1
|
Sun M, Zhai S, Gao Y, Hu N, Wang R, Zhang R. Circ_0049979 ameliorates myocardial infarction through improving Cx43-mediated endothelial functions. Toxicol Appl Pharmacol 2024; 492:117121. [PMID: 39384044 DOI: 10.1016/j.taap.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Endothelial injury is a fundamental pathogenesis of coronary atherosclerotic heart disease (CHD). Circular RNAs (circRNAs) are important post-transcriptional regulators in many human major diseases, including CHD. The aim of the present study was to explore the role of circ_0049979, a novel identified circRNA from ANO8 gene locus, in endothelial injury during CHD. We found that expression of circ_0049979 was reduced by ox-LDL treatment in HUVECs in a dose-dependent manner. Loss- and gain-of-function experiments demonstrated that knockdown of circ_0049979 decreased the capacities of proliferation, migration and tube formation in normal HUVECs. While, overexpression of circ_0049979 improved these capacities in both normal and ox-LDL-incubated HUVECs. Then, the online bioinformatic tool Circinteractome was used to predicted the target miRNAs of circ_0049979, and miR-653 was selected as the candidate. We demonstrated that miR-653 directly interacted with and was negatively regulated by circ_0049979, and played a negative role in regulating proliferation, migration and tube formation of HUVECs. In terms of the mechanism, miR-653 post-transcriptionally suppressed the expression of the gap junction protein 43 (Cx43), a key protein of endothelial tight junction. Finally, we verified that overexpression of circ_0049979 was able to alleviate plaque formation, lipid deposition, and endothelial cell apoptosis, as well as myocardial infarction, in coronary atherosclerotic mice in vivo. In conclusion, circ_0049979 plays a protective role in coronary atherosclerotic myocardial infarction by improving miR-653/Cx43-mediated endothelial functions.
Collapse
Affiliation(s)
- Meng Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; The Cardiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Yangyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Rui Wang
- The Cardiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Tasdemiroglu Y, Council-Troche M, Chen M, Ledford B, Norris RA, Poelzing S, Gourdie RG, He JQ. Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in Rat. ACS Pharmacol Transl Sci 2024; 7:1624-1636. [PMID: 38751644 PMCID: PMC11091968 DOI: 10.1021/acsptsci.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - McAlister Council-Troche
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Miao Chen
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Benjamin Ledford
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Russell A. Norris
- Department
of Medicine, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Steven Poelzing
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Robert G. Gourdie
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Jia-Qiang He
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
4
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Ann Diagn Pathol 2022; 60:151983. [PMID: 35660807 PMCID: PMC9148434 DOI: 10.1016/j.anndiagpath.2022.151983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.
Collapse
|
6
|
Wang Y, Lei B, Pan Y, Su C, Wang W, Zhang H, Xia F, Zhu P, He S, Cheng Q. α-Connexin Carboxyl Terminal Peptide 1 Attenuates Ischemia-Reperfusion Injury in Liver Transplantation With Extended Cold Preservation by Stabilizing Cell Junctions in Mice. Transplant Proc 2022; 54:2364-2373. [PMID: 36184342 DOI: 10.1016/j.transproceed.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yuefan Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Biao Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weijian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Haoquan Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Songqing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China.
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
8
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|