1
|
Qiu X, Yao Y, Chen Y, Li Y, Sun X, Zhu X. TRPC5 Promotes Intermittent Hypoxia-Induced Cardiomyocyte Injury Through Oxidative Stress. Nat Sci Sleep 2024; 16:2125-2141. [PMID: 39720578 PMCID: PMC11668249 DOI: 10.2147/nss.s494748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia. Methods 30 patients with newly diagnosed OSA and 30 patients with primary snoring(PS) were included in this study. Participants were subjected to polysomnography (PSG) for OSA diagnosis. Echocardiography was used to evaluate the structure and function of the heart, while peripheral blood samples were obtained. Additionally, RT-qPCR was utilized to quantify the relative expression level of TRPC5 mRNA in peripheral blood. H9c2 cells experienced IH or normoxia. TRPC5 levels in H9c2 cells were determined via RT-qPCR and Western blotting (WB) methods. H9c2 cells overexpressing TRPC5 were subjected to either normoxic or intermittent hypoxia conditions. Cell viability was determined by CCK8, the apoptosis rate, reactive oxygen species(ROS) levels, and Ca2+ concentration were assessed by flow cytometry, and the protein levels of TRPC5, Bcl-2, Bax, and Caspase-3 were analyzed by WB. Mitochondrial membrane potential(MMP), mitochondrial membrane permeability transition pore(mPTP), and transmission electron microscopy(TEM) were employed to observe mitochondrial function and structure. After inhibiting ROS with N-acetylcysteine (NAC), apoptosis, mitochondrial function and structure, and the concentration of Ca2+ were further detected. Results TRPC5 and left atrial diameter (LAD) were higher in OSA individuals, while the E/A ratio was lower(all P<0.05). IH impaired cell viability, triggered cell apoptosis, and enhanced TRPC5 expression in H9c2 cells(all P<0.05). The effects of IH on apoptosis, cell viability, mitochondrial function and structure damage, and oxidative stress (OxS) in H9c2 cells were accelerated by the overexpression of TRPC5(all P<0.05). Furthermore, cell apoptosis and mitochondrial structural and functional damage caused by overexpression of TRPC5 were attenuated by ROS inhibition. Conclusion TRPC5 is associated with structural and functional cardiac damage in patients with OSA, and TRPC5 promotes IH-induced apoptosis and mitochondrial damage in cardiomyocytes through OxS. TRPC5 may be a novel target for the diagnosis and treatment of OSA-induced myocardial injury.
Collapse
Affiliation(s)
- Xuan Qiu
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yanli Yao
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yulan Chen
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yu Li
- Second Department of Comprehensive Internal Medicine of Healthy Care Center for Cadres, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaojing Sun
- Department of Intensive Care Unit, the Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaoli Zhu
- Department of Cardiovasology, the Traditional Chinese Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| |
Collapse
|
2
|
Cui Y, Zhang Y, Dai S, Wan S, Guan H, Wang D, Jin B, Xiao W, Liu F. The mechanism of 14-3-3η in thyroxine induced mitophagy in cardiomyocytes. Mol Cell Endocrinol 2024; 590:112271. [PMID: 38759835 DOI: 10.1016/j.mce.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Hyperthyroidism is becoming increasingly important as an independent risk factor for cardiovascular disease, eventually resulting in cardiac hypertrophy and heart failure. The 14-3-3 protein family subtypes regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. Considering that the 14-3-3η protein protects cardiomyocytes by affecting mitochondrial function, exploring the biological influence and molecular mechanisms by which 14-3-3η alleviates the cardiac hypertrophy of hyperthyroidism is imperative. In vivo and in vitro, RT-PCR, Western blot, and Mitochondrial tracking assay were performed to understand the molecular mechanism of thyroxine-induced cardiomyocyte hypertrophy. HE staining, transmission electron microscopy, and immunofluorescence were used to observe intuitively changes of hearts and cardiomyocytes. The in vivo and in vitro results indicated that overexpression of the 14-3-3η ameliorated thyroxine-induced cardiomyocyte hypertrophy, whereas knockdown of the 14-3-3η protein aggravated thyroxine-induced cardiomyocyte hypertrophy. Additionally, overexpression of the 14-3-3η protein reduces thyroxine-induced mitochondrial damage and mitophagy in cardiomyocytes. Overexpression of 14-3-3η protein improves excessive mitophagy in the myocardium caused by thyroxine and thus prevents cardiac hypertrophy.
Collapse
Affiliation(s)
- Yalan Cui
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China; Clinical Pathology Department, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, 443600, China
| | - Yan Zhang
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Songsong Dai
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Heng Guan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Decai Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Beifang Jin
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Wenping Xiao
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541004, China; Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi, 541004, China.
| |
Collapse
|
3
|
Sun C, Wang Q, Li P, Dong R, Lei Y, Hu Y, Yan Y, Song G. The ROS Mediates MCUb in Mitochondria-Regulated Apoptosis of TM4 Cells Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024:10.1007/s12011-024-04339-6. [PMID: 39192169 DOI: 10.1007/s12011-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can cause mitochondrial apoptosis of TM4 cells associated with reactive oxygen species (ROS) accumulation and Ca2+ overload, but the relations among these processes remain unclear. This study aimed to evaluate whether the accumulation of ROS caused by TiO2 NPs inhibits MCUb expression, leading to mitochondrial calcium overload and subsequent cell apoptosis through the mitochondrial pathway. TM4 cells were exposed to different concentrations of TiO2 NPs (0, 25, 50, 75, 100 μg/mL) for 24 h. We assessed cell viability, ROS level, MCUb and VDAC1 expression, mitochondrial and cytoplasmic Ca2+ levels, mitochondrial membrane potential (MMP), apoptosis rate, and key proteins related to mitochondrial apoptosis (Bcl-2, Bax, Caspase 3, Caspase 9, p53 and Cyt c). Additionally, the effect of N-acetylcysteine (NAC) on MCUb expression, calcium homeostasis, and cell apoptosis was evaluated. Compared to control group, TiO2 NPs significantly increased ROS level, downregulated MCUb expression, elevated Ca2+ levels in mitochondria and cytoplasm, and enhanced mitochondria-regulated apoptosis, starting from the 50 μg/mL TiO2 NPs group. However, NAC significantly increased MCUb expression, attenuated Ca2+ levels in mitochondria and cytoplasm, and reduced mitochondria-related apoptosis. In conclusion, TiO2 NPs induced ROS accumulation, which inhibited the expression of MCUb. The decreased MCUb level led to Ca2+ overload in mitochondria, causing TM4 cell apoptosis via the mitochondrial pathway. This research elucidates, for the first time, the role of MCUb and its relation with ROS in apoptosis of TM4 cells induced by TiO2 NPs, which supplementing the molecular mechanism of cell apoptosis caused by TiO2 NPs.
Collapse
Grants
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
Collapse
Affiliation(s)
- Chenhao Sun
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Pengfei Li
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Ruoyun Dong
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yuzhu Lei
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
4
|
Yang Q, Yang T, Liu X, Liu S, Liu W, Nie L, Chu C, Yang J. Effects of gas signaling molecule SO 2 in cardiac functions of hyperthyroid rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:129-143. [PMID: 38414396 PMCID: PMC10902587 DOI: 10.4196/kjpp.2024.28.2.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Ting Yang
- School of Pharmaceutical Science of University of South China, Hengyang 421000, Hunan, China
| | - Xing Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Wei Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
| |
Collapse
|
5
|
Chao SP, Cheng WL, Yi W, Cai HH, Deng K, Cao JL, Zeng Z, Wang H, Wu X. N-Acetylcysteine Alleviates Phenylephrine-Induced Cardiomyocyte Dysfunction via Engaging PI3K/AKT Signaling Pathway. Am J Hypertens 2024; 37:230-238. [PMID: 37864839 DOI: 10.1093/ajh/hpad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.
Collapse
Affiliation(s)
- Sheng-Ping Chao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wenjuan Yi
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan-Huan Cai
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Keqiong Deng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital, Wuhan University, WuhanChina
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|