1
|
Yang T, Lu Z, Song H, Chen Y, Jiang M, Zhan K, Zhao G. Knockout of hexokinase 2 regulates mitochondrial dysfunction and activates the NLRP3 signal pathway in the rumen epithelial cells of dairy cows. Int J Biol Macromol 2024:138831. [PMID: 39701238 DOI: 10.1016/j.ijbiomac.2024.138831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Hexokinase 2 (HK2) plays a vital role in mitochondrial homeostasis; however, the molecular mechanisms underlying its involvement in high-concentrate diet-induced damage in the ruminal epithelium of dairy cows are poorly understood. This study aimed to explore the regulatory role of HK2 in mitochondrial function and responses to inflammation in the rumen of dairy cows fed a high-concentrate diet. Our results showed that, compared with a low-concentrate (LC) diet, feeding a high-concentrate (HC) diet increased oxidative stress and reduced relative antioxidant gene expression levels and enzyme activities in the ruminal epithelium. Furthermore, the expression of genes related to mitochondrial biosynthesis and structure decreased in the HC group, concomitant with nuclear oligomerization domain (NOD)-like receptor 3 (NLRP3) signaling pathway activation, which compromised normal rumen epithelium function. Meanwhile, transcription results showed the same trend in HK2-knockout bovine rumen epithelial cells (HK2KO BRECs) related to wild-type (WT) BRECs. Notably, the knockout of HK2 aggravated mitochondrial dysfunction, resulting in the impairment of mitochondrial morphology and quality, a reduction in mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, increased reactive oxygen species (ROS) generation, and decreased expression of antioxidant genes. These changes led to upregulating genes and proteins in the NLRP3 pathway and activating proinflammatory response. In addition, metabolomic results showed that knockout HK2 altered the glycerophospholipid metabolic pathway. This study provides new strategies for mitigating high-concentrate diet-induced injury in the ruminal epithelium of dairy cows.
Collapse
Affiliation(s)
- Tianyu Yang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China; Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiqi Lu
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Ningxia Dairy Science and Innovation Center of Bright Farming Company Limited, Zhongwei, China
| | - Han Song
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhang Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Song T, Li J, Xia Y, Hou S, Zhang X, Wang Y. 1,25-D3 ameliorates ischemic brain injury by alleviating endoplasmic reticulum stress and ferroptosis: Involvement of vitamin D receptor and p53 signaling. Cell Signal 2024; 122:111331. [PMID: 39094671 DOI: 10.1016/j.cellsig.2024.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Endoplasmic reticulum stress (ERS) and ferroptosis are linked to cerebral ischemia reperfusion injury (CIRI). The neuroprotective properties of 1α, 25-dihydroxyvitamin D3 (VitD3 or 1,25-D3) have been well established; however, the mechanism by which VitD3 treats CIRI through ERS and ferroptosis has not been examined. Hence, we developed middle cerebral artery occlusion/reperfusion (MCAO/R) model in SD rats to ascertain if VitD3 preconditioning mediates ERS and ferroptosis involving of p53 signaling. In this study, we observed that VitD3 can reduce infarction volume and cerebral edema, which leads to the improvement of nerve function. HE, Nissl and Tunel staining showed that VitD3 treatment significantly improved the morphology of neuronal cells and reduced their death. The expression and activation of Vitamin D receptor (VDR), PKR-like ER kinase (PERK), C/EBP-homologous protein (CHOP), p53, nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4) and reactive oxygen species (ROS) in the ischemic penumbral area were detected by real-time qPCR, Western-blotting and Elisa. The results showed that after VitD3 treatment, VDR increased, ERS-related indices (PERK, CHOP) significantly decreased and ferroptosis-related indices (Nrf2, GPX4) increased. As a VDRs antagonist, pyridoxal-5-phosphate (P5P) can partially block the neuroprotective effects of VitD3. Therefore, CIRI can induce ERS and ferroptosis in the ischemic penumbra area and VitD3 may ameliorate nerve damage in CIRI rats by up-regulating VDR, alleviating p53-associated ERS and ferroptosis.
Collapse
Affiliation(s)
- Ting Song
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jian Li
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yulei Xia
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Shuai Hou
- Emergency Department, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaojun Zhang
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
3
|
Zarepoor M, Nazari A, Pourmasumi S. Impact of vitamin D supplementation as COVID-19 vaccine adjuvant on sperm parameters and sex hormones in men with idiopathic infertility: Two separate pre-post studies. Clin Exp Reprod Med 2024; 51:125-134. [PMID: 38263587 PMCID: PMC11140254 DOI: 10.5653/cerm.2023.06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Vitamin D deficiency is a major problem for human health worldwide. The mechanisms of vitamin D in the male reproductive system are unknown. After coronavirus disease 2019 (COVID-19) vaccines were developed, doubts were raised about their possible effects on male fertility. Based on vitamin D's function in the immune system, its potential role as an adjuvant for COVID-19 vaccines is intriguing. The aims of this study were to assess the effects of vitamin D first on sperm parameters and sex hormones, and then as an immune adjuvant on sperm parameters and sex hormones after study participants had received their second doses of COVID-19 vaccines. METHODS Phase 1 (before the COVID-19 pandemic) included 72 men with idiopathic infertility, and phase 2 had 64 participants who received two doses of COVID-19 vaccines. Both groups were instructed to take 50,000 IU of vitamin D twice monthly for 3 months. Sperm parameters and sex hormones were assessed pre- and post-supplementation. RESULTS Regular vitamin D intake for 3 months significantly increased the participants' vitamin D levels (p=0.0001). Both phases showed a positive correlation between vitamin D intake and sperm parameters. Vaccination had no negative effects on sperm parameters and sex hormones. Vitamin D was associated with follicle-stimulating hormone (p=0.02) and testosterone (p=0.0001) in phase 2 after treatment. CONCLUSION Our results support vitamin D supplementation as an immune adjunct to COVID-19 vaccination for improving sperm parameters and hormone levels. COVID-19 vaccination is not harmful for male fertility potential, and vitamin D is an effective factor for male fertility.
Collapse
Affiliation(s)
- Mahtab Zarepoor
- Clinical Research Development Unit (CRDU), Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Surgery, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Soheila Pourmasumi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Hasan HM, Alkass SY, Persike DS. Post-traumatic Stress Disorder: The Influence of the Environmental Context and Analysis of Oxidative Stress and Inflammatory and Glycemic Markers in Women Living in Kurdistan Regional Government-Iraq. Cureus 2024; 16:e56661. [PMID: 38646205 PMCID: PMC11032698 DOI: 10.7759/cureus.56661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Internally displaced persons (IDP) camps are still home to a large number of female survivors of the Yazidi genocide carried out in Iraq in 2014 by the Islamic organization known as the Islamic State of Iraq and Syria (ISIS). Many of these women suffer from a persistent form of post-traumatic stress disorder (PTSD), which can last for many years. On the other hand, little is known about the intricate etiology of PTSD. Objectives In this observational cross-sectional study, the biochemical parameters, including inflammatory and oxidative stress (OXS) markers, were evaluated in two groups: the case group (women with newly diagnosed PTSD) and the control group (apparently healthy women). Furthermore, how the environment impacts the biochemical and OXS parameters of people not diagnosed with PTSD but living in IDP camps was also analyzed. Materials and methods The PTSD group (n=55, age=30.0 years) was made up of women survivors of genocide-related events living in IDP camps in the Kurdistan region of Iraq. The studied parameters in the PTSD group have been compared to two healthy control groups: (1) internal control group (n=55, age=28.1 years): healthy women living inside the IDP camps; and (2) external control group (n=55, age=28.3 years): healthy women living outside the IDP camps. The diagnosis of PTSD was conducted using a validated Kurdish version of the PTSD Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (PCL-5) scale. Blood samples were collected to determine the level of glycated hemoglobin (HbA1c) and the concentrations of fasting serum glucose (FSG), C-reactive protein (CRP), ceruloplasmin (CP), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH), malondialdehyde (MDA), protein carbonyls (PC), and catalase (CAT) activity. Results Women with PTSD presented increased values of FSG (4.41%, p<0.05), HbA1c (4.74%, p<0.05), and CRP (114.29%, p<0.05), as well as increased levels of 8-OHdG (185.97%, p<0.001), CP (27.08%, p<0.001), MDA (141.97%, p<0.001), and PC (63.01%, p<0.001), besides increased CAT activity (121.5%, p<0.001), when compared with the control groups. A significant reduction of GSH (-20.33%, p<0.05) was observed in PTSD patients as compared to the external control group. In relation to the internal control group, women diagnosed with PTSD presented significantly increased levels of FSG (3.88%, p<0.05), HbA1c (2.83%, p<0.05), CRP (77.97%, p<0.05), and PC (41.3%, p<0.05), as well as increased levels of 8-OHdG (118.84%, p<0.001), CP (22.72%, p<0.001), MDA (90.67%, p<0.001), and CAT activity (55.31%, p<0.001). Healthy individuals residing in IDP camps, compared with external healthy control, presented significantly elevated levels of 8-OHdG (30.68%, p<0.001), MDA (26.91%, p<0.001), PC (15.37%, p<0.001), and CAT activity (42.62%, p<0.001). Conclusion Our findings indicate that PTSD significantly influences glycemic, inflammatory, oxidant, and antioxidant parameters, as evidenced by increased levels of FSG, HbA1C, CRP, PC, MDA, 8-OHdG, and CP, as well as increased CAT activity and a reduced GSH concentration in the PTSD group in comparison to the external control group. Additionally, our results suggest that the environmental context in IDP camps by itself can potentially affect oxidant and antioxidant parameters, as evidenced by the increased concentrations of 8-OHdG, MDA, and PC and increased CAT activity found in individuals not diagnosed with PTSD but living inside the camps.
Collapse
Affiliation(s)
- Husni M Hasan
- Department of Medicinal Chemistry, Department of Chemistry, College of Pharmacy, College of Science, University of Duhok, Duhok, IRQ
| | - Suad Y Alkass
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| | - Daniele S Persike
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| |
Collapse
|
5
|
Xiao F, Wei T, Xiao H, He W, Wei Q. Decreased serum 4-Hydroxynonenal level as a biomarker for the progression of steroid-induced osteonecrosis of the femoral head. J Orthop Surg Res 2023; 18:732. [PMID: 37752547 PMCID: PMC10523670 DOI: 10.1186/s13018-023-04153-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is becoming a prevalent global health problem. 4-Hydroxynonenal (4-HNE) serves as a common marker of oxidative stress. This study aims to study the potential role of 4-HNE in the progression of steroid-induced osteonecrosis of the femoral head (SIONFH). METHOD Between April 2021 and December 2021, 64 subjects were enrolled in this cross-sectional case‒control study. Thirty-six patients were grouped based on the Association Research Circulation Osseous (ARCO) classification, and 28 healthy volunteers without hip pain or any lesions shown in anteroposterior and frog-leg lateral pelvic radiographs served as the normal control group. Bone hematoxylin-eosin (HE) staining, microcomputed tomography (micro-CT), immunohistochemistry, and levels of plasma 4-HNE were evaluated. RESULTS The 4-HNE level was higher in the SIONFH group than in the normal control group (P < 0.001), and 4-HNE levels were significantly higher in SIONFH patients in the early stage of disease (stage II). The 4-HNE level was negatively correlated with ARCO stage (r = - 0.6875, P < 0.001). Immunohistochemistry revealed the presence of 4-HNE in the trabecular bone, osteocytes, and bone marrow. CONCLUSION The 4-HNE level is negatively associated with ARCO stages. Lower levels of 4-HNE may serve as a critical biomarker for the progression of SIONFH.
Collapse
Affiliation(s)
- Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengfei Wei
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Xiao
- Department of Orthopedics, Bijie Hospital of Chinese Medicine, Bijie, Guizhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Thiol disulfide homeostasis in psychiatric disorders: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110719. [PMID: 36634809 DOI: 10.1016/j.pnpbp.2023.110719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Thiol-disulfide couple maintains an intracellular redox status. Dynamic thiol-disulfide homeostasis acts crucial parts in metabolic processes involving signal mechanisms, inflammation, antioxidant defense. Thiol-disulfide homeostasis have been implicated in numerous diseases. In this comprehensive review we identified the studies that examined the thiol-disulfide homeostasis in psychiatric disorders. Most cases demonstrated alterations in thiol-disulfide homeostasis and in most of them the thiol-disulfide balance tended to change direction to the disulfide side, that is, to the oxidative side. Currently, the fact that N-acetylcysteine, a thiol-containing compound, is of great interest as a new treatment approach in psychiatric disorders and the role of glutathione, the most abundant thiol, in the brain highlights the importance of evaluating the thiol-disulfide balance in psychiatric disorders.
Collapse
|
7
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Relationship between 4-Hydroxynonenal (4-HNE) as Systemic Biomarker of Lipid Peroxidation and Metabolomic Profiling of Patients with Prostate Cancer. Biomolecules 2023; 13:biom13010145. [PMID: 36671530 PMCID: PMC9855859 DOI: 10.3390/biom13010145] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.
Collapse
|
9
|
Konjevod M, Sáiz J, Nikolac Perkovic M, Nedic Erjavec G, Tudor L, Uzun S, Kozumplik O, Barbas C, Zarkovic N, Pivac N, Strac DS. Plasma lipidomics in subjects with combat posttraumatic stress disorder. Free Radic Biol Med 2022; 189:169-177. [PMID: 35918015 DOI: 10.1016/j.freeradbiomed.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) is complex neuropsychiatric disorder triggered by a traumatic event and characterized by the symptoms that represent large burden to patients, as well as to society. Lipidomic approach can be applied as a useful tool for discovery of novel diagnostic, prognostic and therapeutic lipid biomarkers of various disorders, whose etiology is complex and still unknown, including PTSD. Since changes in the levels of lipid metabolites might indicate impairments in various metabolic pathways and cellular processes, the aim of this lipidomic study was to determine altered levels of lipid compounds in PTSD. The study enrolled 235 male patients with combat PTSD and 241 healthy male control subjects. Targeted lipidomic analysis of plasma samples was conducted using reverse-phase liquid chromatography coupled with mass spectrometry. Lipids that have been analyzed belong to the group of ceramides, cholesterol esters, diacylglycerols, lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylethanolamines, sphingomyelins and triglycerides. The levels of fifteen lipid compounds were found to be significantly different between PTSD patients and healthy control subjects, including four phosphatidylcholines, two phosphatidylethanolamines, five sphingomyelins, two cholesterol esters and two ceramides. The lipid metabolites whose levels significantly differed between patients with PTSD and control subjects are associated with various biological processes, including impairments of membrane integrity and function, mitochondrial dysfunction, inflammation and oxidative stress. As these processes might be associated with development and progression of PTSD, altered lipid compounds represent potential biomarkers that could facilitate the diagnosis of PTSD, prediction of the disease, as well as identification of novel treatment approaches in PTSD.
Collapse
Affiliation(s)
- Marcela Konjevod
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia; Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanizacion Monteprincipe, 28660, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanizacion Monteprincipe, 28660, Boadilla del Monte, Spain.
| | - Matea Nikolac Perkovic
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia
| | - Lucija Tudor
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Bolnicka Cesta 32, 10000, Zagreb, Croatia; School of Medicine, University of Zagreb, Salata 2, 10 000, Zagreb, Croatia; Faculty of Education and Rehabilitation Studies, University of Zagreb, University Campus Borongaj, Borongajska Cesta 83f, 10000, Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Bolnicka Cesta 32, 10000, Zagreb, Croatia; Faculty of Education and Rehabilitation Studies, University of Zagreb, University Campus Borongaj, Borongajska Cesta 83f, 10000, Zagreb, Croatia
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanizacion Monteprincipe, 28660, Boadilla del Monte, Spain
| | - Neven Zarkovic
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia
| | - Nela Pivac
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia.
| | - Dubravka Svob Strac
- Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
11
|
Chemistry and Biochemistry Aspects of the 4-Hydroxy-2,3-trans-nonenal. Biomolecules 2022; 12:biom12010145. [PMID: 35053293 PMCID: PMC8773729 DOI: 10.3390/biom12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
4-hydroxy-2,3-trans-nonenal (C9H16O2), also known as 4-hydroxy-2E-nonenal (C9H16O2; HNE) is an α,β-unsaturated hydroxyalkenal. HNE is a major aldehyde, formed in the peroxidation process of ω-6 polyunsaturated fatty acids (ω-6 PUFAs), such as linoleic and arachidonic acid. HNE is not only harmful but also beneficial. In the 1980s, the HNE was regarded as a “toxic product of lipid peroxidation” and the “second toxic messenger of free radicals”. However, already at the beginning of the 21st century, HNE was perceived as a reliable marker of oxidative stress, growth modulating factor and signaling molecule. Many literature data also indicate that an elevated level of HNE in blood plasma and cells of the animal and human body is observed in the course of many diseases, including cancer. On the other hand, it is currently proven that cancer cells divert to apoptosis if they are exposed to supraphysiological levels of HNE in the cancer microenvironment. In this review, we briefly summarize the current knowledge about the biological properties of HNE.
Collapse
|
12
|
Cao J, Zhou Y, Su MM, Chen WH. Correlation between PTSD and sleep quality in community-dwelling elderly adults in Hunan province of China. Front Psychiatry 2022; 13:978660. [PMID: 36325533 PMCID: PMC9618948 DOI: 10.3389/fpsyt.2022.978660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To understand the occurrence of post-traumatic stress disorder (PTSD) and the current status of sleep quality among community-dwelling elderly adults in Hunan Province of China, to explore the correlation between the two, and to analyze the trend of sleep disorders in PTSD elderly adults. METHODS A simple random sample containing 1,173 community-dwelling elderly adults in Hunan Province was established between March and May 2022, and an on-site face-to-face survey was administered using the PTSD Checklist-Civilian Version (PCL-C) with good reliability and validity, the Pittsburgh Sleep Quality Index (PSQI) scale, and a self-designed general condition questionnaire. RESULTS The incidence of PTSD in the 1,173 participants was 14.3% (168/1,173). The total incidence of sleep disorders was 40.9% (480/1,173); more specifically, the incidence of sleep disorders in participants with no PTSD symptom, in participants with mild-to-moderate PTSD symptoms, and in participants with severe PTSD symptoms was 36.3, 69.8, and 66.7%, respectively. The Spearman's rank correlation analysis showed that the total PTSD score and the scores of each dimension (i.e., re-experiencing symptom cluster, avoidance symptom cluster and hypervigilance symptom cluster) were positively correlated with the total PSQI score and its dimension scores (i.e., sleep quality, time to fall asleep, sleep duration, sleep efficiency, sleep disturbance, hypnotic medication, and daytime function) (P < 0.05). The correlation coefficients ranged from 0.013 to 0.495. For all PSQI dimensions, the differences across participants with different degrees of PTSD were statistically significant (P < 0.05). CONCLUSIONS The overall status of PTSD and sleep quality in community-dwelling elderly adults in Hunan Province was not optimistic. The elderly with PTSD were more prone to sleep disorders, and the more severe the symptoms of PTSD, the poorer the sleep quality was. However, differences were observed in the scores of each dimension of sleep across participants with different degrees of PTSD. Regardless of the degree of PTSD symptoms, the sleep quality of the elderly is severely affected, and the occurrence rate is not unlimited.
Collapse
Affiliation(s)
- Jiri Cao
- Xiangya Medical School of Central South University, Changsha, China
| | - Yang Zhou
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China.,Department of Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Man-Man Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China.,Department of Operating Room, Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Hui Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China.,Department of Operating Room, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Editorial on Anticancer Antioxidants. Antioxidants (Basel) 2021; 10:antiox10111782. [PMID: 34829653 PMCID: PMC8614914 DOI: 10.3390/antiox10111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
|