1
|
Lungova V, Gowda M, Fernandez JM, Bartley S, Venkatraman A, Rey FE, Thibeault SL. Contribution of Streptococcus pseudopneumoniae and Streptococcus salivarius to vocal fold mucosal integrity and function. Dis Model Mech 2024; 17:dmm050670. [PMID: 38903015 PMCID: PMC11273296 DOI: 10.1242/dmm.050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Structural changes to the vocal fold (VF) epithelium, namely, loosened intercellular junctions, have been reported in VF benign lesions. The potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and Streptococcus salivarius (SS), a commensal bacterium, with human VF epithelial cells in our three-dimensional model of the human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the air/liquid interface, allowing for the assessment of bacterium-host interactions at the cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via the exported products HtrA1 and pneumolysin. In contrast, SS attaches to the VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Madhu Gowda
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jessica M. Fernandez
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Stephanie Bartley
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anumitha Venkatraman
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan L. Thibeault
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
2
|
Vagin O, Tokhtaeva E, Larauche M, Davood J, Marcus EA. Helicobacter pylori-Induced Decrease in Membrane Expression of Na,K-ATPase Leads to Gastric Injury. Biomolecules 2024; 14:772. [PMID: 39062486 PMCID: PMC11274427 DOI: 10.3390/biom14070772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Helicobacter pylori is a highly prevalent human gastric pathogen that causes gastritis, ulcer disease, and gastric cancer. It is not yet fully understood how H. pylori injures the gastric epithelium. The Na,K-ATPase, an essential transporter found in virtually all mammalian cells, has been shown to be important for maintaining the barrier function of lung and kidney epithelia. H. pylori decreases levels of Na,K-ATPase in the plasma membrane of gastric epithelial cells, and the aim of this study was to demonstrate that this reduction led to gastric injury by impairing the epithelial barrier. Similar to H. pylori infection, the inhibition of Na,K-ATPase with ouabain decreased transepithelial electrical resistance and increased paracellular permeability in cell monolayers of human gastric cultured cells, 2D human gastric organoids, and gastric epithelium isolated from gerbils. Similar effects were caused by a partial shRNA silencing of Na,K-ATPase in human gastric organoids. Both H. pylori infection and ouabain exposure disrupted organization of adherens junctions in human gastric epithelia as demonstrated by E-cadherin immunofluorescence. Functional and structural impairment of epithelial integrity with a decrease in Na,K-ATPase amount or activity provides evidence that the H. pylori-induced downregulation of Na,K-ATPase plays a role in the complex mechanism of gastric disease induced by the bacteria.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| | - Elmira Tokhtaeva
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| | - Muriel Larauche
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, DGSOM at UCLA, 650 Charles E Young Dr. S., CHS 43-276, Los Angeles, CA 90095, USA
| | - Joshua Davood
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, DGSOM at UCLA, 650 Charles E Young Dr. S., CHS 43-276, Los Angeles, CA 90095, USA
| | - Elizabeth A. Marcus
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| |
Collapse
|
3
|
Canadas-Ortega M, Mühlbacher I, Posselt G, Diechler S, Ferner CD, Boccellato F, Koch OO, Neureiter D, Weitzendorfer M, Emmanuel K, Wessler S. HtrA-Dependent E-Cadherin Shedding Impairs the Epithelial Barrier Function in Primary Gastric Epithelial Cells and Gastric Organoids. Int J Mol Sci 2024; 25:7083. [PMID: 39000189 PMCID: PMC11241449 DOI: 10.3390/ijms25137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.
Collapse
Affiliation(s)
- Marina Canadas-Ortega
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Iris Mühlbacher
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Diechler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Daniel Ferner
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Francesco Boccellato
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX37DQ, UK;
| | - Oliver Owen Koch
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria;
| | - Michael Weitzendorfer
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Klaus Emmanuel
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|