1
|
Tan J, Liu F, He X, Gao L, Wu L, Shi X, Li J, Chen Y, Liu Y, Sun Y, Zhang Z, He Z, Jiang Q, Sun J. Probing Different Lengths of the Tertiary Amine Head Group on Triglyceride-Mimetic Ionizable Lipid-Mediated siRNA Delivery. J Med Chem 2024; 67:21317-21328. [PMID: 39589900 DOI: 10.1021/acs.jmedchem.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Lipid nanoparticles (LNPs) have been utilized to deliver small interfering RNA (siRNA) to treat acute liver injury. However, LNPs exhibit suboptimal lysosomal escape capabilities and biodegradability. To address these limitations, we have designed triglyceride-mimetic ionizable lipids by conjugating N,N-dimethyl tertiary amine head groups to the sn-2 position of triglyceride (TG) through ester bonds. These ionizable lipids were abbreviated as 2C-TG, 3C-TG, and 4C-TG, with N,N-dimethyl tertiary amine head groups located in the β-, γ-, and δ-positions of the ester linkage bond, respectively. The uniform-size LNPs were prepared by using the ethanol dilution method. Notably, the position of the tertiary amine head group within the carbon chain of triglyceride-mimetic ionizable lipids is found to significantly influence critical parameters, including the encapsulation rate, pKa, cellular uptake, lysosomal escape, lipase release, and gene silencing efficiency. Our findings hold promise for improving the efficacy and safety of LNP-based siRNA therapeutics.
Collapse
Affiliation(s)
- Jinyan Tan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxue He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Gao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linsheng Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou 571199, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan 750004, China
| | - Yongbing Sun
- Division of Pharmaceutics, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 688 Meiling Avenue, Nanchang 330006, China
| | - Zhixiao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou 571199, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Salabi F, Jafari H, Mahdavinia M, Azadnasab R, Shariati S, Baghal ML, Tebianian M, Baradaran M. First transcriptome analysis of the venom glands of the scorpion Hottentotta zagrosensis (Scorpions: Buthidae) with focus on venom lipolysis activating peptides. Front Pharmacol 2024; 15:1464648. [PMID: 39605918 PMCID: PMC11598519 DOI: 10.3389/fphar.2024.1464648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Scorpion venom is a rich source of biological active peptides and proteins. Transcriptome analysis of the venom gland provides detailed insights about peptide and protein venom components. Following the transcriptome analysis of different species in our previous studies, our research team has focused on the Hottentotta zagrosensis as one of the endemic scorpions of Iran to obtain information about its venom proteins, in order to develop biological research focusing on medicinal applications of scorpion venom components and antivenom production. To gain insights into the protein composition of this scorpion venom, we performed transcriptomic analysis. Methods Transcriptomic analysis of the venom gland of H. zagrosensis, prepared from the Khuzestan province, was performed through Illumina paired-end sequencing (RNA-Seq), Trinity de novo assembly, CD-Hit-EST clustering, and annotation of identified primary structures using bioinformatics approaches. Results Transcriptome analysis showed the presence of 96.4% of complete arthropod BUSCOs, indicating a high-quality assembly. From total of 45,795,108 paired-end 150 bp trimmed reads, the clustering step resulted in the generation of 101,180 de novo assembled transcripts with N50 size of 1,149 bp. 96,071 Unigenes and 131,235 transcripts had a significant similarity (E-value 1e-3) with known proteins from UniProt, Swissprot, Animal toxin annotation project, and the Pfam database. The results were validated using InterProScan. These mainly correspond to ion channel inhibitors, metalloproteinases, neurotoxins, protease inhibitors, protease activators, Cysteine-rich secretory proteins, phospholipase A enzymes, antimicrobial peptides, growth factors, lipolysis-activating peptides, hyaluronidase, and, phospholipase D. Our venom gland transcriptomic approach identified several biologically active peptides including five LVP1-alpha and LVP1-beta isoforms, which we named HzLVP1_alpha1, HzLVP1_alpha2, HzLVP1_alpha3, HzLVP1_beta1, and HzLVP1_beta and have extremely characterized here. Discussion Except for HzLVP1_beta1, all other identified LVP1s are predicted to be stable proteins (instability index <40). Moreover, all isoform of LVP1s alpha and beta subunits are thermostable, with the most stability for HzLVP1_alpha2 (aliphatic index = 71.38). HzLVP1_alpha2 has also the highest half-life. Three-dimensional structure of all identified proteins compacts with three disulfide bridges. The extra cysteine residue may allow the proteins to form a hetero- or homodimer. LVP1 subunits of H. zagrosensis potentially interact with adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), two key enzymes in regulation of lipolysis in adipocytes, suggesting pharmacological properties of these identified proteins.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Lari Baghal
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Majid Tebianian
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Wang X, Zhang C, Li R, Qiu Y, Ma Y, Wang S, Li Y, Guo S, Li C. Down-regulation of miR-29 improves lipid metabolism in fatty liver of dairy cows. Anim Biotechnol 2024; 35:2396414. [PMID: 39205627 DOI: 10.1080/10495398.2024.2396414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In this study, we conducted a thorough investigation into the mechanisms by which miR-29 influences lipid metabolism. Thirty-two cows were selected and categorized into distinct groups based on their liver triglyceride (TG) content: healthy, mild fatty liver, and moderate fatty liver groups. Dairy cows with moderate fatty liver showed higher levels of hepatic lipid accumulation, MDA content and serum AST, ALT and ALP contents and lower hepatic catalase CAT and SOD activities. Subsequently, hepatocytes isolated from healthy calves were exposed to sodium oleate (SO) in the presence or absence of pre-incubation with miR-29 inhibitor or inhibitor NC. Pre-transfection with miR-29 inhibitor resulted in reduced hepatocyte lipid accumulation and MDA levels, as well as decreased levels of AST, ALT, and ALP in the supernatant. In the miR-29 inhibitor + SO group, there was an increase in the expression of SREBP-1, FAS, SCD1, and Sirt1. Meanwhile, the expression of PPARα, CPT1, CPT2, PGC-1α, NRF-1, UCP2, and miR-29 were observed to be decreased. In comparison to the miR-29 inhibitor + SO group, some of the measured indicators showed partial reversal in the miR-29 inhibitor + siSirt1 + SO group. Collectively, these findings provide evidence that miR-29 may play a crucial role in the pathogenesis of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Rishun Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Innovative Research Team of Livestock Intelligent Breeding and Equipment, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun Jilin, China
| |
Collapse
|
4
|
Nah J, Yun N, Yoo H, Park S, Pae M. Time-Restricted Feeding Attenuates Adipose Tissue Inflammation and Fibrosis in Mice Under Chronic Light Exposure. Int J Mol Sci 2024; 25:11524. [PMID: 39519077 PMCID: PMC11546375 DOI: 10.3390/ijms252111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Time-restricted feeding (TRF) has emerged as a promising dietary approach for improving metabolic parameters associated with obesity. However, it remains largely unclear whether TRF offers benefits for obesity related to exposure to light at night. This study examined whether lean and obese mice under chronic light exposure could benefit from TRF intervention. Six-week-old C57BL/6 male mice were fed either a low-fat diet or a high-fat diet under a 12 h light/12 h dark cycle for 6 weeks. They were then divided into three subgroups: control light, chronic 24 h light, and chronic light with a daily 10 h TRF. Chronic light exposure led to increased weight gain and higher expression of inflammatory and fibrotic markers in the adipose tissue of both lean and obese mice. It also increased hepatic triglyceride content in mice, regardless of their weight status. TRF protected both lean and obese mice from weight gain, normalized inflammatory and fibrotic gene expression, and reduced adipose tissue collagen and liver triglyceride accumulation caused by light exposure alone or in combination with obesity. These results suggest that TRF could have clinical implications for preventing obesity associated with night shift work, regardless of current weight status.
Collapse
Affiliation(s)
| | | | | | | | - Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea; (J.N.); (N.Y.); (H.Y.); (S.P.)
| |
Collapse
|
5
|
Li J, Lu Y, Chen H, Zheng P, Zhang X, Zhang Z, Ding L, Wang D, Xu C, Ai X, Zhang Q, Xian J, Hong M. Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle ( Mauremys sinensis). Animals (Basel) 2024; 14:2511. [PMID: 39272296 PMCID: PMC11394261 DOI: 10.3390/ani14172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dietary lipids provide energy for animals and can also be converted into other nutrients (such as non-essential amino acids), which play a role in saving protein. The Chinese stripe-necked turtle is a protected and endangered species that has been bred in captivity; however, basic data on lipid requirements remain unavailable. In this study, 360 Mauremys sinensis (body weight of 65.32 ± 0.15 g) were randomly divided into six groups with three replicates per group; the turtles were fed experimental diets supplemented with various levels of fish oil (i.e., 1% (control group, CG), 3.5% (HF-1), 6% (HF-2), 8.5% (HF-3), 11% (HF-4), and 13.5% (HF-5)) for 10 weeks. The results showed that compared with CG, increasing the fish oil level promoted the growth performance of turtles, and the HF-3 group achieved the best effect. The HF-4 group showed the highest increases in the hepatosomatic index and viscerosomatic index. In addition, increased lipid levels also increased the crude lipid content and reduced the crude protein content in muscle tissue. Oil red O staining showed that the liver lipid content increased with the level of supplemented fish oil, which is consistent with the results of the hepatosomatic index. Compared with CG, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased significantly in both the liver and serum when fish oil levels exceeded 8.5% (p < 0.05), while high-density lipoprotein cholesterol decreased significantly. Aspartate transaminase and cerealthirdtransaminase levels in serum increased significantly when fish oil levels exceeded 8.5% (p < 0.05). Moreover, the activities of antioxidant enzymes (GSH-Px, SOD, T-AOC, and CAT) and MDA showed similar results, indicating that high fish oil levels (8.5-13.5%) caused liver tissue damage in M. sinensis. Increased fish oil levels significantly upregulated the expression levels of cytokines (IFN-γ, TNF-α, TGF-β1, IL-10, and IL-12) (p < 0.05), downregulated the expression levels of antioxidant enzyme-related genes (cat, mn-sod, and gsh-px), and increased apoptosis of liver cells. Supplementation of the diet with 3.5-6% fish oil improved the growth performance of M. sinensis, and the turtles maintained a beneficial immune status. The results provide a scientific basis for optimizing the commercial feed formula of M. sinensis.
Collapse
Affiliation(s)
- Juntao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaopeng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiqin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiuxia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zelong Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Dongmei Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chi Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoqi Ai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Qiongyu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jianan Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Chen DQ, Que ZQ, Xu WB, Xiao KY, Sun NK, Song HY, Feng JY, Lin GX, Rui G. Nucleotide polymorphism-based study utilizes human plasma liposomes to discover potential therapeutic targets for intervertebral disc disease. Front Endocrinol (Lausanne) 2024; 15:1403523. [PMID: 39211445 PMCID: PMC11357925 DOI: 10.3389/fendo.2024.1403523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background While intervertebral disc degeneration (IVDD) is crucial in numerous spinally related illnesses and is common among the elderly, the complete understanding of its pathogenic mechanisms is still an area of ongoing study. In recent years, it has revealed that liposomes are crucial in the initiation and progression of IVDD. However, their intrinsic mediators and related mechanisms remain unclear. With the development of genomics, an increasing amount of data points to the contribution of genetics in the etiology of disease. Accordingly, this study explored the causality between liposomes and IVDD by Mendelian randomization (MR) analysis and deeply investigated the intermediary roles of undetected metabolites. Methods According to MR analysis, 179 liposomes and 1400 metabolites were evaluated for their causal association with IVDD. Single nucleotide polymorphisms (SNPs) are strongly associated with the concentrations of liposomes and metabolites. Consequently, they were employed as instrumental variables (IVs) to deduce if they constituted risk elements or protective elements for IVDD. Furthermore, mediation analysis was conducted to pinpoint possible metabolic mediators that link liposomes to IVDD. The inverse variance weighting (IVW) was the main analytical technique. Various confidence tests in the causality estimates were performed, including consistency, heterogeneity, pleiotropy, and sensitivity analyses. Inverse MR analysis was also utilized to estimate potential reverse causality. Results MR analysis identified 13 liposomes and 79 metabolites markedly relevant to IVDD. Moreover, the mediation analysis was carried out by choosing the liposome, specifically the triacylglycerol (48:2) levels, which were found to be most notably associated with an increased risk of IVDD. In all, three metabolite-associated mediators were identified (3-methylcytidine levels, inosine 5'-monophosphate (IMP) to phosphate ratio, and adenosine 5'-diphosphate (ADP) to glycine ratio). Conclusion The analysis's findings suggested possible causal connections between liposomes, metabolites, and IVDD, which could act as both forecast and prognosis clinical indicators, thereby aiding in the exploration of the pathogenesis behind IVDD.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ke-Yi Xiao
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Nai-Kun Sun
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hong-Yu Song
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
8
|
Nambo M, Nishiwaki-Ohkawa T, Ito A, Ariki ZT, Ito Y, Kato Y, Yar M, Yim JCH, Kim E, Sharkey E, Kano K, Mishiro-Sato E, Okimura K, Maruyama M, Ota W, Furukawa Y, Nakayama T, Kobayashi M, Horio F, Sato A, Crudden CM, Yoshimura T. Synthesis and preclinical testing of a selective beta-subtype agonist of thyroid hormone receptor ZTA-261. COMMUNICATIONS MEDICINE 2024; 4:152. [PMID: 39107484 PMCID: PMC11303563 DOI: 10.1038/s43856-024-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Thyroid hormones (TH) regulate the basal metabolic rate through their receptors THRα and THRβ. TH activates lipid metabolism via THRβ, however, an excess amount of TH can lead to tachycardia, bone loss, and muscle wasting through THRα. In recent years, TH analogs that selectively bind to THRβ have gained attention as new agents for treating dyslipidemia and obesity, which continue to pose major challenges to public health worldwide. METHODS We developed a TH analog, ZTA-261, by modifying the existing THRβ-selective agonists GC-1 and GC-24. To determine the THRβ-selectivity of ZTA-261, an in vitro radiolabeled TH displacement assay was conducted. ZTA-261 was intraperitoneally injected into a mouse model of high-fat diet-induced obesity, and its effectiveness in reducing body weight and visceral fat, and improving lipid metabolism was assessed. In addition, its toxicity in the liver, heart, and bone was evaluated. RESULTS ZTA-261 is more selective towards THRβ than GC-1. Although ZTA-261 is less effective in reducing body weight and visceral fat than GC-1, it is as effective as GC-1 in reducing the levels of serum and liver lipids. These effects are mediated by the same pathway as that of T3, a natural TH, as evidenced by similar changes in the expression of TH-induced and lipid metabolism-related genes. The bone, cardiac, and hepatotoxicity of ZTA-261 are significantly lower than those of GC-1. CONCLUSIONS ZTA-261, a highly selective and less toxic THRβ agonist, has the potential to be used as a drug for treating diseases related to lipid metabolism.
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Taeko Nishiwaki-Ohkawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Akihiro Ito
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Zachary T Ariki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuka Ito
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuuki Kato
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Muhammad Yar
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS, University Islamabad Lahore Campus, Lahore, 54000, Pakistan
| | - Jacky C-H Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emily Kim
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Elizabeth Sharkey
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kosuke Okimura
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Michiyo Maruyama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Wataru Ota
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuko Furukawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Misato Kobayashi
- Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, 470-0196, Japan
| | - Fumihiko Horio
- Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Department of Life Studies and Environmental Science, Nagoya Women's University, Nagoya, 467-8610, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, 464-8601, Japan.
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada.
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
9
|
Yang X, Zhang J, Li Y, Hu H, Li X, Ma T, Zhang B. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117918. [PMID: 38382654 DOI: 10.1016/j.jep.2024.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.
Collapse
Affiliation(s)
- Xu Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junqi Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huiting Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Du H, Han Y, Ma G, Tan C, Hu Q, Xiao H. Dietary intake of whole king oyster mushroom (Pleurotus eryngii) attenuated obesity via ameliorating lipid metabolism and alleviating gut microbiota dysbiosis. Food Res Int 2024; 184:114228. [PMID: 38609215 DOI: 10.1016/j.foodres.2024.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
There is a growing interest in employing whole food-based strategies to prevent chronic diseases, owing to the potential synergistic interactions among various bioactive components found within whole foods. The current research aimed to determine inhibitory effects of the whole edible mushroom Pleurotus eryngii (WPE) on high-fat diet (HFD)-induced obesity in mice. Our results showed that dietary intake of WPE significantly inhibited the abnormal gain of body weight and adipose tissue weight, improved glucose tolerance, and ameliorated the serum biochemical parameters in HFD-fed mice. The histological analysis illustrated that the severity of non-alcoholic fatty liver induced by HFD was significantly reduced by WPE. Oral intake of WPE profoundly modulated the mRNA levels of hepatic genes involved in lipid metabolism and also increased the level of short-chain fatty acids in the mouse cecum. Moreover, WPE alleviated the HFD-induced gut microbiota dysbiosis, increasing the abundance of beneficial bacteria (Akkermansia, Lactobacillus, Bifidobacterium, and Sutteralla), and decreasing the harmful ones (rc4-4, Dorea, Coprococcus, Oscillospira, and Ruminococcus). These findings presented new evidence supporting that WPE could be used as a whole food-based strategy to protect against obesity and obesity-driven health problems.
Collapse
Affiliation(s)
- Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Gaoxing Ma
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Guo J, Wang L, Song K, Lu K, Li X, Zhang C. Physiological Response of Spotted Seabass ( Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota. Antioxidants (Basel) 2023; 12:2128. [PMID: 38136247 PMCID: PMC10740591 DOI: 10.3390/antiox12122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
A 10-week growth experiment was conducted to assess the physiological response of spotted seabass (Lateolabrax maculatus) raised at moderate (27 °C) and high temperatures (33 °C) to different dietary available phosphorus (P) levels. Five diets with available P levels of 0.35, 0.55, 0.71, 0.82 and 0.92% were formulated, respectively. A water temperature of 33 °C significantly decreased growth performance and feed utilization, and increased oxidative stress and lipid deposition of spotted seabass compared with 27 °C. A second-order polynomial regression analysis based on weight gain (WG) showed that the available P requirement of spotted seabass raised at 27 °C and 33 °C was 0.72% and 0.78%, respectively. The addition of 0.71-0.82% P to the diet improved the growth performance, feed utilization, and antioxidant capacity of spotted seabass and alleviated the excessive lipid deposition compared with the low-P diet (0.35% P). Moreover, the addition of 0.71-0.92% P to diets increased the diversity of intestinal microbiota and the relative abundance of Lactococcus lactis and decreased the relative abundance of Plesiomonas compared with the low-P diet. Thus, dietary supplementation with 0.71-0.82% P improved the growth performance, antioxidant capacity and microbial composition of spotted seabass, and alleviated the disturbance of lipid metabolism caused by high temperature or low-P diet.
Collapse
Affiliation(s)
- Jiarong Guo
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (J.G.); (K.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
12
|
Huang M, Zhang Y, Park J, Chowdhury K, Xu J, Lu A, Wang L, Zhang W, Ekser B, Yu L, Dong XC. ATG14 plays a critical role in hepatic lipid droplet homeostasis. Metabolism 2023; 148:155693. [PMID: 37741434 PMCID: PMC10591826 DOI: 10.1016/j.metabol.2023.155693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND & AIMS Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.
Collapse
Affiliation(s)
- Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jimin Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiazhi Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex Lu
- Park Tudor School, Indianapolis, IN, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA..
| |
Collapse
|
13
|
Chen Y, Jiang H, Zhan Z, Lu J, Gu T, Yu P, Liang W, Zhang X, Zhong S, Tang L. Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner. J Pharm Anal 2023; 13:1281-1295. [PMID: 38174118 PMCID: PMC10759262 DOI: 10.1016/j.jpha.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatosteatosis is characterized by abnormal accumulation of triglycerides (TG), leading to prolonged and chronic inflammatory infiltration. To date, there is still a lack of effective and economical therapies for hepatosteatosis. Oridonin (ORI) is a major bioactive component extracted from the traditional Chinese medicinal herb Rabdosia rubescens. In this paper, we showed that ORI exerted significant protective effects against hepatic steatosis, inflammation and fibrosis, which was dependent on LXRα signaling. It is reported that LXRα regulated lipid homeostasis between triglyceride (TG) and phosphatidylethanolamine (PE) by promoting ATGL and EPT1 expression. Therefore, we implemented the lipidomic strategy and luciferase reporter assay to verify that ORI contributed to the homeostasis of lipids via the regulation of the ATGL gene associated with TG hydrolysis and the EPT1 gene related to PE synthesis in a LXRα-dependent manner, and the results showed the TG reduction and PE elevation. In detail, hepatic TG overload and lipotoxicity were reversed after ORI treatment by modulating the ATGL and EPT1 genes, respectively. Taken together, the data provide mechanistic insights to explain the bioactivity of ORI in attenuating TG accumulation and cytotoxicity and introduce exciting opportunities for developing novel natural activators of the LXRα-ATGL/EPT1 axis for pharmacologically treating hepatosteatosis and metabolic disorders.
Collapse
Affiliation(s)
- Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jindi Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shilong Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510515, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
14
|
Wang J, Jing J, Gong Z, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Different Dietary Sources of Selenium Alleviate Hepatic Lipid Metabolism Disorder of Heat-Stressed Broilers by Relieving Endoplasmic Reticulum Stress. Int J Mol Sci 2023; 24:15443. [PMID: 37895123 PMCID: PMC10607182 DOI: 10.3390/ijms242015443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
As global warming continues, the phenomenon of heat stress (HS) in broilers occurs frequently. The alleviating effect of different selenium (Se) sources on HS-induced hepatic lipid metabolism disorders in broilers remains unclear. This study compared the protective effects of four Se sources (sodium selenite; selenium yeast; selenomethionine; nano-Se) on HS-induced hepatic lipid metabolism disorder and the corresponding response of selenotranscriptome in the liver of broilers. The results showed that HS-induced liver injury and hepatic lipid metabolism disorder, which were reflected in the increased activity of serum alanine aminotransferase (ALT), the increased concentration of triacylglycerol (TG) and total cholesterol (TC), the increased activity of acetyl-CoA carboxylase (ACC), diacylglycerol O-acyltransferase (DGAT) and fatty acid synthase (FAS), and the decreased activity of hepatic lipase (HL) in the liver. The hepatic lipid metabolism disorder was accompanied by the increased mRNA expression of lipid synthesis related-genes, the decreased expression of lipidolysis-related genes, and the increased expression of endoplasmic reticulum (ER) stress biomarkers (PERK, IRE1, ATF6, GRP78). The dietary supplementation of four Se sources exhibited similar protective effects. Four Se sources increased liver Se concentration and promoted the expression of selenotranscriptome and several key selenoproteins, enhanced liver antioxidant capacity and alleviated HS-induced ER stress, and thus resisted the hepatic lipid metabolism disorders of broilers exposed to HS. In conclusion, dietary supplementation of four Se sources (0.3 mg/kg) exhibited similar protective effects on HS-induced hepatic lipid metabolism disorders of broilers, and the protective effect is connected to the relieving of ER stress.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Zhengyi Gong
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| |
Collapse
|
15
|
Obermüller B, Singer G, Kienesberger B, Mittl B, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Schweiger M, Pajed L, Till H, Castellani C. Probiotic OMNi-BiOTiC ® 10 AAD Reduces Cyclophosphamide-Induced Inflammation and Adipose Tissue Wasting in Mice. Nutrients 2023; 15:3655. [PMID: 37630845 PMCID: PMC10458463 DOI: 10.3390/nu15163655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.
Collapse
Affiliation(s)
- Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Paediatric Surgery, Clinical Center of Klagenfurt, 9020 Klagenfurt, Austria
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Angela Horvath
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Martina Schweiger
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Laura Pajed
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Anesthesiology and Intensive Care Medicine, Weiz District Hospital, 8160 Weiz, Austria
| |
Collapse
|
16
|
Chen X, Shao S, Wu X, Feng J, Qu W, Gao Q, Sun J, Wan H. LC/MS-based untargeted lipidomics reveals lipid signatures of nonpuerperal mastitis. Lipids Health Dis 2023; 22:122. [PMID: 37553678 PMCID: PMC10408177 DOI: 10.1186/s12944-023-01887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Nonpuerperal mastitis (NPM) is a disease that presents with redness, swelling, heat, and pain during nonlactation and can often be confused with breast cancer. The etiology of NPM remains elusive; however, emerging clinical evidence suggests a potential involvement of lipid metabolism. METHOD Liquid chromatography‒mass spectrometry (LC/MS)-based untargeted lipidomics analysis combined with multivariate statistics was performed to investigate the NPM lipid change in breast tissue. Twenty patients with NPM and 10 controls were enrolled in this study. RESULTS The results revealed significant differences in lipidomics profiles, and a total of 16 subclasses with 14,012 different lipids were identified in positive and negative ion modes. Among these lipids, triglycerides (TGs), phosphatidylethanolamines (PEs) and cardiolipins (CLs) were the top three lipid components between the NPM and control groups. Subsequently, a total of 35 lipids were subjected to screening as potential biomarkers, and the chosen lipid biomarkers exhibited enhanced discriminatory capability between the two groups. Furthermore, pathway analysis elucidated that the aforementioned alterations in lipids were primarily associated with the arachidonic acid metabolic pathway. The correlation between distinct lipid populations and clinical phenotypes was assessed through weighted gene coexpression network analysis (WGCNA). CONCLUSIONS This study demonstrates that untargeted lipidomics assays conducted on breast tissue samples from patients with NPM exhibit noteworthy alterations in lipidomes. The findings of this study highlight the substantial involvement of arachidonic acid metabolism in lipid metabolism within the context of NPM. Consequently, this study offers valuable insights that can contribute to a more comprehensive comprehension of NPM in subsequent investigations. TRIAL REGISTRATION Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (Number: 2019-702-57; Date: July 2019).
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Shijun Shao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Xueqing Wu
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiamei Feng
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Wenchao Qu
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Qingqian Gao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiaye Sun
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China.
| |
Collapse
|
17
|
Fan Y, Lu J, Fan J, Guan S. 1,3-dichloro-2-propanol caused lipid droplets accumulation by suppressing neutral lipases via BMAL1 in hepatocytes. Food Chem Toxicol 2023; 174:113670. [PMID: 36805544 DOI: 10.1016/j.fct.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Circadian rhythm regulates body physiology and metabolism to adapt to the external environment. 1,3-dichloro-2-propanol (1,3-DCP) is a food pollutant formed during food processing. Our study explored whether toxicity of 1,3-DCP was related to circadian rhythm. We discovered that 1,3-DCP caused lipid droplets (LDs) accumulation via suppression of neutral lipases ATGL and HSL in mice liver and HepG2 cells. Meanwhile, 1,3-DCP caused rhythmic disruption of key circadian rhythm molecules BMAL1/CLOCK at protein and mRNA levels in HepG2 cells. Studies have shown that BMAL1 regulates PPARα by binding to the promoter E-box. 1,3-DCP inhibited PPARα expression. A PPARα activator WY-14643 up-regulated ATGL and HSL expression. BMAL1 overexpression up-regulated PPARα, ATGL and HSL expression. WY-14643 or BMAL1 overexpression attenuated 1,3-DCP-caused LDs accumulation in HepG2 cells. The results revealed that 1,3-DCP caused LDs accumulation by neutral lipases suppression via inhibiting key circadian rhythm protein BMAL1, indicating that circadian rhythm can be related to the regulation of LDs accumulation caused by 1,3-DCP.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinghui Fan
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
18
|
Zhao X, Amevor FK, Cui Z, Wan Y, Xue X, Peng C, Li Y. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed Pharmacother 2023; 160:114311. [PMID: 36764133 DOI: 10.1016/j.biopha.2023.114311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/β-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
He Q, Gao L, Zhang F, Yao W, Wu J, Song N, Luo J, Zhang Y. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells. J Anim Sci 2023; 101:skad286. [PMID: 37638641 PMCID: PMC10699848 DOI: 10.1093/jas/skad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Goat milk is enriched in fatty acids which are beneficial to human health. Previous research has revealed that 98% of milk fat is composed of triglycerides. However, the mechanisms regulating milk fat composition remain unclear. Forkhead box protein O1 (FoxO1) is a crucial regulatory factor involved in lipid metabolism across various cell types. Chromatin immunoprecipitation sequencing (ChIP)-seq data) and RNA sequencing (RNA-seq) data revealed that have indicated a close association between FoxO1 was closely related to lipid metabolism during lactation in dairy goats. The objective of this study was to investigate the mechanisms by which FoxO1 regulates lipid metabolism in goat mammary epithelial cells (GMECs). FoxO1 knockdown significantly downregulated the expression of adipose triglyceride lipase (ATGL) and suppressed the activity of the ATGL promoter. Consistently, the number of lipid droplets decreased significantly in FoxO1-overexpressing cells and increased in ATGL-knockdown cells. To further verify the effect of FoxO1 on ATGL promoter activity, cells were transfected with four promoter fragments of different lengths. We found that the core region of the ATGL promoter was located between -882 bp and -524 bp, encompassing two FoxO1 binding sites (FKH1 and FKH2). Mutations in the FoxO1 binding sites significantly downregulated ATGL promoter activity in GMECs. Luciferase reporter assays demonstrated that FoxO1 overexpression markedly enhanced ATGL promoter activity. Furthermore, site-directed mutation confirmed that FKH1 and FKH2 sites were simultaneously mutated significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activities simultaneous mutation of FKH1 and FKH2 sites significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activity. ChIP assays showed that FoxO1 directly binds to the FKH2 element located in the ATGL promoter in vivo. Finally, immunofluorescence staining revealed that insulin promotes the translocation of FoxO1 from the nucleus to the cytoplasm, thereby attenuating the FoxO1-induced activation of the ATGL promoter. Collectively, these findings uncover a novel pathway where by FoxO1 may regulate lipid metabolism in GMECs specifically by modulating the transcriptional activity of ATGL.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ning Song
- College of Animal Science and Technology, Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
20
|
Polygenic Risk of Hypertriglyceridemia Is Modified by BMI. Int J Mol Sci 2022; 23:ijms23179837. [PMID: 36077235 PMCID: PMC9456481 DOI: 10.3390/ijms23179837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Genetic risk scores (GRSs) have partially improved the understanding of the etiology of moderate hypertriglyceridemia (HTG), which until recently was mainly assessed by secondary predisposing causes. The main objective of this study was to assess whether this variability is due to the interaction between clinical variables and GRS. Methods: We analyzed 276 patients with suspected polygenic HTG. An unweighted GRS was developed with the following variants: c.724C > G (ZPR1 gene), c.56C > G (APOA5 gene), c.1337T > C (GCKR gene), g.19986711A > G (LPL gene), c.107 + 1647T > C (BAZ1B gene) and g.125478730A > T (TRIB gene). Interactions between the GRS and clinical variables (body mass index (BMI), diabetes mellitus, diet, physical activity, alcohol consumption, age and gender) were evaluated. Results: The GRS was associated with triglyceride (TG) concentrations. There was a significant interaction between BMI and GRS, with the intensity of the relationship between the number of alleles and the TG concentration being greater in individuals with a higher BMI. Conclusions: GRS is associated with plasma TG concentrations and is markedly influenced by BMI. This finding could improve the stratification of patients with a high genetic risk for HTG who could benefit from more intensive healthcare interventions.
Collapse
|
21
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
22
|
Dietary γ-Aminobutyric Acid Supplementation Inhibits High-Fat Diet-Induced Hepatic Steatosis via Modulating Gut Microbiota in Broilers. Microorganisms 2022; 10:microorganisms10071281. [PMID: 35889001 PMCID: PMC9323641 DOI: 10.3390/microorganisms10071281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aims to investigate the effect of γ-aminobutyric acid (GABA) on liver lipid metabolism and on AA broilers. Broilers were divided into three groups and fed with low-fat diets, high-fat diets, and high-fat diets supplemented with GABA. Results showed that GABA supplementation decreased the level of triglyceride (TG) in the serum and liver of broilers fed high-fat diets, accompanied by up-regulated mRNA expression of genes related to lipolysis and β-oxidation in the liver (p < 0.05). Furthermore, GABA supplementation increased liver antioxidant capacity, accompanied by up-regulated mRNA expression of antioxidant genes (p < 0.05). 16S rRNA gene sequencing showed that GABA improved high-fat diet-induced dysbiosis of gut microbiota, increased the relative abundance of Bacteroidetes phylum and Barnesiella genus, and decreased the relative abundance of Firmicutes phylum and Ruminococcus_torques_group and Romboutsia genus (p < 0.05). Moreover, GABA supplementation promoted the production of propionic acid and butyric acid in cecal contents. Correlation analysis further suggested the ratio of Firmicutes/Bacteroidetes negatively correlated with hepatic TG content, and positively correlated with cecal short chain fatty acids content (r > 0.6, p < 0.01). Together, these data suggest that GABA supplementation can inhibit hepatic TG deposition and steatosis via regulating gut microbiota in broilers.
Collapse
|
23
|
Tricarico PM, Moltrasio C, Gradišek A, Marzano AV, Flacher V, Boufenghour W, von Stebut E, Schmuth M, Jaschke W, Gams M, Boniotto M, Crovella S. Holistic health record for Hidradenitis suppurativa patients. Sci Rep 2022; 12:8415. [PMID: 35589750 PMCID: PMC9120068 DOI: 10.1038/s41598-022-11910-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a recurrent inflammatory skin disease with a complex etiopathogenesis whose treatment poses a challenge in the clinical practice. Here, we present a novel integrated pipeline produced by the European consortium BATMAN (Biomolecular Analysis for Tailored Medicine in Acne iNversa) aimed at investigating the molecular pathways involved in HS by developing new diagnosis algorithms and building cellular models to pave the way for personalized treatments. The objectives of our european Consortium are the following: (1) identify genetic variants and alterations in biological pathways associated with HS susceptibility, severity and response to treatment; (2) design in vitro two-dimensional epithelial cell and tri-dimensional skin models to unravel the HS molecular mechanisms; and (3) produce holistic health records HHR to complement medical observations by developing a smartphone application to monitor patients remotely. Dermatologists, geneticists, immunologists, molecular cell biologists, and computer science experts constitute the BATMAN consortium. Using a highly integrated approach, the BATMAN international team will identify novel biomarkers for HS diagnosis and generate new biological and technological tools to be used by the clinical community to assess HS severity, choose the most suitable therapy and follow the outcome.
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Anton Gradišek
- Department of Intelligent System, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Angelo V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Vincent Flacher
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire Et Cellulaire, University of Strasbourg, Strasbourg, France
| | - Wacym Boufenghour
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire Et Cellulaire, University of Strasbourg, Strasbourg, France
| | - Esther von Stebut
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, 50935, Cologne, Germany
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - Wolfram Jaschke
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - Matjaž Gams
- Department of Intelligent System, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Michele Boniotto
- INSERM, IMRB, Translational Neuropsychiatry, F-94010, University Paris Est Créteil, Créteil, France
| | - Sergio Crovella
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| |
Collapse
|
24
|
Xue Y, Zhu X, Yan W, Zhang Z, Cui E, Wu Y, Li C, Pan J, Yan Q, Chai X, Zhao S. Dietary Supplementation With Acer truncatum Oil Promotes Remyelination in a Mouse Model of Multiple Sclerosis. Front Neurosci 2022; 16:860280. [PMID: 35585921 PMCID: PMC9109879 DOI: 10.3389/fnins.2022.860280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis is a chronic demyelinating disease of uncertain etiology. Traditional treatment methods produce more adverse effects. Epidemiological and clinical treatment findings showed that unknown environmental factors contribute to the etiology of MS and that diet is a commonly assumed factor. Despite the huge interest in diet expressed by people with MS and the potential role diet plays in MS, very little data is available on the role of diet in MS pathogenesis and MS course, in particular, studies on fats and MS. The oil of Acer truncatum is potential as a resource to be exploited in the treatment of some neurodegenerative diseases. Objective Here, we investigated the underlying influences of Acer truncatum oil on the stimulation of remyelination in a cuprizone mouse model of demyelination. Methods Cuprizone (0.2% in chow) was used to establish a mouse model of demyelination. Acer truncatum oil was administrated to mice during remyelination. Following techniques were used: behavioral test, histochemistry, fluorescent immunohistochemistry, transmission electron microscope. Results Mice exposed to cuprizone for 6 weeks showed schizophrenia-like behavioral changes, the increased exploration of the center in the open field test (OFT), increased entries into the open arms of the elevated plus-maze, as well as demyelination in the corpus callosum. After cuprizone withdrawal, the diet therapy was initiated with supplementation of Acer truncatum oil for 2 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (CC1) and myelin basic protein (MBP). More importantly, the supplementation with Acer truncatum oil in the diet reduced the schizophrenia-like behavior in the open field test (OFT) and the elevated plus-maze compared to the cuprizone recovery group. The results revealed that the diet supplementation with Acer truncatum oil improved behavioral abnormalities, oligodendrocyte maturation, and remyelination in the cuprizone model during recovery. Conclusion Diet supplementation with Acer truncatum oil attenuates demyelination induced by cuprizone, indicating that Acer truncatum oil is a novel therapeutic diet in demyelinating diseases.
Collapse
Affiliation(s)
- Yuhuan Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qijiang Yan
- Multiple Sclerosis Research Center of New York, New York, NY, United States
| | - Xuejun Chai
- Department of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|