavatharny Thevarajah
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Sajani Piyatilleke
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - P H V Nimarshana
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - S Koushalya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.
| |
Collapse
|
9
|
Zhang J, Zhong H, Xuan N, Mushtaq R, Shao Y, Cao X, Wang P, Chen G. The Na + /Ca 2+ antiporter slr0681 affects carotenoid production in Synechocystis sp. PCC 6803 under high-light stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3147-3155. [PMID: 38072645 DOI: 10.1002/jsfa.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research. RESULTS We knocked out the Na+ /Ca2+ antiporter gene slr0681 in Synechocystis sp. PCC 6803 via homologous recombination and evaluated the effects on carotenoid production under normal (NL) and high-light (HL) conditions. On day 7 of NL treatment in calcium ion (Ca2+ )-free medium, the cell density of Δslr0681 decreased by 29% compared to the wild type (WT). After 8 days of HL treatment, the total carotenoid contents decreased by 35% in Δslr0681, and the contents of individual carotenoids were altered: myxoxanthophyll, echinenone, and β-carotene contents increased by 10%, 50%, and 40%, respectively, while zeaxanthin contents decreased by ~40% in Δslr0681 versus the WT. The expression patterns of carotenoid metabolic pathway genes also differed: ipi expression increased by 1.2- to 8.5-fold, whereas crtO and crtR expression decreased by ~90% and 60%, respectively, in ∆slr0681 versus the WT. In addition, in ∆slr0681, the expression level of psaB (encoding a photosystem I structural protein) doubled, whereas the expression levels of the photosystem II genes psbA2 and psbD decreased by ~53% and 84%, respectively, compared to the WT. CONCLUSION These findings suggest that slr0681 plays important roles in regulating carotenoid biosynthesis and structuring of the photosystems in Synechocystis sp. This study provides a theoretical basis for the genetic engineering of microalgae photosystems to increase their economic benefits and lays the foundation for developing microalgae germplasm resources with high carotenoid contents. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaye Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Huairong Zhong
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Ning Xuan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Rubina Mushtaq
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Yahui Shao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xue Cao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Pengchong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| |
Collapse
|
10
|
Vincent M, Blanc-Garin V, Chenebault C, Cirimele M, Farci S, Garcia-Alles LF, Cassier-Chauvat C, Chauvat F. Impact of Carbon Fixation, Distribution and Storage on the Production of Farnesene and Limonene in Synechocystis PCC 6803 and Synechococcus PCC 7002. Int J Mol Sci 2024; 25:3827. [PMID: 38612633 PMCID: PMC11012175 DOI: 10.3390/ijms25073827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.
Collapse
Affiliation(s)
- Marine Vincent
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| | - Victoire Blanc-Garin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| | - Célia Chenebault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| | - Mattia Cirimele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
- Université Paris-Saclay, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| | - Luis Fernando Garcia-Alles
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France;
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (M.V.); (V.B.-G.); (C.C.); (M.C.); (S.F.); (C.C.-C.)
| |
Collapse
|
11
|
Hajizadeh M, Golub M, Moldenhauer M, Matsarskaia O, Martel A, Porcar L, Maksimov E, Friedrich T, Pieper J. Solution Structures of Two Different FRP-OCP Complexes as Revealed via SEC-SANS. Int J Mol Sci 2024; 25:2781. [PMID: 38474026 DOI: 10.3390/ijms25052781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.
Collapse
Affiliation(s)
- Mina Hajizadeh
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Eugene Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Srivastava A, Thapa S, Chakdar H, Babele PK, Shukla P. Cyanobacterial myxoxanthophylls: biotechnological interventions and biological implications. Crit Rev Biotechnol 2024; 44:63-77. [PMID: 36137567 DOI: 10.1080/07388551.2022.2117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/09/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
Cyanobacteria safeguard their photosynthetic machinery from oxidative damage caused by adverse environmental factors such as high-intensity light. Together with many photoprotective compounds, they contain myxoxanthophylls, a rare group of glycosidic carotenoids containing a high number of conjugated double bonds. These carotenoids have been shown to: have strong photoprotective effects, contribute to the integrity of the thylakoid membrane, and upregulate in cyanobacteria under a variety of stress conditions. However, their metabolic potential has not been fully utilized in the stress biology of cyanobacteria and the pharmaceutical industry due to a lack of mechanistic understanding and their insufficient biosynthesis. This review summarizes current knowledge on: biological function, genetic regulation, biotechnological production, and pharmaceutical potential of myxoxanthophyll, with a focus on strain engineering and parameter optimization strategies for increasing their cellular content. The summarized knowledge can be utilized in cyanobacterial metabolic engineering to improve the stress tolerance of useful strains and enhance the commercial-scale synthesis of myxoxanthophyll for pharmaceutical uses.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, United States of America
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Masojídek J, Lhotský R, Štěrbová K, Zittelli GC, Torzillo G. Solar bioreactors used for the industrial production of microalgae. Appl Microbiol Biotechnol 2023; 107:6439-6458. [PMID: 37725140 DOI: 10.1007/s00253-023-12733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system-microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime. KEY POINTS: • Large-scale solar bioreactors designed for microalgae culturing. • Most frequently used microalgae genera for commercial production. • Scale-up requires suitable cultivation conditions and well-elaborated protocols.
Collapse
Affiliation(s)
- Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Richard Lhotský
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic
| | - Karolína Štěrbová
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic
| | | | - Giuseppe Torzillo
- Istituto Per La Bioeconomia, CNR, Sesto Fiorentino, Florence, Italy
- Centro de Investigation en Ciencias del Mar Y Limnologia (CIMAR), Ciudad de La Investigation, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
14
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
15
|
Engelhart-Straub S, Haack M, Awad D, Brueck T, Mehlmer N. Optimization of Rhodococcus erythropolis JCM3201 T Nutrient Media to Improve Biomass, Lipid, and Carotenoid Yield Using Response Surface Methodology. Microorganisms 2023; 11:2147. [PMID: 37763991 PMCID: PMC10534354 DOI: 10.3390/microorganisms11092147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The oleaginous bacterium Rhodococcus erythropolis JCM3201T offers various unique enzyme capabilities, and it is a potential producer of industrially relevant compounds, such as triacylglycerol and carotenoids. To develop this strain into an efficient production platform, the characterization of the strain's nutritional requirement is necessary. In this work, we investigate its substrate adaptability. Therefore, the strain was cultivated using nine nitrogen and eight carbon sources at a carbon (16 g L-1) and nitrogen (0.16 g L-1) weight ratio of 100:1. The highest biomass accumulation (3.1 ± 0.14 g L-1) was achieved using glucose and ammonium acetate. The highest lipid yield (156.7 ± 23.0 mg g-1DCW) was achieved using glucose and yeast extract after 192 h. In order to enhance the dependent variables: biomass, lipid and carotenoid accumulation after 192 h, for the first time, a central composite design was employed to determine optimal nitrogen and carbon concentrations. Nine different concentrations were tested. The center point was tested in five biological replicates, while all other concentrations were tested in duplicates. While the highest biomass (8.00 ± 0.27 g L-1) was reached at C:N of 18.87 (11 g L-1 carbon, 0.583 g L-1 nitrogen), the highest lipid yield (100.5 ± 4.3 mg g-1DCW) was determined using a medium with 11 g L-1 of carbon and only 0.017 g L-1 of nitrogen. The highest carotenoid yield (0.021 ± 0.001 Abs454nm mg-1DCW) was achieved at a C:N of 12 (6 g L-1 carbon, 0.5 g L-1 nitrogen). The presented results provide new insights into the physiology of R. erythropolis under variable nutritional states, enabling the selection of an optimized media composition for the production of valuable oleochemicals or pigments, such as rare odd-chain fatty acids and monocyclic carotenoids.
Collapse
Affiliation(s)
| | | | | | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
16
|
Singh VK, Jha S, Rana P, Mishra S, Kumari N, Singh SC, Anand S, Upadhye V, Sinha RP. Resilience and Mitigation Strategies of Cyanobacteria under Ultraviolet Radiation Stress. Int J Mol Sci 2023; 24:12381. [PMID: 37569755 PMCID: PMC10419127 DOI: 10.3390/ijms241512381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ultraviolet radiation (UVR) tends to damage key cellular machinery. Cells may adapt by developing several defence mechanisms as a response to such damage; otherwise, their destiny is cell death. Since cyanobacteria are primary biotic components and also important biomass producers, any drastic effects caused by UVR may imbalance the entire ecosystem. Cyanobacteria are exposed to UVR in their natural habitats. This exposure can cause oxidative stress which affects cellular morphology and vital processes such as cell growth and differentiation, pigmentation, photosynthesis, nitrogen metabolism, and enzyme activity, as well as alterations in the native structure of biomolecules such as proteins and DNA. The high resilience and several mitigation strategies adopted by a cyanobacterial community in the face of UV stress are attributed to the activation of several photo/dark repair mechanisms, avoidance, scavenging, screening, antioxidant systems, and the biosynthesis of UV photoprotectants, such as mycosporine-like amino acids (MAAs), scytonemin (Scy), carotenoids, and polyamines. This knowledge can be used to develop new strategies for protecting other organisms from the harmful effects of UVR. The review critically reports the latest updates on various resilience and defence mechanisms employed by cyanobacteria to withstand UV-stressed environments. In addition, recent developments in the field of the molecular biology of UV-absorbing compounds such as mycosporine-like amino acids and scytonemin and the possible role of programmed cell death, signal perception, and transduction under UVR stress are discussed.
Collapse
Affiliation(s)
- Varsha K. Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
| | - Sapana Jha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
| | - Palak Rana
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
| | - Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
| | - Neha Kumari
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
| | - Suresh C. Singh
- Taurmed Technologies Pvt Ltd., 304, Pearl’s Business Park, Netaji Subhash Place, New Delhi 110034, India; (S.C.S.); (S.A.)
| | - Shekhar Anand
- Taurmed Technologies Pvt Ltd., 304, Pearl’s Business Park, Netaji Subhash Place, New Delhi 110034, India; (S.C.S.); (S.A.)
| | - Vijay Upadhye
- Department of Microbiology, Parul Institute of Applied Science, Center of Research for Development, Parul University, Vadodara 391760, India;
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (V.K.S.); (S.J.); (P.R.); (S.M.); (N.K.)
- University Center for Research & Development (UCRD), Chandigarh University, Chandigarh 140413, India
| |
Collapse
|
17
|
Lima ADSP, Cahú TB, Dantas DMM, Veras BO, Oliveira CYB, Souza RS, Moraes LBS, Silva FCO, Araújo MIF, Gálvez AO, Souza RB. Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. FOOD SCI TECHNOL INT 2023:10820132231186171. [PMID: 37408365 DOI: 10.1177/10820132231186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.
Collapse
Affiliation(s)
- Alysson de Sá P Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Danielli M M Dantas
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Bruno O Veras
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Y B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rayanna S Souza
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Laenne B S Moraes
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Francisca C O Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Maria I F Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ranilson B Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
18
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
19
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
20
|
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants (Basel) 2023; 12:antiox12051030. [PMID: 37237896 DOI: 10.3390/antiox12051030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect. Currently, the use of organic solvents constitutes the main extraction process; however, environmental concerns along with potential toxicity towards human health necessitate the employment of "greener" techniques. Hence, many research groups are focusing on applying emerging technologies such as ultrasounds, microwaves, ionic liquids or eutectic solvents for the separation of carotenoids from microbial cells. This review aims to summarize the progress on both the biotechnological production of carotenoids and the methods for their effective extraction. In the framework of circular economy and sustainability, the focus is given on green recovery methods targeting high-value applications such as novel functional foods and pharmaceuticals. Finally, methods for carotenoids identification and quantification are also discussed in order to create a roadmap for successful carotenoids analysis.
Collapse
Affiliation(s)
- Harris Papapostolou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
21
|
Abdullahi ZH, Marselin FN, Khaironizam NIA, Fauzi NFA, Wan Maznah WO. Growth stage-related biomass, pigments, and biochemical composition of Stichococcus bacillaris, Synechococcus sp., and Trentepohlia aurea isolated from Gua Tempurung, a cave in Malaysia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107633. [PMID: 36965319 DOI: 10.1016/j.plaphy.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
As part of the lampenflora that inhabit limestone caves, microalgae play an important role in cave ecosystems but are understudied in tropical ecoregions. In the present study, the dominant eukaryotic and prokaryotic microalgae identified in lampenflora samples collected from Gua Tempurung, a cave in Malaysia, and growth stage-related microalgal attributes were determined. Stichococcus bacillaris, Synechococcus sp., and Trentepohlia aurea were selected and cultured in Bold's Basal Medium (S. bacillaris and T. aurea) or BG-11 medium (Synechococcus sp.) under laboratory conditions. The highest specific growth rate (0.72 ± 0.21 day-1) and dry weight (0.11 ± 0.04 mg L-1) were recorded in S. bacillaris in the early stationary phase. Trentepohlia aurea and Synechococcus sp. had the highest ash-free dry weight and total ash percentage (11.18 ± 4.64 mg L-1 and 8.55% ± 6.73%, respectively) in the early stationary phase. Stichococcus bacillaris had the highest moisture content (84.26% ± 0.64%) in the exponential phase. Chlorophylls a and b were highest in the early stationary phase in T. aurea (0.706 ± 0.40 mg L-1 and 1.094 ± 0.589 mg L-1, respectively). Carotenoid levels were highest in Synechococcus sp. in the early stationary stage (0.07 ± 0.02 mg L-1). Lipids were the major biochemical compound identified at the highest levels in Synechococcus sp. (67.87% ± 7.75%) in the early stationary phase, followed by protein recorded at the highest levels in T. aurea (57.99% ± 4.99%) in the early stationary phase. Carbohydrates were the compound identified least often with the highest recorded levels found in T. aurea (9.94% ± 0.49%) in the late stationary phase. Biomass, pigments, and biochemical accumulation varied at different growth stages in the studied microalgae, and this variation was species-specific. The present study provides a benchmark for the growth phases of aerophytic cave microalgae, which will be useful for determining their optimum harvest time and obtaining biochemical compounds of interest.
Collapse
Affiliation(s)
| | | | | | | | - W O Wan Maznah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800, Penang, Malaysia; River Engineering and Urban Drainage Centre (REDAC), Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
22
|
Mrazova K, Bacovsky J, Sedrlova Z, Slaninova E, Obruca S, Fritz I, Krzyzanek V. Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells. Microorganisms 2023; 11:888. [PMID: 37110311 PMCID: PMC10146862 DOI: 10.3390/microorganisms11040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy. To investigate the influence of different imaging and staining strategies on the final image of cyanobacterial cells, samples stained by uranyl acetate with lead citrate, as well as unstained samples, were observed using TEM and accelerating voltages of 200 kV or 25 kV. Moreover, to examine the possibilities of reducing chromatic aberration, which often causes issues when imaging using electrons of lower energies, samples were also imaged using a scanning transmission electron microscopy at 15 kV accelerating voltages. The results of this study demonstrate that low-voltage electron microscopy offers great potential for uranyless electron microscopy.
Collapse
Affiliation(s)
- Katerina Mrazova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic;
| | - Jaromir Bacovsky
- Delong Instruments a.s., Palackeho Trida 3019/153 b, 612 00 Brno, Czech Republic;
| | - Zuzana Sedrlova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Ines Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strase 20, 3430 Tulln an der Donau, Austria;
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic;
| |
Collapse
|
23
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Dwivedi S, Ahmad IZ. Evaluation of the effect of UV-B radiation on growth, photosynthetic pigment, and antioxidant enzymes of some cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 218:114943. [PMID: 36463991 DOI: 10.1016/j.envres.2022.114943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The current study is focused on the effects of artificial UV-B radiation on growth, proteins, and pigments, as well as the activities of several enzymatic and non-enzymatic antioxidant enzymes in some cyanobacterial strains. Cultures were maintained at 25 °C ± 1 °C under a white fluorescent tube of intensity 30-40 μE m -2s-1 with a 14:10 light and dark cycle in the laboratory and analyzed at an interval of 25, 32, 39, 46, and 53 days. The test cultures were exposed to UV-B stress for 24 h at the same intervals. We found that exposure to UV-B showed increased production of phycocyanin and carotenoids in four strains, namely, Scytonema javanicum, Nostoc muscorum, Aphanothece naegeli, and Synechococcus elongates. We also look into the effects of UV-B radiation on the proline content, non-protein thiols, radical scavenging activity, ascorbic acid, and tocopherol, total flavonoid content (TFC), total phenolic content (TPC) on these strains. Variation in the non-enzymatic antioxidants and expression levels of enzymatic enzymes and reducing power activity as compared to the non-irradiated control was found. Our study showed that cyanobacteria impart prominent antioxidant and radical scavenging properties which facilitate the defence mechanism against UV-B induced cell damage.
Collapse
Affiliation(s)
- Sonam Dwivedi
- Natural Products Laboratory, Department of Bioengineering and Biosciences, Integral University, Dasauli, Kursi Road,Lucknow, 226026, Uttar Pradesh, India
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering and Biosciences, Integral University, Dasauli, Kursi Road,Lucknow, 226026, Uttar Pradesh, India.
| |
Collapse
|
25
|
Effects of Temperature, pH, and NaCl Concentration on Biomass and Bioactive Compound Production by Synechocystis salina. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010187. [PMID: 36676136 PMCID: PMC9867336 DOI: 10.3390/life13010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Synechocystis salina is a cyanobacterium that has biotechnological potential thanks to its ability to synthesize several bioactive compounds of interest. Therefore, this study aimed to find optimal conditions, in terms of temperature (15-25 °C), pH (6.5-9.5), and NaCl concentration (10-40 g·L-1), using as objective functions the productivities of biomass, total carotenoids, total PBPs, phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and antioxidants (AOXs) capacity of Synechocystis salina (S. salina) strain LEGE 06155, based in factorial design resorting to Box-Behnken. The model predicted higher biomass productivities under a temperature of 25 °C, a pH of 7.5, and low NaCl concentrations (10 g·L-1). Maximum productivities in terms of bioactive compounds were attained at lower NaCl concentrations (10 g·L-1) (except for PE), with the best temperature and pH in terms of carotenoids and total and individual PBPs ranging from 23-25 °C to 7.5-9.5, respectively. PE was the only pigment for which the best productivity was reached at a lower temperature (15 °C) and pH (6.5) and a higher concentration of NaCl (≈25 g·L-1). AOX productivities, determined in both ethanolic and aqueous extracts, were positively influenced by lower temperatures (15-19 °C) and higher salinities (≈15-25 g·L-1). However, ethanolic AOXs were better recovered at a higher pH (pH ≈ 9.5), while aqueous AOXs were favored by a pH of 8. The model showed that biomass production can be enhanced by 175% (compared to non-optimized conditions), total carotenoids by 91%, PC by 13%, APC by 50%, PE by 130%, and total PBPs by 39%; for AOX productivities, only water extracts exhibited a (marginal) improvement of 1.4%. This study provided insightful information for the eventual upgrading of Synechocystis salina biomass in the biotechnological market.
Collapse
|
26
|
Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248852. [PMID: 36557985 PMCID: PMC9783697 DOI: 10.3390/molecules27248852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic, eukaryotic organisms that are widely used in the industry as cell factories to produce valuable substances, such as fatty acids (polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), sterols (sitosterol), recombinant therapeutic proteins, carbohydrates, vitamins, phenolic compounds (gallic acid, quercetin), and pigments (β-carotene, astaxanthin, lutein). Phenolic compounds and carotenoids, including those extracted from microalgae, possess beneficial bioactivities such as antioxidant capacity, antimicrobial and immunomodulatory activities, and direct health-promoting effects, which may alleviate oxidative stress and age-related diseases, including cardiovascular diseases or diabetes. The production of valuable microalgal metabolites can be modified by using abiotic stressors, such as light, salinity, nutrient availability, and xenobiotics (for instance, phytohormones).
Collapse
|
27
|
Factorial Optimization of Ultrasound-Assisted Extraction of Phycocyanin from Synechocystis salina: Towards a Biorefinery Approach. Life (Basel) 2022; 12:life12091389. [PMID: 36143425 PMCID: PMC9505276 DOI: 10.3390/life12091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
PC is a bioactive and colorant compound widely sought in the food, nutraceutical and cosmetic industries, and one of the most important pigments produced by Synechocystis salina. However, the general extraction process is usually time-consuming and expensive, with low extraction yields—thus compromising a feasible and sustainable bioprocess. Hence, new extraction technologies (e.g., ultrasound assisted-extraction or UAE) emerged in the latest years may serve as a key step to make the overall bioprocess more competitive. Therefore, this study aimed at optimizing the yields of phycocyanin (PC) rich-extracts of S. salina by resorting to UAE; in attempts to explore this process in a more economically feasible way; valorization of the remaining cyanobacterial biomass, via extraction of other bioactive pigments and antioxidants, was tackled within a biorefinery perspective. A two-stage extraction (using ethanol and water) was thus performed (because it favors PC extraction); other bioactive pigments, including chlorophyll a (chl a), carotenoids, and other phycobiliproteins (PBPs), but also antioxidant (AOX) capacity and extraction yields were also evaluated for their optimum UAE yields. A factorial design based on Box–Behnken model was developed; and the influence of such extraction parameters as biomass to solvent ratio (B/S ratio = 1.5–8.5 mg·mL−1), duty cycle (DT = 40–100%), and percentage of amplitude (A = 40–100%) were evaluated. The model predicted higher PC yields with high B/S ratio = 6 mg·mL−1, lower DT = 80% and an A = 100%. Classical extraction was compared with UAE under the optimum conditions found; the latter improved PC yields by 12.5% and 47.8%, when compared to freeze-thawing extraction, and bead beater homogenization-based extraction, respectively. UAE successive extractions allowed to valorize other important bioactive compounds than PC, by reusing biomass, supporting a favorable contribution to the economic feasibility of the S. salina-based process towards a biorefinery approach.
Collapse
|
28
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
30
|
Djebaili R, Mignini A, Vaccarelli I, Pellegrini M, Spera DM, Del Gallo M, D’Alessandro AM. Polyhydroxybutyrate-producing cyanobacteria from lampenflora: The case study of the “Stiffe” caves in Italy. Front Microbiol 2022; 13:933398. [PMID: 35966678 PMCID: PMC9366245 DOI: 10.3389/fmicb.2022.933398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to estimate the green formation lampenflora of “Stiffe” caves in order to evaluate their suitability as an isolation source of cyanobacteria useful for the production of polyhydroxyalkanoates (PHAs). The cave system was chosen as the sampling site due to its touristic use and the presence of high-impact illuminations. The biofilms and the mats of the illuminated walls were sampled. Samples were investigated by 16S rRNA gene analysis and culturable cyanobacteria isolation. The isolated strains were then screened for the production of PHAs under typical culturing and nutritional starvation. Cultures were checked for PHA accumulation, poly-β-hydroxybutyrate (PHB) presence (infrared spectroscopy), and pigment production. The 16S rRNA gene metabarcoding. Highlighted a considerable extent of the pressure exerted by anthropogenic activities. However, the isolation yielded eleven cyanobacteria isolates with good PHA (mainly PHB)-producing abilities and interesting pigment production rates (chlorophyll a and carotenoids). Under normal conditions (BG110), the accumulation abilities ranged from 266 to 1,152 ng mg dry biomass–1. The optimization of bioprocesses through nutritional starvation resulted in a 2.5-fold increase. Fourier transform infrared (FTIR) studies established the occurrence of PHB within PHAs extracted by cyanobacteria isolates. The comparison of results with standard strains underlined good production rates. For C2 and C8 strains, PHA accumulation rates under starvation were higher than Azospirillum brasilense and similar to Synechocystis cf. salina 192. This study broadened the knowledge of the microbial communities of mats and biofilms on the lightened walls of the caves. These findings suggested that these structures, which are common in tourist caves, could be used to isolate valuable strains before remediation measures are adopted.
Collapse
Affiliation(s)
- Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Amedeo Mignini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Marika Pellegrini,
| | | | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Anna Maria D’Alessandro,
| |
Collapse
|
31
|
Pagels F, Almeida C, Vasconcelos V, Guedes AC. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar Drugs 2022; 20:md20080481. [PMID: 36005483 PMCID: PMC9409843 DOI: 10.3390/md20080481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The current mindset in the cosmetics market about sustainable ingredients had increased the search for new sources of natural active ingredients. Cyanobacteria are a great source of functional ingredients for cosmetics, as a producer of pigments with described bioactive potential (carotenoids and phycobiliproteins). This work aimed to evaluate the cosmetic potential of marine cyanobacterium Cyanobium sp. pigment-targeted extracts (carotenoids and phycobiliproteins), evaluating their in vitro safety through cytotoxicity assays, cosmetic-related enzyme inhibition, ingredient stability, and putative product (serum formulation). Results showed no cytotoxicity from the extracts in skin-related cell lines. Carotenoid extract showed anti-hyaluronidase capacity (IC50 = 108.74 ± 5.74 mg mL−1) and phycobiliprotein extract showed anti-hyaluronidase and anti-collagenase capacity (IC50 = 67.25 ± 1.18 and 582.82 ± 56.99 mg mL−1, respectively). Regarding ingredient and serum stability, both ingredients showed higher stability at low-temperature conditions, and it was possible to maintain the pigment content and bioactive capacity stable during the tested period, although in higher temperatures the product was degraded in a week. As a major conclusion, both extracts can be potential natural and sustainable ingredients for cosmetic uses, with relatively simple formulation and storage, and can be promising natural anti-aging ingredients due to their bioactive capacity.
Collapse
Affiliation(s)
- Fernando Pagels
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cíntia Almeida
- ISS—Ínclita Seaweed Solutions, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence:
| | - A. Catarina Guedes
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- ISS—Ínclita Seaweed Solutions, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
32
|
Assunção J, Pagels F, Tavares T, Malcata FX, Guedes AC. Light Modulation for Bioactive Pigment Production in Synechocystis salina. Bioengineering (Basel) 2022; 9:bioengineering9070331. [PMID: 35877382 PMCID: PMC9312138 DOI: 10.3390/bioengineering9070331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are microorganisms that are well-adapted to sudden changes in their environment, namely to light conditions. This has allowed them to develop mechanisms for photoprotection, which encompass alteration in pigment composition. Therefore, light modulation appears to be a suitable strategy to enhance the synthesis of specific pigments (e.g., phycocyanin) with commercial interest, in addition to conveying a more fundamental perspective on the mechanisms of acclimatization of cyanobacterium species. In this study, Synechocystis salina was accordingly cultivated in two light phase stages: (i) white LED, and (ii) shift to distinct light treatments, including white, green, and red LEDs. The type of LED lighting was combined with two intensities (50 and 150 µmolphotons·m−2·s−1). The effects on biomass production, photosynthetic efficiency, chlorophyll a (chl a) content, total carotenoids (and profile thereof), and phycobiliproteins (including phycocyanin, allophycocyanin, and phycoerythrin) were assessed. White light (under high intensity) led to higher biomass production, growth, and productivity; this is consistent with higher photosynthetic efficiency. However, chl a underwent a deeper impact under green light (high intensity); total carotenoids were influenced by white light (high intensity); whilst red treatment had a higher effect upon total and individual phycobiliproteins. Enhanced PC productivities were found under modulation with red light (low intensities), and could be achieved 7 days earlier than in white LED (over 22 days); this finding is quite interesting from a sustainability and economic point of view. Light modulation accordingly appears to be a useful tool for supplementary studies pertaining to optimization of pigment production with biotechnological interest.
Collapse
Affiliation(s)
- Joana Assunção
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Fernando Pagels
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - F. Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- FEUP—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Correspondence:
| | - A. Catarina Guedes
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
| |
Collapse
|
33
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
34
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
35
|
Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. BIORESOURCE TECHNOLOGY 2022; 352:127071. [PMID: 35351568 DOI: 10.1016/j.biortech.2022.127071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are photosynthetic eukaryotes that serve as microbial cell factories for the production of useful biochemicals, including pigments. These pigments are eco-friendly alternatives to synthetic dyes and reduce environmental and health risks. They also exhibit excellent anti-oxidative properties, making them a useful commodity in the nutrition and pharmaceutical industries. Light-harvesting pigments such as chlorophylls and phycobilins, and photoprotective carotenoids are some of the most common microalgal pigments. The increasing demand for these pigments in industrial applications has prompted a need to improve their metabolic yield in microalgal cells. So far, expensive cultivation methods and sensitivity to microbial contamination remain the main obstacles to the large-scale production of these pigments. This review highlights current issues and future prospects related to the production of microalgal pigments. The review also emphasizes the use of engineering approaches such as genetic engineering, and optimization of media components and physical parameters to increase their commercial-scale production.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohneesh Kalwani
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
36
|
Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, Čož-Rakovac R, Ivančić Šantek M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022; 27:molecules27041248. [PMID: 35209036 PMCID: PMC8875609 DOI: 10.3390/molecules27041248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zrinka Čošić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
- Correspondence:
| |
Collapse
|
37
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
38
|
Canonico M, Konert G, Crepin A, Šedivá B, Kaňa R. Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation. Cells 2021; 10:cells10081916. [PMID: 34440685 PMCID: PMC8393233 DOI: 10.3390/cells10081916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023] Open
Abstract
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
Collapse
Affiliation(s)
- Myriam Canonico
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Grzegorz Konert
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Aurélie Crepin
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Barbora Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Radek Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|