1
|
Siddique AB, Ahsan H, Shahid M, Aslam B, Nawaz Z, Hussain R, Ahamd MZ, Ataya FS, Li K. Preparation and Characterization of Essential oil from Lavandula spica Plant and its Antimicrobial Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Microb Pathog 2025; 198:107157. [PMID: 39603567 DOI: 10.1016/j.micpath.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The biological properties of herbs and essential oils (EOs), such as their antibacterial, analgesic, anti-inflammatory, antioxidant, and anticancer characteristics, make them widely used in a variety of fields. This research aims to assess the antibacterial efficacy of lavender oil against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). The essential oil from Lavandula spica was extracted via water distillation and characterized by using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Bacterial strains were isolated from burn wounds, confirmed by polymerase chain reaction technique, and were tested using disc diffusion method and Minimum Inhibitory Concentration (MIC) calculations. The study identified 28 components in the EO, with monoterpenes being the predominant. Out of 150 samples, 56 (45.52 %) were positive for P. aeruginosa and 67 (54.47 %) for S. aureus by using standard microbiological techniques including Gram staining, biochemical tests and Polymerase chain reaction technique. P. aeruginosa showed high resistance to cefazolin (100 %) and levofloxacin (83.3 %), while S. aureus was highly resistant to cefoxitin, piperacillin, amoxicillin/clavulanic acid, and ampicillin/sulbactam. The zone of inhibition and MIC for EO against P. aeruginosa were 9.910 ± 0.866 and 2.376 ± 0.352 while for S. aureus were 10.597 ± 0.818 and 0.894 ± 0.073 respectively with significance levels of p > 0.05 and p < 0.01. The study concluded that L. spica EO shows promising antimicrobial activity, particularly against Gram-positive bacteria suggesting its potential for further research and antimicrobial use.
Collapse
Affiliation(s)
- Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad, 38040, Pakistan.
| | - Hira Ahsan
- Institute of Microbiology, Government College University, Faisalabad, 38040, Pakistan
| | - Maryam Shahid
- Institute of Microbiology, Government College University, Faisalabad, 38040, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, 38040, Pakistan
| | - Zeeshan Nawaz
- Institute of Microbiology, Government College University, Faisalabad, 38040, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Zishan Ahamd
- Department Veterinary Pathology, Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Farid Shokry Ataya
- Department of biochemistry, College of Science King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
3
|
Shiva K, Soleimani A, Morshedian J, Farahmandghavi F, Shokrolahi F. Improving the antibacterial properties of polyethylene food packaging films with Ajwain essential oil adsorbed on chitosan particles. Sci Rep 2024; 14:28802. [PMID: 39567677 PMCID: PMC11579371 DOI: 10.1038/s41598-024-80349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
The aim of this research is to develop a composite antibacterial film for food packaging using low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene-graft-maleic anhydride (PE-g-MA), and incorporating chitosan (CS) particles onto which ajwan essential oil (AEO) is adsorbed. The films were characterized using various techniques, including Fourier-transform infrared spectroscopy (FTIR), Gas chromatography/mass spectroscopy (GC-MS), X-ray diffraction (XRD), tensile testing, oxygen transmission rate (OTR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and antibacterial assays. FTIR results confirmed the presence of CS and/or AEO in the films. Mechanical testing indicated a decrease in tensile strength and an increase in elongation at break with the addition of AEO, while CS reduced elongation. In the sample containing only 7.5% chitosan (PE-7.5-0), the oxygen permeability was reduced to 910 cm2/m2·day·bar due to the presence of CS. However, the inclusion of AEO in the sample (PE-0-10) increased the oxygen permeability to 2200 cm2/m2·day·bar, which is higher than that of the control sample (PE-0-0) with an oxygen permeability of 1680 cm2/m2·day·bar. The antibacterial activity results demonstrated a synergistic inhibitory effect of CS and AEO. Data from GC-MS and inhibition zone (IZ) tests indicated that while chitosan alone does not exhibit significant antibacterial activity due to its incorporation in the bulk of the film, its combination with AEO enhances antibacterial efficacy. This enhancement occurs as the oil is adsorbed and protected from evaporation during the film formation process. Overall, the findings from this research suggest that the composite film PE-7.5-10, which possesses suitable mechanical properties and significant antibacterial activity, could be an effective candidate for food packaging applications.
Collapse
Affiliation(s)
- Kasra Shiva
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Adel Soleimani
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Jalil Morshedian
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Farhid Farahmandghavi
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| |
Collapse
|
4
|
Zhang X, Zhuang X, Chen M, Wang J, Liu Z, Qiu D, Wang J, Huang Y, Li W, Liu Z. Tannin Acid/Fe 3+ Composite Film Filled with Essential Oil Extracted from Melaleuca bracteata F. Muell Leaves for the Preservation of Mango. Chem Biodivers 2024:e202402221. [PMID: 39530337 DOI: 10.1002/cbdv.202402221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Tannic acid and Fe3+ were used in this study to create a polyphenol-metal network-based composite film for the preservation of Melaleuca bracteata essential oils. The inhibition rate of ABTS and DPPH free radicals reached more than 90 % at an essential oil concentration of 20 mg/mL. Additive quantities of 2.0 % essential oil nano-emulsion, 0.8 % tannic acid/Fe3+ solution, 0.4 % microcrystalline cellulose, and 1 % chitosan were used to maximize the characteristics of the composite films. When combined with FTIR analysis, X-ray diffraction and scanning electron microscopy revealed that the composite film containing the essential oil emulsion had a more reticulated structure. The essential oil composite layer on mangoes increased the fruit shelf time to 12 days, decreased weight loss by 10.81±4.70 %, increased the amount of soluble solids by 2.03±0.31 %, and increased the amount of vitamin C by 2.18±0.09 %. A trustworthy technical method for the storage and transportation of agricultural goods is offered by this study.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Jiaying University, Meizhou, 514015, China
- Modem Industrial College of Characteristic Agricultural Product Processing, Meizhou, 514015, China
| | | | | | | | - Zhuoyu Liu
- Jiaying University, Meizhou, 514015, China
| | | | - Jinna Wang
- Jiaying University, Meizhou, 514015, China
| | - Yan Huang
- Jiaying University, Meizhou, 514015, China
| | - Weina Li
- Jiaying University, Meizhou, 514015, China
- Modem Industrial College of Characteristic Agricultural Product Processing, Meizhou, 514015, China
| | - Zhiwei Liu
- Jiaying University, Meizhou, 514015, China
- Modem Industrial College of Characteristic Agricultural Product Processing, Meizhou, 514015, China
| |
Collapse
|
5
|
Singh AK, Itkor P, Lee M, Saenjaiban A, Lee YS. Synergistic Integration of Carbon Quantum Dots in Biopolymer Matrices: An Overview of Current Advancements in Antioxidant and Antimicrobial Active Packaging. Molecules 2024; 29:5138. [PMID: 39519777 PMCID: PMC11547712 DOI: 10.3390/molecules29215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately one-third of the world's food production, i.e., 1.43 billion tons, is wasted annually, resulting in economic losses of nearly USD 940 billion and undermining food system sustainability. This waste depletes resources, contributes to greenhouse gas emissions, and negatively affects food security and prices. Although traditional packaging preserves food quality, it cannot satisfy the demands of extended shelf life, safety, and sustainability. Consequently, active packaging using biopolymer matrices containing antioxidants and antimicrobials is a promising solution. This review examines the current advancements in the integration of carbon quantum dots (CQDs) into biopolymer-based active packaging, focusing on their antioxidant and antimicrobial properties. CQDs provide unique advantages over traditional nanoparticles and natural compounds, including high biocompatibility, tunable surface functionality, and environmental sustainability. This review explores the mechanisms through which CQDs impart antioxidant and antimicrobial activities, their synthesis methods, and their functionalization to optimize the efficacy of biopolymer matrices. Recent studies have highlighted that CQD-enhanced biopolymers maintain biodegradability with enhanced antioxidant and antimicrobial functions. Additionally, potential challenges, such as toxicity, regulatory considerations, and scalability are discussed, offering insights into future research directions and industrial applications. This review demonstrates the potential of CQD-incorporated biopolymer matrices to transform active packaging, aligning with sustainability goals and advancing food preservation technologies.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Pontree Itkor
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Myungho Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Aphisit Saenjaiban
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Youn Suk Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| |
Collapse
|
6
|
Chen H, Xin K, Yu Q. Sausage Preservation Using Films Composed of Chitosan and a Pickering Emulsion of Essential Oils Stabilized with Waste-Jujube-Kernel-Derived Cellulose Nanocrystals. Foods 2024; 13:3487. [PMID: 39517271 PMCID: PMC11545354 DOI: 10.3390/foods13213487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this study was to prepare Pickering emulsions stabilized by waste jujube kernel cellulose nanocrystals (CNC) using composite essential oils (EOs) (i.e., cinnamon essential oil [CIN] combined with clove essential oil [CL]). The Pickering emulsions were blended with chitosan (CS) to generate a composite film (CS/CNC/EOs Pickering emulsions). We evaluated the mechanical properties, barrier properties, and microstructures of CS/CNC/EOs bio-based packaging films containing different concentrations of EOs. In addition, the fresh-keeping effects of the composite membranes on beef sausages were evaluated over a 12-day storage period. Notably, the EOs exhibited good compatibility with CS. With the increase in the EOs concentration, the droplet size increased, the composite films became thicker, the elongation at break decreased, the tensile strength increased, and the water vapor permeability decreased. When the composite films were used for preserving beef sausages, the antioxidant and antibacterial activity of the membranes improved as the concentration of EOs increased, effectively prolonging the shelf life of the sausages. Composite membranes with an EOs concentration of 2% exerted the best fresh-keeping effects. Overall, owing to their antioxidant and antimicrobial properties, the bio-based composite films prepared using CS/CNC/EOs Pickering emulsions demonstrated immense potential for application in the packaging of meat products.
Collapse
Affiliation(s)
| | | | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Zhang Y, Ning H, Xu J, Lu L. Layer-by-layer assembly of modified halloysite nanotube using chitosan and sodium alginate to control the release of carvacrol and improve its stability. Int J Biol Macromol 2024; 282:137091. [PMID: 39486717 DOI: 10.1016/j.ijbiomac.2024.137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This study focused on the encapsulation of modified halloysite nanotubes (AHNT) using sodium alginate (SA) and chitosan (CS) through a layer-by-layer assembly technique. The objective was to develop new composites (CPs) that could control the release of carvacrol (Car) and enhance its stability. The influence of various conditions on the microstructure, chemical properties, and slow-release effects of the CPs was examined by adjusting the pH and concentration of the CS solution. The results indicated that the CPs (CS4.5-1), created with a CS solution concentration of 1 mg/mL at a pH of 4.5, in conjunction with a 1 mg/mL SA solution, demonstrated a superior encapsulation structure and a loading efficiency of 26.33 %. In vitro release experiments confirmed that the CPs exhibited effective slow-release properties for Car. Furthermore, the CS4.5-1 composite provided a physical barrier that resulted in the retention of 94.90 % and 83.61 % of Car after 6 h of exposure to UV light and heat, respectively. Antimicrobial and antioxidant assays indicated that CS4.5-1/Car possessed significant antioxidant properties and effectively inhibited the growth of E. coli and S. aureus. Consequently, the prepared CPs have the potential to enhance the bioactivity of active compounds and may be beneficial for food preservation and other applications.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Xu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Hashemifar Z, Sanjarian F, Naghdi Badi H, Mehrafarin A. Varying levels of natural light intensity affect the phyto-biochemical compounds, antioxidant indices and genes involved in the monoterpene biosynthetic pathway of Origanum majorana L. BMC PLANT BIOLOGY 2024; 24:1018. [PMID: 39465361 PMCID: PMC11514805 DOI: 10.1186/s12870-024-05739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Light is a critical environmental factor in plants, encompassing two vital aspects: intensity and quality. To assess the influence of different light intensities on Origanum majorana L., pots containing the herb were subjected to four levels of light intensity: 20, 50, 70, and 100% natural light. After a 60-day treatment period, the plants were evaluated for metabolite production, including total sugar content, protein, dry weight, antioxidant indices, expression of monoterpenes biosynthesis genes, and essential oil compounds. The experimental design followed a randomized complete blocks format, and statistical analysis of variance was conducted. RESULTS The results indicated a correlation between increased light intensity and elevated total sugar and protein content, which contributed to improved plant dry weight. The highest levels of hydrogen peroxide and malondialdehyde (MDA) were observed under 100% light intensity. Catalase and superoxide dismutase enzymes exhibited increased activity, with a 4.23-fold and 2.14-fold increase, respectively, under full light. In contrast, peroxidase and polyphenol oxidase enzyme activities decreased by 3.29-fold and 3.24-fold, respectively. As light intensity increases, the expression level of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene increases. However, beyond a light intensity of 70%, the DXR gene expression level decreased. Furthermore, the expression levels of the cytochrome P450 genes CYP71D178 and CYP71D179 exhibited an increasing trend in response to elevated light intensity. Essential oil content increased from 0.02 to 0.5% until reaching 70% light intensity. However, with further increases in light intensity, the essential oil content decreased by 54 to 0.23%. CONCLUSIONS These findings emphasize the importance of balancing plant growth promotion and stress management under different light conditions. The research suggests that sweet marjoram plants thrive best in unshaded open spaces, resulting in maximum biomass. However, essential oil production decreases under the same conditions. For farmers in areas with an average light intensity of approximately 1700 µmol m-2s-1, it is recommended to cultivate sweet marjoram in shade-free fields to optimize biomass and essential oil production. Towards the end of the growth cycle, it is advisable to use shades that allow 70% of light to pass through. The specific duration of shade implementation can be further explored in future research.
Collapse
Affiliation(s)
- Zahra Hashemifar
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran
| | - Forough Sanjarian
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran.
| | - Hassanali Naghdi Badi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, 3319118651, Iran.
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran.
| | - Ali Mehrafarin
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
9
|
Corrêa ANR, Clerici NJ, de Paula NO, Brandelli A. Inhibition of Food Spoilage Fungi, Botrytis cinerea and Rhizopus sp., by Nanoparticles Loaded with Baccharis dracunculifolia Essential Oil and Nerolidol. Foods 2024; 13:3403. [PMID: 39517187 PMCID: PMC11544775 DOI: 10.3390/foods13213403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the antifungal potential of encapsulated essential oil (EO) from Baccharis dracunculifolia and nerolidol (NE) within Pluronic® F-127 nanoparticles (NPs). The EO, containing nerolidol, β-caryophyllene, and α-pinene as major bioactive compounds, exhibited superior antifungal activity compared to NE. The NP-EO formulations demonstrated high efficacy against Botrytis cinerea, with inhibition rates ranging from 29.73% to 87.60% and moderate efficacy against Rhizopus sp., with inhibition rates from 11.81% to 32.73%. In comparison, NP-NE showed lower antifungal activity. Both formulations effectively inhibited spore germination, with NP-EO showing greater inhibition compared to NP-NE. The encapsulation efficiency was significantly higher for NP-EO (80.1%) as compared to NP-NE (51.1%), attributed to the complex composition of EO facilitating better encapsulation and retention. Stability studies indicated that both NP formulations were stable at 25 °C for at least 15 days and exhibited changes in particle size and the formation of smaller particle populations at other temperatures (4 °C and 37 °C). Hemolytic activity was low across all NPs, suggesting their safety for food applications. The findings underscore the efficacy and applicability of EO-encapsulated NPs in extending food shelf life and maintaining product quality. The controlled and prolonged release of active compounds, coupled with their antifungal activity and safety, suggests that these NPs represent a promising and innovative approach for food preservation and active packaging development.
Collapse
Affiliation(s)
- Aldrey Nathália Ribeiro Corrêa
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Naiara Jacinta Clerici
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Natália Oliveira de Paula
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
- Center of Nanoscience and Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
10
|
Guendouz C, Guenane H, Bakchiche B, Ascrizzi R, Flamini G, Bardaweel SK, Sayed AM, Ghareeb MA. Chemical composition and biological activities of nine essential oils obtained from Algerian plants. Nat Prod Res 2024:1-10. [PMID: 39381930 DOI: 10.1080/14786419.2024.2412308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/31/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The essential oils (EOs) from nine species (Artemisia campestris, A. herba-alba, Juniperus foetidissima, Laurus nobilis, Mentha pulegium, M. spicata, Rosmarinus officinalis, Salvia officinalis, and Thymus vulgaris) of the Algerian flora have been hydrodistilled, analysed, and tested for their antioxidant and antiproliferative properties. A. campestris EO showed a higher content of terpene hydrocarbons; A. herba-alba EO was mainly rich in their oxygenated derivatives. Sesquiterpenes were the most abundant compounds in J. foetidissima EO, while oxygenated monoterpenes and phenylpropanoids prevailed in L. nobilis EO. The other EOs were rich in oxygenated monoterpenes, with quality-quantitative differences. T. vulgaris and L. nobilis performed better in all the antioxidant assays, respectively with IC50 values ranging from 0.0002 and 0.0012 mg/mL in the CUPRAC assay to 2.83 and 3.50 mg/mL in the FRAP assay. T. vulgaris was also the only EO exhibiting an antiproliferative activity towards the human breast (MCF-7) and lung (A549) cancer cell lines.
Collapse
Affiliation(s)
- Chaima Guendouz
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | - Hadjira Guenane
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | - Boulanouar Bakchiche
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | | | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Giza, Egypt
| |
Collapse
|
11
|
Suksaeree J, Wunnakup T, Chankana N, Charoenchai L, Monton C. Formulation Development of Directly Compressible Tablets Incorporating Trisamo Extract With Synergistic Antioxidant Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8920060. [PMID: 39421547 PMCID: PMC11483649 DOI: 10.1155/2024/8920060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
This work investigates the synergistic antioxidant activity of the compositions of Trisamo (TSM) herbal formula containing the dried fruits of Terminalia chebula, Terminalia arjuna, and Terminalia bellirica. An augmented simplex lattice design was utilized to investigate the synergistic antioxidant activity, finding an equal mass ratio among the three herbal drugs to exhibit optimal synergistic antioxidant activity, with a combination index of less than 0.8. The optimal TSM extract was used to prepare directly compressible tablets employing a Box-Behnken design response surface methodology, optimizing compressional force (500, 1000, and 1500 psi), sodium starch glycolate (0%, 2%, and 4%), and magnesium stearate (0.5%, 1.0%, and 1.5%). Optimal parameters were a compressional force of 1000 psi, 2% sodium starch glycolate, and 0.5% magnesium stearate. The TSM extract tablet had a weight of 600.06 mg, a diameter of 12.78 mm, a thickness of 4.12 mm, a hardness of 6.85 kP, a friability of 0.30%, and a disintegration time of 1.81 min. Computer model predictions were verified with a low percentage error (≤ 10.00%). After 6 h, phenolic compounds were dissolved to an extent of approximately 40%-80%, including gallic acid (57.11%), corilagin (38.64%), chebulagic acid (58.49%), and chebulinic acid (81.44%). Stability data revealed that the phenolic compounds were retained for 3 months compared to the initial time point, with gallic acid at 81.43% and 100.27%, corilagin at 94.81% and 87.85%, chebulagic acid at 92.22% and 69.83%, and chebulinic acid at 107.00% and 85.54% at 30°C/75% RH and 45°C/75% RH, respectively. The summation of these four compounds did not change significantly when stored under either set of conditions. In summary, mixture design and response surface design were successfully utilized in the optimization of TSM extract tablets with synergistic antioxidant activity.
Collapse
Affiliation(s)
- Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thaniya Wunnakup
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Natawat Chankana
- Sun Herb Thai Chinese Manufacturing, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Laksana Charoenchai
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
12
|
Ellouze I, Ben Akacha B, Mekinić IG, Ben Saad R, Kačániová M, Kluz MI, Mnif W, Garzoli S, Ben Hsouna A. Enhancing Antibacterial Efficacy: Synergistic Effects of Citrus aurantium Essential Oil Mixtures against Escherichia coli for Food Preservation. Foods 2024; 13:3093. [PMID: 39410132 PMCID: PMC11475270 DOI: 10.3390/foods13193093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Essential oils (EOs) from various medicinal and aromatic plants are known for their diverse biological activities, including their antimicrobial effects. Citrus aurantium EO is traditionally used for therapeutic benefits due to its high content of bioactive compounds. Therefore, this study focuses on its potential use as a food preservative by investigating the combined antibacterial properties of EOs from leaves (EO1), flowers (EO2), and small branches (EO3) of Citrus aurantium against six bacterial strains by the agar disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The chemical compositions of the EOs were analysed by gas chromatography-mass spectrometry (GC-MS) and revealed the presence of numerous compounds responsible for their antimicrobial properties. The MIC values for the EOs were 3.12 mg/mL, 4.23 mg/mL, and 1.89 mg/mL, for EO1, EO2 and EO3, respectively, while the MBC values were 12.5 mg/mL, 6.25 mg/mL, and 6.25 mg/mL, respectively. A simplex centroid design was created to analyse the effect of the individual and combined EOs against E. coli. The combined EOs showed enhanced antibacterial activity compared to the individual oils, suggesting a synergistic effect (e.g., trial 9 with an MIC of 0.21 mg/mL), allowing the use of lower EO concentrations and reducing potential negative effects on food flavour and aroma. Additionally, the practical application of investigated EOs (at concentrations twice the MIC) was investigated in raw chicken meat stored at 4 °C for 21 days. The EOs, individually and in combination, effectively extended the shelf life of the meat by inhibiting bacterial growth (total bacterial count of less than 1 × 104 CFU/g in the treated samples compared to 7 × 107 CFU/g in the control on day 21 of storage). The study underlines the potential of C. aurantium EOs as natural preservatives that represent a sustainable and effective alternative to synthetic chemicals in food preservation.
Collapse
Affiliation(s)
- Ines Ellouze
- Department of Vegetal Biotechnology, Higher Institute of Biotechnology of Beja, Jendouba University, Beja 9000, Tunisia;
- Functional and Bio-Resources Valorization Laboratory, Higher Institute of Biotechnology of Beja, Jendouba University, Beja 9000, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Maciej Ireneusz Kluz
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P 1177, Sfax 3018, Tunisia; (B.B.A.); (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
13
|
Tang XM, Xie MX, Gou JL, Chen L, Tian JL, Zhang X, Lu YY, Wang HQ. Antibacterial Activity of Plants in Cirsium: A Comprehensive Review. Chin J Integr Med 2024; 30:835-841. [PMID: 38532154 DOI: 10.1007/s11655-024-3757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 03/28/2024]
Abstract
As ethnic medicine, the whole grass of plants in Cirsium was used as antimicrobial. This review focuses on the antimicrobial activity of plants in Cirsium, including antimicrobial components, against different types of microbes and bacteriostatic mechanism. The results showed that the main antimicrobial activity components in Cirsium plants were flavonoids, triterpenoids and phenolic acids, and the antimicrobial ability varied according to the species and the content of chemicals. Among them, phenolic acids showed a strong antibacterial ability against Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium. The antibacterial mechanisms include: (1) damaging the cell membrane, cell walls, mitochondria and nucleus of bacteria; (2) inhibiting the synthesis of proteins and nucleic acids; (3) suppressing the synthesis of enzymes for tricarboxylic acid cycle pathways and glycolysis, and then killing the bacteria via inhibition of energy production. Totally, most research results on antimicrobial activity of Cirsium plants are reported based on in vitro assays. The evidence from clinical data and comprehensive evaluation are needed.
Collapse
Affiliation(s)
- Xiao-Meng Tang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ming-Xia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jun-Li Gou
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Liang Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jin-Long Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - You-Yuan Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Han-Qing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, China.
| |
Collapse
|
14
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
15
|
Essid R, Kefi S, Damergi B, Abid G, Fares N, Jallouli S, Tabbene O, Limam F. Ballota hirsuta essential oil as a potential multitarget agent against Leishmania parasite: in vitro and in silico studies. Int Microbiol 2024:10.1007/s10123-024-00567-x. [PMID: 39215892 DOI: 10.1007/s10123-024-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
In the present study, we assessed the antioxidant and antileishmanial potential from fresh leaves of Ballota (B.) hirsuta essential oil (EO). The GC-MS analysis of B. hirsuta EO revealed that spathulenol and germacrene D were the main components accounting for 26.03% and 19.64% of the total EO, respectively. B. hirsuta EO possesses moderate antioxidant activity, both in neutralizing DPPH radicals and in inhibiting β-carotene bleaching. In addition, it exhibits both high antileishmanial activity and selectivity towards the promastigote and amastigote forms. Specifically, B. hirsuta EO showed an IC50 value of 20.78 µg/mL and 23.62 µg/mL, against the promastigote and amastigote forms of L. infantum, respectively. It also demonstrated an IC50 value of 22.39 and 25.76 µg/mL, against the promastigote and amastigote forms of L. major, respectively. However, it exhibited moderate cytotoxicity, with a selectivity index below 10. The investigation of the molecular mechanism of action revealed that B. hirsuta EO inhibited only the sterol pathway, including CYP51 gene expression. Additionally, in silico analysis indicated that the main compounds of B. hirsuta EO, germacrene and spathulenol, exhibited excellent affinity energy against Leishmania enzymes trypanothione reductase (TryR) and trypanothione synthase (TryS). This denotes the potential of these compounds as promising agents to control leishmaniasis.
Collapse
Affiliation(s)
- Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia.
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, 1068, Tunis, Tunisia.
| | - Sarra Kefi
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, 1068, Tunis, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agro-Systems, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center in Borj-Cedria Technopole, BP 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
16
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Ou-Yahia D, Bellaouchi R, Mothana RA, Al-Yousef HM, Asehraou A, Addi M, Guerrouj BE, Chaabane K. Evaluation of the Interaction between Carvacrol and Thymol, Major Compounds of Ptychotis verticillata Essential Oil: Antioxidant, Anti-Inflammatory and Anticancer Activities against Breast Cancer Lines. Life (Basel) 2024; 14:1037. [PMID: 39202779 PMCID: PMC11355195 DOI: 10.3390/life14081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The objective of this study was to evaluate the antioxidant, anti-inflammatory, and anticancer properties of thymol, carvacrol, and their equimolar mixture. Antioxidant activities were assessed using the DPPH, ABTS, and ORAC methods. The thymol/carvacrol mixture exhibited significant synergism, surpassing the individual compounds and ascorbic acid in DPPH (IC50 = 43.82 ± 2.41 µg/mL) and ABTS (IC50 = 23.29 ± 0.71 µg/mL) assays. Anti-inflammatory activity was evaluated by inhibiting the 5-LOX, COX-1, and COX-2 enzymes. The equimolar mixture showed the strongest inhibition of 5-LOX (IC50 = 8.46 ± 0.92 µg/mL) and substantial inhibition of COX-1 (IC50 = 15.23 ± 2.34 µg/mL) and COX-2 (IC50 = 14.53 ± 2.42 µg/mL), indicating a synergistic effect. Anticancer activity was tested on MCF-7, MDA-MB-231, and MDA-MB-436 breast cancer cell lines using the MTT assay. The thymol/carvacrol mixture demonstrated superior cytotoxicity (IC50 = 0.92-1.70 µg/mL) and increased selectivity compared to cisplatin, with high selectivity indices (144.88-267.71). These results underscore the promising therapeutic potential of the thymol/carvacrol combination, particularly for its synergistic antioxidant, anti-inflammatory, and anticancer properties against breast cancer. This study paves the way for developing natural therapies against breast cancer and other conditions associated with oxidative stress and inflammation, leveraging the synergistic effects of natural compounds like thymol and carvacrol.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Abdellah Baraich
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Douaae Ou-Yahia
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (H.M.A.-Y.)
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (H.M.A.-Y.)
| | - Abdeslam Asehraou
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| |
Collapse
|
17
|
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Aouraghe A, Bellaouchi R, Mothana RA, Hawwal MF, Mesnard F, Hano C, Asehraou A, Chaabane K, El Guerrouj B, Addi M. Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:1071. [PMID: 39204175 PMCID: PMC11357427 DOI: 10.3390/ph17081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The optimization of existing natural antioxidants that are highly effective is crucial for advancements in medicine and the food industry. Due to growing concerns regarding the safety of synthetic antioxidants, researchers are increasingly focusing on natural sources, particularly essential oils (EOs). Combining EOs might enhance antioxidant activity due to increased chemical diversity. This study investigates, for the first time, the antioxidant properties of EOs from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis, both individually and in combination, using the augmented-simplex design methodology. The in vitro evaluation of the antioxidant activity was performed using DPPH and ABTS radical scavenging assays. Chromatography gas-mass spectrometry (CG-MS) revealed that 1,8-cineol (37.27%) and pinocarveol (12.67%) are the primary components of L. dentata; verbenone (16.90%), camphor (15.00%), and camphene (11.03%) are predominant in R. officinalis; while cineol (43.32%) is the main component of M. communis. The EOs showed varying scavenging activities against ABTS and DPPH radicals, with DPPH assay values ranging from 194.10 ± 3.01 to 541.19 ± 3.72 µg/mL and ABTS assay values ranging from 134.07 ± 1.70 to 663.42 ± 2.99 µg/mL. These activities were enhanced when the EOs were combined. The optimal antioxidant blend for DPPHIC50 consisted of 20% L. dentata, 50% R. officinalis, and 30% M. communis. For the highest ABTS radical scavenging activity, the best combination was 18% L. dentata, 43% R. officinalis, and 40% M. communis. These results highlight the potential of EO combinations as new natural formulations for use in cosmeceutical, food, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Aya Aouraghe
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - François Mesnard
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France;
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| |
Collapse
|
18
|
Al Jaafreh AM. Investigation of the phytochemical profiling and antioxidant, anti-diabetic, anti-inflammatory, and MDA-MB-231 cell line antiproliferative potentials of extracts from Ephedra alata Decne. Sci Rep 2024; 14:18240. [PMID: 39107351 PMCID: PMC11303798 DOI: 10.1038/s41598-024-65561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Ephedra is one of the many medicinal herbs that have been used as folk/traditional medicine in Jordan and other countries to cure various illnesses. Plants of this genus are well known for their antioxidant and antibacterial properties. In this study, three different solvents were used to obtain Ephedra extracts. When evaluated, the Ephedra alata Decne ethanolic extract reportedly had the greatest levels of total phenolic compounds (TPC) and total flavonoid compounds (TFC). The aqueous extracts displayed the highest antioxidant activity in the DPPH and ABTS assays, demonstrating their considerable capacity to neutralize free radicals. However, when evaluated using the FRAP method, the acetone extracts showed the strongest antioxidant activity, indicating their high reducing power. LC-MS/MS, a potent method of analysis that combines the liquid chromatographic separation properties with mass spectrometry detection and identification capabilities, was used in this study to detect and measure phytochemical content of a total of 24 phenolic compounds and 16 terpene compounds present in the extracts of Ephedra alata Decne. Various concentrations of these chemicals were found in these extracts. The extracts' inhibitory effects on albumin denaturation and alpha-amylase activity were also assessed; the findings demonstrated the potentials of these extracts as anti-inflammatory and anti-diabetic medicines, with the acetone extract having the lowest IC50 values in the concomitant tests (306.45 µg/ml and 851.23 µg/ml, respectively). Furthermore, the lowest IC50 value (of 364.59 ± 0.45 µg/ml) for the 80% ethanol extract demonstrated that it has the strongest antiproliferative impact regarding the MDA-MB-231 breast cancer cell line. This finding indicates that this particular extract can be potentially used to treat cancer.
Collapse
|
19
|
Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El-Dakdouki MH. Comparative Study on the Chemical Composition and Biological Activities of the Essential Oils of Lavandula angustifolia and Lavandula x intermedia Cultivated in Lebanon. ACS OMEGA 2024; 9:30244-30255. [PMID: 39035964 PMCID: PMC11256343 DOI: 10.1021/acsomega.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical profile of essential oils is influenced by genetic and paragenetic factors. In this research, we studied the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. The latter is a cross hybrid between Lavandula angustifolia and Lavandula latifolia and is also known as lavandin and Lavandula hybrida. Specifically, the chemical composition and biological activities (antibacterial, antioxidant, anticancer, and hemolytic) of the essential oils were assessed. GC-MS results showed marked differences in the chemical compositions of the oils. For example, linalool was more abundant in L. x intermedia (44.15%) than in L. angustifolia (32%), while an opposite trend was observed for the percentages of 1,8-cineole (8.6% in L. angustifolia and 4.0% in L. x intermedia). FTIR analysis confirmed the richness of both oils in monoterpenes and sesquiterpenes. In terms of antioxidant activity, L. angustifolia essential oil demonstrated significantly better activity (IC50= 5.24 ± 1.20 mg/mL) compared to L. x intermedia oil in the DPPH radical scavenging assay. MTT cell viability assays revealed that L. angustifolia essential oil was a slightly more potent antiproliferative agent than L. x intermedia oil on human colorectal (HCT-116) and human breast (MCF-7) cancer cells. The antibacterial activity of the essential oils was tested against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Serratia marcescens. Both oils showed good antibacterial activities with MIC values of 0.174 and 0.169 mg/mL for L. angustifolia and L. x intermedia oils, respectively. MBC determinations revealed that the antibacterial activity was bactericidal against all bacteria, except Staphylococcus aureus. Furthermore, both essential oils did not exhibit notable hemolytic activity on red blood cells. Overall, Lebanese L. angustifolia and L. x intermedia essential oils have promising industrial and medicinal values.
Collapse
Affiliation(s)
- Rana I. Massoud
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, Sfax BP117 33038, Tunisia
| | - Hiba Abdallah
- Department
of Chemistry, Faculty of Sciences I, Lebanese
University, Hadath Campus, Beirut 11-5020, Lebanon
| | - Ali Zeiz
- Department
of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Guido Flamini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| |
Collapse
|
20
|
Zhu Y, Gu M, Su Y, Li Z, Xiao Z, Lu F, Han C. Recent advances in spoilage mechanisms and preservation technologies in beef quality: A review. Meat Sci 2024; 213:109481. [PMID: 38461675 DOI: 10.1016/j.meatsci.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Beef is a popular meat product that can spoil and lose quality during postharvest handling and storage. This review examines different preservation methods for beef, from conventional techniques like low-temperature preservation, irradiation, vacuum packing, and chemical preservatives, to novel approaches like bacteriocin, essential oil, and non-thermal technologies. It also discusses how these methods work and affect beef quality. The review shows that beef spoilage is mainly due to enzymatic and microbial activities that impact beef freshness, texture, and quality. Although traditional preservation methods can extend beef shelf life, they have some drawbacks and limitations. Therefore, innovative preservation methods have been created and tested to improve beef quality and safety. These methods have promising results and potential applications in the beef industry. However, more research is needed to overcome the challenges and barriers for their commercialization. This review gives a comprehensive and critical overview of the current and emerging preservation methods for beef and their implications for the beef supply chain.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China.
| | - Chunyang Han
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou, Guangxi 542899, China.
| |
Collapse
|
21
|
Tavassoli M, Bahramian B, Abedi-Firoozjah R, Ehsani A, Phimolsiripol Y, Bangar SP. Application of lactoferrin in food packaging: A comprehensive review on opportunities, advances, and horizons. Int J Biol Macromol 2024; 273:132969. [PMID: 38857733 DOI: 10.1016/j.ijbiomac.2024.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sneh Punia Bangar
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food, Nutrition and Packaging Sciences, Clemson University, SC, 29634, USA.
| |
Collapse
|
22
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
23
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
24
|
Hong SJ, Riahi Z, Shin GH, Kim JT. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int J Biol Macromol 2024; 267:131606. [PMID: 38631566 DOI: 10.1016/j.ijbiomac.2024.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
25
|
Yu Y, Li H, Song Y, Mao B, Huang S, Shao Z, Wang D, Yan K, Zhang S. Preparation of Fresh-Keeping Paper Using Clove Essential Oil through Pickering Emulsion and Maintaining the Quality of Postharvest Cherry Tomatoes. Foods 2024; 13:1331. [PMID: 38731701 PMCID: PMC11083675 DOI: 10.3390/foods13091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study focused on developing a Pickering emulsion fresh-keeping paper that contained clove essential oil (CEO). Cherry tomatoes served as the test material for assessing the preservative efficacy of fresh-keeping paper. The results showed that Pickering emulsion had strong stability. Additionally, the fresh-keeping paper had a good antioxidant activity and sustained-release effect on CEO. In terms of the preservation effect, 0.75 wt% CEO Pickering emulsion paper reduced the decay incidence and weight loss of cherry tomatoes during 12-day storage. Fresh-keeping paper could also play a positive role in protecting the sensory index and color difference of tomatoes. It slowed the decline rate of soluble solid concentration (SSC) and titrable acid (TA). The vitamin C (Vc) and hardness of preserved tomatoes using fresh-keeping paper were maintained at a high level. The paper also inhibited the growth of microorganisms significantly. Therefore, 0.75 wt% CEO Pickering emulsion fresh-keeping paper displayed considerable potential for application in the preservation of postharvest fruits and vegetables. It is a novel fruit and vegetable preservation material worthy of development.
Collapse
Affiliation(s)
- Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (H.L.); (Y.S.); (B.M.); (S.H.); (Z.S.); (D.W.); (K.Y.); (S.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Assaggaf H, Jeddi M, Mrabti HN, Ez-Zoubi A, Qasem A, Attar A, Goh BH, Tan SL, Bouyahya A, Goh KW, Hachlafi NE. Design of three-component essential oil extract mixture from Cymbopogon flexuosus, Carum carvi, and Acorus calamus with enhanced antioxidant activity. Sci Rep 2024; 14:9195. [PMID: 38649707 PMCID: PMC11035653 DOI: 10.1038/s41598-024-59708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, β-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| | - Hanae Naceiri Mrabti
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, 30000, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sang Loon Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, BP 1014, Rabat, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| |
Collapse
|
27
|
Essid R, Kefi S, Damergi B, Abid G, Fares N, Jallouli S, Abid I, Hussein D, Tabbene O, Limam F. Promising Antileishmanial Activity of Micromeria nervosa Essential Oil: In Vitro and In Silico Studies. Molecules 2024; 29:1876. [PMID: 38675696 PMCID: PMC11055018 DOI: 10.3390/molecules29081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting β-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 μg/mL) and amastigote (IC50 of 8.04 and 7.32 μg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Sarra Kefi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agro-Systems, Centre of Biotechnology of Borj Cedria, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Islem Abid
- Center of Excellence in Biotechnology Research, College of Applied Medical Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Dina Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, OH 44115, USA;
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| |
Collapse
|
28
|
Joujou FM, Darra NE, Rajha HN, Sokhn ES, Alwan N. Evaluation of synergistic/antagonistic antibacterial activities of fatty oils from apricot, date, grape, and black seeds. Sci Rep 2024; 14:6532. [PMID: 38503788 PMCID: PMC10951330 DOI: 10.1038/s41598-024-54850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/17/2024] [Indexed: 03/21/2024] Open
Abstract
The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.
Collapse
Affiliation(s)
- Farah M Joujou
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Nada El Darra
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Hiba N Rajha
- Département de Génie Chimique et Pétrochimique, Faculté d'Ingénierie, Ecole Supérieure, d'Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth, CST Mkalles Mar, Rokos, Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Elie Salem Sokhn
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Nisreen Alwan
- Environmental and Public Health Department, College of Health Sciences, Abu Dhabi University, PO Box 59911, Abu Dhabi, UAE.
| |
Collapse
|
29
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
30
|
Bertella A, Gavril GL, Wrona M, Pezo D, Sidaoui A, Benlahcen K, Kihal M, Olewnik-Kruszkowska E, Salafranca J, Nerín C. Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications. Foods 2024; 13:749. [PMID: 38472862 DOI: 10.3390/foods13050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In samples of Artemisia campestris (AC), Artemisia herba-alba (AHA) and Salvia jordanii (SJ) essential oils, up to 200 distinct volatile compounds were identified. Using headspace solid-phase microextraction combined with gas chromatography-olfactometry-mass spectrometry (HS-SPME-GC-O-MS), different panelists detected 52 of these compounds. This study offers the most detailed analysis of bioactive compound profiles conducted so far. The most abundant compounds identified were curcumene, making up 12.96% of AC, and camphor, constituting 21.67% of AHA and 19.15% of SJ. The compounds with the highest odor activity value (OAV) were (E,Z)-2,4-nonadienal (geranium, pungent), 3-nonenal (cucumber) and 2-undecenal (sweet) in AC, AHA and SJ, respectively. AHA essential oil showed significant antioxidant activity (IC50 = 41.73 ± 4.14 mg/g) and hydroxyl radical generation (hydroxylation percentage = 29.62 ± 3.14), as assessed by the diphenylpicrylhydrazyl (DPPH) method. In terms of oxygen radical absorbance capacity (ORAC), the strongest antioxidant activity was obtained for SJ essential oil (antioxidant activity of the essential oils, AOX = 337.49 ± 9.87).
Collapse
Affiliation(s)
- Anis Bertella
- Department of Molecular and Cellular Biology, Faculty of Life and Nature Sciences, Abbes Laghrour Khenchela University, BP 1252 Road of Batna, Khenchela 40004, Algeria
| | - Georgiana-Luminita Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, Sector 6, 060031 Bucharest, Romania
| | - Magdalena Wrona
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Davinson Pezo
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca Km. 299, 50830 Zaragoza, Spain
| | - Abouamama Sidaoui
- Faculty of Sciences and Technology, Department of Biology, Amine Elokkal El Hadj Moussa Egakhamouk University of Tamanghasset, Tamanghasset 11000, Algeria
| | - Kheira Benlahcen
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Life and Nature Sciences, University of Oran 1 Ahmed BenBella, Oran 31100, Algeria
| | - Mebrouk Kihal
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Life and Nature Sciences, University of Oran 1 Ahmed BenBella, Oran 31100, Algeria
| | - Ewa Olewnik-Kruszkowska
- Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland
| | - Jesús Salafranca
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Cristina Nerín
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| |
Collapse
|
31
|
Tan WN, Samling BA, Tong WY, Chear NJY, Yusof SR, Lim JW, Tchamgoue J, Leong CR, Ramanathan S. Chitosan-Based Nanoencapsulated Essential Oils: Potential Leads against Breast Cancer Cells in Preclinical Studies. Polymers (Basel) 2024; 16:478. [PMID: 38399856 PMCID: PMC10891598 DOI: 10.3390/polym16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.
Collapse
Affiliation(s)
- Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Nelson Jeng-Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Joseph Tchamgoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Chean-Ring Leong
- Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| |
Collapse
|
32
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Sustainable packaging film based on cellulose nanofibres/pullulan impregnated with zinc-doped carbon dots derived from avocado peel to extend the shelf life of chicken and tofu. Int J Biol Macromol 2024; 258:129302. [PMID: 38262822 DOI: 10.1016/j.ijbiomac.2024.129302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
A cellulose nanofiber (CNF)/pullulan (PUL) based multifunctional composite film was developed for active packaging applications by incorporating Zn-doped avocado-derived carbon dots (Zn-ACDs). The incorporation of Zn-ACDs improved the interfacial compatibility and produced a dense cross-sectional structure of the composite films. The Zn-ACDs added film showed no significant difference in water vapor permeability and surface hydrophilicity compared to the neat CNF/PUL film, but the tensile strength and elongation at break increased by ~45.4 % and ~64.1 %, respectively. The addition of 5 wt% Zn-ACDs to the CNF/PUL matrix resulted in 100.0 % UV blocking properties, excellent antioxidant activity (100.0 % for ABTS and 68.0 % for DPPH), and complete eradication of foodborne pathogens such as Listeria monocytogenes ATCC 15313 and Escherichia coli O157:H7 after 3 h of exposure. The CNF/PUL composite film with Zn-ACDs applied to the active packaging of chicken and tofu significantly reduced the total growth of aerobic microorganisms without significantly changing the actual color of the packaged chicken and tofu for 9 days at 10°C. This study demonstrates that CNF/PUL composite films with Zn-ACDs are a sustainable and environmentally friendly option for protecting food from microbial contamination.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
33
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
34
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO 2-doped carbon dots derived from sweet potato peels. Int J Biol Macromol 2024; 259:129371. [PMID: 38228207 DOI: 10.1016/j.ijbiomac.2024.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Carrageenan-based sustainable active and pH-dependent color-changing composite films were fabricated by blending anthocyanin extracted from sweet potato peel (SPA) with TiO2-doped carbon dots (Ti-CDs) prepared using the biowaste of SPA extraction. The SPA and Ti-CDs were compatible with the carrageenan matrix and were uniformly dispersed in the used polymer to form a homogeneous film with increased mechanical properties. The composite film added with SPA and 3 wt% Ti-CD showed 100 % UV protection, superb antioxidant (100 % DPPH and ABTS scavenging assay), and potent antibacterial activity (complete eradication of foodborne L.monocytogenes and E. coli strains after 3 h incubation). Additionally, the composite films showed distinguishable colorimetric responses to pH 7-12 buffers and volatile ammonia. The intelligent sensing ability of the composite film was assessed through shrimp freshness monitoring, and the film's hue shifted from pink (fresh shrimp) to yellow/brown (inedible shrimp) during storage. Shrimp packaging studies have shown that composite films retard the rate of food quality change during storage and are a good indicator of shrimp spoilage. Therefore, the designed film is expected to have high applicability as a chip, and quick on-site sensor that detects seafood quality in real-time, and a highly effective multifunctional film for better product quality preservation.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
35
|
Wu M, Xue Z, Wang C, Wang T, Zou D, Lu P, Song X. Smart antibacterial nanocellulose packaging film based on pH-stimulate responsive microcapsules synthesized by Pickering emulsion template. Carbohydr Polym 2024; 323:121409. [PMID: 37940292 DOI: 10.1016/j.carbpol.2023.121409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Spoilage results in food waste and endangers consumer health, and the smart antibacterial packaging can effectively inhibit bacterial growth and reduce food spoilage. In this study, the smart antibacterial nanocellulose packaging films were developed by adding the pH-stimulated responsive microcapsules into cellulose nanofibril (CNF) film-forming. The microcapsules were synthesized by interfacial polymerization of Pickering emulsion. Carboxylated cellulose nanocrystals as solid particles stabilized the composited oil phase to prepare the oil-in-water Pickering emulsion. The emulsion with the particle concentration of 1.25 wt% and the oil phase mass fraction of 7.5 % processes excellent stability and uniform particle size, was chosen to synthesize microcapsules. The cinnamaldehyde in the film with the addition amount of microcapsules 0.6 g burst released in the first 1 h and then slowly, and the cumulative release at pH 2.0, 4.0, 5.5 and 7.2 was 28.43 μg/cm2, 18.84 μg/cm2, 16.52 μg/cm2 and 12.89 μg/cm2, respectively. The inhibitory rate of film against both E. coli and L. monocytogenes reached 99 % at pH 4.0. The shelf life of pork packed by the film prolonged to nearly 9 d at room temperature. The developed films have the potential to be used in food packaging.
Collapse
Affiliation(s)
- Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caixia Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dongcheng Zou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| |
Collapse
|
36
|
Rosca I, Turin-Moleavin IA, Sarghi A, Lungoci AL, Varganici CD, Petrovici AR, Fifere A, Pinteala M. Dextran coated iron oxide nanoparticles loaded with protocatechuic acid as multifunctional therapeutic agents. Int J Biol Macromol 2024; 256:128314. [PMID: 38007008 DOI: 10.1016/j.ijbiomac.2023.128314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Nowadays, there is a growing interest in multifunctional therapeutic agents as valuable tools to improve and expand the applicability field of traditional bioactive compounds. In this context, the synthesis and main characteristics of dextran-coated iron oxide nanoparticles (IONP-Dex) loaded with both an antioxidant, protocatechuic acid (PCA), and an antibiotic, ceftazidime (CAZ) or levofloxacin (LEV) are herein reported for the first time, with emphasis on the potentiation effect of PCA on drugs activity. All nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, differential scanning calorimetry and dynamic light scattering. As evidenced by DPPH method, IONP-Dex loaded with PCA and LEV had similar antioxidant activity like those with PCA only, but higher than PCA and CAZ loaded ones. A synergy of action between PCA and each antibiotic co-loaded on IONP-Dex has been highlighted by an enhanced activity against reference bacterial strains, such as S. aureus and E. coli after 40 min of incubation. It was concluded that PCA, which is the main cause of the antioxidative properties of loaded nanoparticles, further improves the antimicrobial activity of IONP-Dex nanoparticles when was co-loaded with CAZ or LEV antibiotics. All constructs also showed a good biocompatibility with normal human dermal fibroblasts.
Collapse
Affiliation(s)
- Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Alexandra Sarghi
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Ana-Lacramioara Lungoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Cristian-Dragos Varganici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Anca-Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| |
Collapse
|
37
|
Benamar-Aissa B, Gourine N, Ouinten M, Yousfi M. Synergistic effects of essential oils and phenolic extracts on antimicrobial activities using blends of Artemisia campestris, Artemisia herba alba, and Citrus aurantium. Biomol Concepts 2024; 15:bmc-2022-0040. [PMID: 38353049 DOI: 10.1515/bmc-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
This study explores the synergistic antibacterial effects of essential oils (EOs) and phenolic extracts from three plants against foodborne pathogenic bacteria. The present work aimed to investigate the synergistic effects of the binary and the ternary combinations of extracts using different blend proportions of the following plant extracts: Artemisia campestris (AC), Artemisia herba alba (AHA), and Citrus aurantium (CA). The antimicrobial activities of EOs and phenolic extracts were determined and evaluated against five strains. For the EOs, the results of the DIZ showed the existence of synergism for different combinations of binary blends, such as AC/AHA or AHA/CA against Escherichia coli, and AC/CA against Enterobacter faecalis. In addition, ternary blends of AC:AHA:CA at a ratio of 1/6:2/3:1/6 exhibited a synergy effect, as measured by the CI, against E. coli. On the other hand, for the phenolic extracts, synergistic effects were noticed for binary blends of AC/CA at different ratios against E. coli, E. faecalis, and Pseudomonas aeruginosa strains. Similarly, ternary blends of phenolic extracts presented synergy against E. coli, E. faecalis, P. aeruginosa strains, and even C. albicans. In this case, the blending ratios were crucial determining factors for maximizing the synergy effect. The study established that the proportion of a single drug could play an essential role in determining the bioefficacy of a drug combination treatment. Therefore, the results showed the importance of studying the modulation of antibacterial activities based on the proportions of extracts in the mixture and finding the range of proportions (as determined by SLMD) that have a synergistic/additive/antagonistic effect with no or low side effects, which can be used in a food preservation system.
Collapse
Affiliation(s)
- Boualem Benamar-Aissa
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Nadhir Gourine
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Ouinten
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| |
Collapse
|
38
|
Poovathumkadavil Thambi N, Rani P, Sharma M, Katoch M. A combinatorial approach of Monarda citriodora essential oil (MEO) and linalool vapors to control fruit rot of Citrus limon caused by a new pathogen, Aspergillus foetidus, and its underlying mode of action. J Appl Microbiol 2023; 134:lxad292. [PMID: 38040653 DOI: 10.1093/jambio/lxad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
AIMS Citrus limon (lemon) is a widely cultivated citrus fruit. Significant postharvest losses due to fungi plague its production. Environmental and human health hazards have made the application of synthetic fungicides unsuitable. Despite the previous reports of antifungal activities of essential oil (EO) vapors, their synergistic combinations are understudied. Synergistic vapor combinations are advantageous due to less concentration of active components. This study aimed to isolate and identify postharvest fungal pathogens lemon and to evaluate the antifungal effects of synergistic Monarda citriodora EO (MEO)-constituent vapor combinations in vivo and in vitro. METHODS AND RESULTS Postharvest fungal pathogens of lemon (C. limon) were isolated from various infected samples. The most pathogenic isolate was identified through morphology and its ITS-based rRNA gene sequencing as Aspergillus foetidus (O4). This is the first report of A. foetidus as a postharvest pathogen of lemon. The minimum fungicidal concentrations (MFCs) of MEO vapors treatment against O4 were 1346.15 µL/L air. For carvacrol, hexanal, and linalool, MFC was same (96.16 µL/L air). Checkerboard assays demonstrated that 1/4 MFC of MEO (336.54 µL/L air) and 1/4 MFC of linalool (24.04 µL/L air) (M + L) were synergistic against O4. M + L vapors reduced the O4 growth on lemons during storage by 64% ± 1.50% and preserved their quality (low weight loss %, unchanged pH, increased ascorbic acid content). Propidium iodide staining, ergosterol content analysis, calcofluor white staining and chitin content analysis revealed the integrity loss of the O4 plasma membrane and cell wall. 2',7'-Dichlorofluorescin diacetate staining revealed accumulation of intracellular reactive oxygen species (ROS), and scanning electron microscopy (SEM) analysis exposed the M + L treated mycelia with malformations. CONCLUSIONS M + L vapors offer protection for lemons from A. foetidus and preserve their quality during storage.
Collapse
Affiliation(s)
| | - Pragya Rani
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mohini Sharma
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Meenu Katoch
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine-CSIR, Jammu 180001, India
| |
Collapse
|
39
|
Ferreira RC, Duarte SS, de Sousa VM, de Souza RRM, Marques KKG, de Abrantes RA, do Nascimento YM, de Sousa NF, Scotti MT, Scotti L, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. The Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae) Exerts an In Vitro Antimelanoma Effect by Inducing Apoptosis and Modulating the MAPKs, NF-κB, and PKB/AKT Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:1553. [PMID: 38004419 PMCID: PMC10674350 DOI: 10.3390/ph16111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The characterization and cytotoxicity of the essential oil from Conyza bonariensis (L.) aerial parts (CBEO) were previously conducted. The major compound was (Z)-2-lachnophyllum ester (EZ), and CBEO exhibited significant ROS-dependent cytotoxicity in the melanoma cell line SK-MEL-28. Herein, we employed the Molegro Virtual Docker v.6.0.1 software to investigate the interactions between the EZ and Mitogen-Activated Protein Kinases (MAPKs), the Nuclear Factor kappa B (NF-κB), and the Protein Kinase B (PKB/AKT). Additionally, in vitro assays were performed in SK-MEL-28 cells to assess the effect of CBEO on the cell cycle, apoptosis, and these signaling pathways by flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using MAPKs inhibitors. CBEO induced a significant increase in the sub-G1 peak, as well as biochemical and morphological changes characteristic of apoptosis. The in-silico results indicated that EZ interacts with Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), p38α MAPK, NF-κB, and PKB/AKT. Moreover, CBEO modulated the ERK1/2, JNK, p38 MAPK, NF-κB, and PKB/AKT activities in SK-MEL-28 cells. Furthermore, CBEO's cytotoxicity against SK-MEL-28 cells was significantly altered in the presence of MAPKs inhibitors. These findings support the in vitro antimelanoma effect of CBEO through apoptosis induction, and the modulation of ERK, JNK, p38 MAPK, NF-κB, and PKB/AKT activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (R.R.M.d.S.); (K.K.G.M.)
| |
Collapse
|
40
|
Tsitlakidou P, Tasopoulos N, Chatzopoulou P, Mourtzinos I. Current status, technology, regulation and future perspectives of essential oils usage in the food and drink industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6727-6751. [PMID: 37158299 DOI: 10.1002/jsfa.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Nowadays, essential oils (EOs) have a wide use in many applications such as in food, cosmetics, pharmaceutical and animal feed products. Consumers' preferences concerning healthier and safer foodstuffs lead to an increased demand for natural products, in replacement of synthetic substances, used as preservatives, flavourings etc. EOs, besides being safe, are promising alternatives as natural food additives, and much research has been carried out on their antioxidant and antimicrobial activity. The initial purpose of this review is to discuss conventional and 'green' extraction techniques along with their basic mechanism for the isolation of EOs from aromatic plants. This review aims to provide a broad overview of the current knowledge about the chemical constitution of EOs while considering the existence of different chemotypes, since bioactivity is attributed to the chemical composition - qualitative and quantitative - of EOs. Although the food industry primarily uses EOs as flavourings, an overview on recent applications of EOs in food systems and active packaging is provided. EOs exhibit poor solubility in water, oxidation susceptibility, negative organoleptic effect and volatility, restricting their use. Encapsulation techniques have been proven to be one of the best approaches to preserve the biological activities of EOs and minimize their effects on food sensory qualities. Herein, different encapsulation techniques and their basic mechanism for loading EOs are discussed. EOs are highly accepted by consumers, who are often under the misconception that 'natural' means safe. This is, however, an oversimplification, and the possible toxicity of EOs should be taken into consideration. Thus, in the final section of the current review, the focus is on current EU legislation, safety assessment and sensory evaluation of EOs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Petroula Tsitlakidou
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Tasopoulos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization - DIMITRA, Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Kowalewska A, Majewska-Smolarek K. Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications. Antibiotics (Basel) 2023; 12:1570. [PMID: 37998772 PMCID: PMC10668689 DOI: 10.3390/antibiotics12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Eugenol (4-Allyl-2-methoxy phenol) (EUG) is a plant-derived allyl chain-substituted guaiacol, widely known for its antimicrobial and anesthetic properties, as well as the ability to scavenge reactive oxygen species. It is typically used as a mixture with zinc oxide (ZOE) for the preparation of restorative tooth fillings and treatment of root canal infections. However, the high volatility of this insoluble-in-water component of natural essential oils can be an obstacle to its wider application. Moreover, molecular eugenol can be allergenic and even toxic if taken orally in high doses for long periods of time. Therefore, a growing interest in eugenol loading in polymeric materials (including the encapsulation of molecular eugenol and polymerization of EUG-derived monomers) has been noted recently. Such active macromolecular systems enhance the stability of eugenol action and potentially provide prolonged contact with pathogens without the undesired side effects of free EUG. In this review, we present an overview of methods leading to the formation of macromolecular derivatives of eugenol as well as the latest developments and further perspectives in their pharmacological and antimicrobial applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
42
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Gelatin/poly(vinyl alcohol)-based dual functional composite films integrated with metal-organic frameworks and anthocyanin for active and intelligent food packaging. Int J Biol Macromol 2023; 249:126040. [PMID: 37541465 DOI: 10.1016/j.ijbiomac.2023.126040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Innovative active and pH-colorimetric composite films were fabricated from gelatin/poly(vinyl alcohol) (Gel/PVA) integrated with copper-based metal-organic frameworks (Cu-MOFs) and red cabbage anthocyanin (RCA). The incorporation of Cu-MOFs improved the tensile strength, water resistance, and UV shielding properties of the developed composite films. The addition of anthocyanins and 3 wt% Cu-MOFs endowed the polymer matrix with excellent antioxidant (100 % against ABTS and DPPH radicals) and antibacterial (against Gram-positive and Gram-negative foodborne pathogenic bacteria) functions. The fabricated composite films exhibited significant color change at alkaline conditions of pH 7-12 and a marked color change upon exposure to ammonia. The designed indicator films used for shrimp freshness tracking and a visual color change from pink (for fresh shrimp) to green (for spoiled shrimp) was observed during storage at 28 °C for 24 h. The potential applications of the engineered composite films were studied by shrimp packaging, and the quality parameters of packaged samples were monitored during storage. The synergistic effects of adding anthocyanins and MOF nanostructures works for better product freshness preservation and responds well to shrimp spoilage level, introducing novel active and intelligent packaging options for practical smart packaging applications.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
43
|
Berdejo D, García-Gonzalo D, Oulahal N, Denkova-Kostova R, Shopska V, Kostov G, Degraeve P, Pagan R. Minimal Processing Technologies for Production and Preservation of Tailor-Made Foods §. Food Technol Biotechnol 2023; 61:357-377. [PMID: 38022877 PMCID: PMC10666941 DOI: 10.17113/ftb.61.03.23.8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/06/2023] [Indexed: 12/01/2023] Open
Abstract
Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.
Collapse
Affiliation(s)
- Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | | | - Vesela Shopska
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Georgi Kostov
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | - Rafael Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| |
Collapse
|
44
|
Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int 2023; 171:113070. [PMID: 37330831 DOI: 10.1016/j.foodres.2023.113070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Currently, curcumin-based co-delivery systems are receiving widespread attention. However, a systematic summary of the possibility of curcumin-based co-delivery systems used for the food industry from multiple directions based on the functional characteristics of curcumin is lacking. This review details the different forms of curcumin-based co-delivery systems including the single system of nanoparticle, liposome, double emulsion, and multiple systems composed of different hydrocolloids. The structural composition, stability, encapsulation efficiency, and protective effects of these forms are discussed comprehensively. The functional characteristics of curcumin-based co-delivery systems are summarized, involving biological activity (antimicrobial and antioxidant), pH-responsive discoloration, and bioaccessibility/bioavailability. Correspondingly, potential applications for food preservation, freshness detection, and functional foods are introduced. In the future, more novel co-delivery systems for active ingredients and food matrices should be developed. Besides, the synergistic mechanisms between active ingredients, delivery carrier/active ingredient, and external physical condition/active ingredient should be explored. In conclusion, curcumin-based co-delivery systems have the potential to be widely used in the food industry.
Collapse
Affiliation(s)
- Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
45
|
Zhang M, Ahmed A, Xu L. Electrospun Nanofibers for Functional Food Packaging Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5937. [PMID: 37687628 PMCID: PMC10488873 DOI: 10.3390/ma16175937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
With the strengthening of the public awareness of food safety and environmental protection, functional food packaging materials have received widespread attention. Nanofibers are considered as promising packaging materials due to their unique one-dimensional structure (high aspect ratio, large specific surface area) and functional advantages. Electrospinning, as a commonly used simple and efficient method for preparing nanofibers, can obtain nanofibers with different structures such as aligned, core-shell, and porous structures by modifying the devices and adjusting the process parameters. The selection of raw materials and structural design of nanofibers can endow food packaging with different functions, including antimicrobial activity, antioxidation, ultraviolet protection, and response to pH. This paper aims to provide a comprehensive review of the application of electrospun nanofibers in functional food packaging. Advances in electrospinning technology and electrospun materials used for food packaging are introduced. Moreover, the progress and development prospects of electrospun nanofibers in functional food packaging are highlighted. Meanwhile, the application of functional packaging based on nanofibers in different foods is discussed in detail.
Collapse
Affiliation(s)
- Meng Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
| | - Adnan Ahmed
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
46
|
Li C, Liu J, Li W, Liu Z, Yang X, Liang B, Huang Z, Qiu X, Li X, Huang K, Zhang X. Biobased Intelligent Food-Packaging Materials with Sustained-Release Antibacterial and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37966-37975. [PMID: 37503816 DOI: 10.1021/acsami.3c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
It has been widely accepted that sustainable polymers derived from renewable resources are able to replace the short-turnover petroleum-based materials and reduce environmental impact in the future. However, their hydrophilic chemical structures rich with oxygen groups could lead to easy growth of bacteria, which greatly limit their applications in packaging materials. Here, we present an intelligent food-packaging material with sustained-release antibacterial and real-time monitoring ability based on totally biobased contents. In detail, sodium alginate with Artemisia argyi emission oil (encapsulated in gelatin-Arabic gum microcapsules) and citric acid-sourced pH-responsive carbon quantum dots (CQDs) are coated on bamboo cellulose papers. The obtained biobased composite material (almost 100% biocarbon content) with antibacterial ability is able to extend the shelf life of fresh shrimps and can be biodegraded. Moreover, owing to the introduction of CQDs, the composite can rapidly (within 1 s) detect slight pH variations (response pH ∼5, 10-9 mol/L of OH-) through an obvious color change (hue value from 305 to 355°). The developed strategy may open up new opportunities in the design of multifunctional biobased composites for intelligent applications.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wanhe Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenghong Liu
- Guangxi Xinggui Paper Co., Ltd., Laibin 546128, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Kai Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
48
|
Rapper SLD, Viljoen A, van Vuuren S. Optimizing the Antimicrobial Synergism of Melaleuca alternifolia (Tea Tree) Essential Oil Combinations for Application against Respiratory Related Pathogens. PLANTA MEDICA 2023; 89:454-463. [PMID: 36626923 DOI: 10.1055/a-1947-5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial research into the use of Melaleuca alternifolia essential oil has demonstrated broad-spectrum activity; however, much of the research published focuses on identifying the potential of this essential oil individually, rather than in combination for an enhanced antimicrobial effect. This study aimed to determine the antimicrobial activity of four essential oil combinations, all inclusive of M. alternifolia, against nine pathogens associated with the respiratory tract. The minimum inhibitory concentration assay was used to determine the antimicrobial activity of four essential oil combinations, M. alternifolia in combination with Cupressus sempervirens, Origanum majorana, Myrtus communis, and Origanum vulgare essential oils. The interactions between essential oil combinations were analyzed using isobolograms and SynergyFinder 2.0 software to visualize the synergistic potential at varied ratios. The antimicrobial activity of the different combinations of essential oils all demonstrated the ability to produce an enhanced antimicrobial effect compared to the essential oils when investigated independently. The findings of this study determined that isobolograms provide a more in-depth analysis of an essential oil combination interaction; however, the value of that interaction should be further quantified using computational modelling such as SynergyFinder. This study further supports the need for more studies where varied ratios of essential oils are investigated for antimicrobial potential.
Collapse
Affiliation(s)
- Stephanie Leigh-de Rapper
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
49
|
Presenza L, Ferraz Teixeira B, Antunes Galvão J, Maria Ferreira de Souza Vieira T. Technological strategies for the use of plant-derived compounds in the preservation of fish products. Food Chem 2023; 419:136069. [PMID: 37027976 DOI: 10.1016/j.foodchem.2023.136069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
New approaches to reducing synthetic preservatives in the preservation of foods draw the attention of plant-derived bioactive compounds, especially for application in foods highly susceptible to spoilage, such as fish products. The review presents relevant data from procurement, application, and methodological research trends to investigate the potential effects of plant-derived bioactive compounds on shelf life extension in fish products. The systematization of data allowed observation that the different methods of extraction and application of bioactive plant compounds result in different effects, such as the reduction of lipid oxidation, antimicrobial effects, and maintenance of sensory characteristics, benefiting the extension of shelf life. In general, plant-derived bioactive compounds are an alternative for the preservation of fish products; however, approaches to the composition of the compounds can contribute to the optimization and efficiency of the process from a technical point of view and industrial viability.
Collapse
Affiliation(s)
- Leandro Presenza
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| | - Bianca Ferraz Teixeira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Juliana Antunes Galvão
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Thais Maria Ferreira de Souza Vieira
- Department Agri-food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
50
|
Reisi-Vanani V, Hosseini S, Soleiman-Dehkordi E, Sahand Noaien B, Farzan M, Ebani VV, Gholipourmalekabadi M, Lozano K, Lorigooini Z. Engineering of a core-shell polyvinyl alcohol/gelatin fibrous scaffold for dual delivery of Thymus daenensis essential oil and Glycyrrhiza glabra L. extract as an antibacterial and functional wound dressing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|