1
|
Ding X, Huang H, Chen Y, Wu J, Yan X, Ding Y, Dong J, Wang Y, Wang L, Tan Q, Yang C. Electrospun 11β-HSD1 Inhibitor-Loaded Scaffolds for Accelerating Diabetic Ulcer Healing. ACS APPLIED BIO MATERIALS 2024. [PMID: 39690109 DOI: 10.1021/acsabm.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Diabetic ulcers (DUs) are a common and severe complication of diabetes, characterized by impaired wound healing due to a complex pathophysiological mechanism. Elevated levels of 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in wounds have been demonstrated to modulate glucocorticoid activity, leading to delayed skin cell proliferation and restricted angiogenesis, ultimately hindering wound healing. In this study, we propose an electrospun poly(ε-caprolactone) (PCL) nanofiber scaffold doped with the 11β-HSD1 inhibitor BVT2733 (BPs) to prevent 11β-HSD1 activity during the diabetic wound healing process. The electrospun scaffold loaded with BVT2733 is designed to achieve localized inhibition of 11β-HSD1 in DUs. This scaffold exhibited a porous morphology and desirable drug-loading capacity, meeting the requirements for wound coverage and effective delivery of BVT2733 BPs. In vitro studies demonstrated that the sustained release of BVT2733 from the scaffold promoted skin cell proliferation and migration while stimulating angiogenesis by upregulating HIF1-α/VEGF expression. The therapeutic effect of the scaffold was further confirmed in a full-thickness wound model using diabetic mice. The mice treated with the scaffolds exhibited an accelerated wound healing rate, increased neovascularization, enhanced collagen deposition, and regeneration of skin appendages within 2 weeks postinjury. The findings here provide evidence for the use of 11β-HSD1 inhibitor-integrated biomaterials in treating DUs and represent a novel biological platform for modulating dysregulated mechanisms in DUs.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Heyan Huang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yutong Chen
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Yan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Youjun Ding
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Qian Tan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxi Yang
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
2
|
Sun Y, Zhou J, Zhang Z, Yu DG, Bligh SWA. Integrated Janus nanofibers enabled by a co-shell solvent for enhancing icariin delivery efficiency. Int J Pharm 2024; 658:124180. [PMID: 38705246 DOI: 10.1016/j.ijpharm.2024.124180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
During the past several decades, nanostructures have played their increasing influences on the developments of novel nano drug delivery systems, among which, double-chamber Janus nanostructure is a popular one. In this study, a new tri-channel spinneret was developed, in which two parallel metal capillaries were nested into another metal capillary in a core-shell manner. A tri-fluid electrospinning was conducted with a solvent mixture as the shell working fluid for ensuring the formation of an integrated Janus nanostructure. The scanning electronic microscopic results demonstrated that the resultant nanofibers had a linear morphology and two distinct compartments within them, as indicated by the image of a cross-section. Fourier Transformation Infra-Red spectra and X-Ray Diffraction patterns verified that the loaded poorly water-soluble drug, i.e. icariin, presented in the Janus medicated nanofibers in an amorphous state, which should be attributed to the favorable secondary interactions between icariin and the two soluble polymeric matrices, i.e. hydroxypropyl methyl cellulose (HPMC) and polyvinylpyrrolidone (PVP). The in vitro dissolution tests revealed that icariin, when encapsulated within the Janus nanofibers, exhibited complete release within a duration of 5 min, which was over 11 times faster compared to the raw drug particles. Furthermore, the ex vivo permeation tests demonstrated that the permeation rate of icariin was 16.2 times higher than that of the drug powders. This improvement was attributed to both the rapid dissolution of the drug and the pre-release of the trans-membrane enhancer sodium lauryl sulfate from the PVP side of the nanofibers. Mechanisms for microformation, drug release, and permeation were proposed. Based on the methodologies outlined in this study, numerous novel Janus nanostructure-based nano drug delivery systems can be developed for poorly water-soluble drugs in the future.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China.
| |
Collapse
|
3
|
Zhou J, Chen Y, Liu Y, Huang T, Xing J, Ge R, Yu DG. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer. Int J Biol Macromol 2024; 269:132113. [PMID: 38719010 DOI: 10.1016/j.ijbiomac.2024.132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Liver cancer is a common cancer in the world, and core-shell nanoparticles as a commonly used combination therapy for local tumor ablation, have many shortcomings. In this study, photothermal Janus nanofibers were prepared using a electrospinning technology for tumor treatment, and the products were characterized and in vitro photothermal performance investigated. The micromorphology analysis showed that the photothermic agent CuS and electrospun fibers (loaded with CuS and anticancer drug dihydromyricetin) were successfully prepared, with diameters of 11.58 ± 0.27 μm and 1.19 ± 0.01 μm, respectively. Water contact angle and tensile test indicated that the fiber membranes has a certain hydrophilic adhesion and excellent mechanical strength. The fiber membranes has 808 nm near-infrared laser photothermal heating performance and photothermal stability, and it also has a strong response to the laser that penetrates biological tissue. In addition, in vitro cell culture and in vivo implantation study showed that the fiber membranes could kill HepG2 hepatocellular carcinoma cells combined with photothermal-chem and could be enriched in the implantation area, respectively. Hence, the Janus membranes may be a potential cancer treatment material.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Liu
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Xing
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruiliang Ge
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Yu DG, Gong W, Zhou J, Liu Y, Zhu Y, Lu X. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1964. [PMID: 38702912 DOI: 10.1002/wnan.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The shapes of micro- and nano-products have profound influences on their functional performances, which has not received sufficient attention during the past several decades. Electrohydrodynamic atomization (EHDA) techniques, mainly include electrospinning and electrospraying, are facile in manipulate their products' shapes. In this review, the shapes generated using EHDA for modifying drug release profiles are reviewed. These shapes include linear nanofibers, round micro-/nano-particles, and beads-on-a-string hybrids. They can be further divided into different kinds of sub-shapes, and can be explored for providing the desired pulsatile release, sustained release, biphasic release, delayed release, and pH-sensitive release. Additionally, the shapes resulted from the organizations of electrospun nanofibers are discussed for drug delivery, and the shapes and inner structures can be considered together for developing novel drug delivery systems. In future, the shapes and the related shape-performance relationships at nanoscale, besides the size, inner structure and the related structure-performance relationships, would further play their important roles in promoting the further developments of drug delivery field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunajie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Zhang S, Yang W, Gong W, Lu Y, Yu DG, Liu P. Recent progress of electrospun nanofibers as burning dressings. RSC Adv 2024; 14:14374-14391. [PMID: 38694552 PMCID: PMC11061782 DOI: 10.1039/d4ra01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Burns are a global public health problem, which brings great challenges to public health and the economy. Severe burns often lead to systemic infection, shock, multiple organ failure, and even death. With the increasing demand for the therapeutic effect of burn wounds, traditional dressings have been unable to meet people's needs due to their single function and many side effects. In this context, electrospinning shows a great prospect on the way to open up advanced wound dressings that promote wound repairing and prevent infection. With its large specific surface area, high porosity, and similar to natural extracellular matrix (ECM), electrospun nanofibers can load drugs and accelerate wound healing. It provides a promising solution for the treatment and management of burn wounds. This review article introduces the concept of burn and the types of electrospun nanofibers, then summarizes the polymers used in electrospun nanofiber dressings. Finally, the drugs (plant extracts, small molecule drugs and nanoparticles) loaded with electrospun burn dressings are summarized. Some promising aspects for developing commercial electrospun burn dressings are proposed.
Collapse
Affiliation(s)
- Shengwei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Wei Yang
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhang Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| |
Collapse
|
6
|
Huang C, Wang M, Yu S, Yu DG, Bligh SWA. Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:646. [PMID: 38607180 PMCID: PMC11013851 DOI: 10.3390/nano14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Dressings with multiple functional performances (such as hemostasis, promoting regeneration, analgesia, and anti-inflammatory effects) are highly desired in orthopedic surgery. Herein, several new kinds of medicated nanofibers loaded with several active ingredients for providing multiple functions were prepared using the modified coaxial electrospinning processes. With an electrospinnable solution composed of polycaprolactone and fenoprofen as the core working fluid, several different types of unspinnable fluids (including pure solvent, nanosuspension containing tranexamic acid and hydroxyapatite, and dilute polymeric solution comprising tranexamic acid, hydroxyapatite, and polyvinylpyrrolidone) were explored to implement the modified coaxial processes for creating the multifunctional nanofibers. Their morphologies and inner structures were assessed through scanning and transmission electron microscopes, which all showed a linear format without the discerned beads or spindles and a diameter smaller than 1.0 μm, and some of them had incomplete core-shell nanostructures, represented by the symbol @. Additionally, strange details about the sheaths' topographies were observed, which included cracks, adhesions, and embedded nanoparticles. XRD and FTIR verified that the drugs tranexamic acid and fenoprofen presented in the nanofibers in an amorphous state, which resulted from the fine compatibility among the involved components. All the prepared samples were demonstrated to have a fine hydrophilic property and exhibited a lower water contact angle smaller than 40° in 300 ms. In vitro dissolution tests indicated that fenoprofen was released in a sustained manner over 6 h through a typical Fickian diffusion mechanism. Hemostatic tests verified that the intentional distribution of tranexamic acid on the shell sections was able to endow a rapid hemostatic effect within 60 s.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Siyou Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
7
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
8
|
Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications. Adv Colloid Interface Sci 2024; 325:103098. [PMID: 38335660 DOI: 10.1016/j.cis.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The electrospray (ES) technique has proven to be an effective and a versatile approach for crafting drug delivery carriers with diverse dimensions, multiple layers, and varying morphologies. Achieving the desired particle properties necessitates careful optimization of various experimental parameters. This review delves into the most prevalent ES system configurations employed for this purpose, such as monoaxial, coaxial, triaxial, and multi-needle setups with solid or liquid collector. In addition, this work underscores the significance of ES in drug delivery carriers and its remarkable ability to encapsulate a wide spectrum of therapeutic agents, including drugs, nucleic acids, proteins, genes and cells. Depth examination of the critical parameters governing the ES process, including the choice of polymer, surface tension, voltage settings, needle size, flow rate, collector types, and the collector distance was conducted with highlighting on their implications on particle characteristics, encompassing morphology, size distribution, and drug encapsulation efficiency. These insights illuminate ES's adaptability in customizing drug delivery systems. To conclude, this review discusses ES process optimization strategies, advantages, limitations and future directions, providing valuable guidance for researchers and practitioners navigating the dynamic landscape of modern drug delivery systems.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| | - Yasser Shahzad
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
9
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Khan MN, Arafat MT, Rashid TU, Haque P, Rahman MM. Chitosan-Stabilized CuO Nanostructure-Functionalized UV-Crosslinked PVA/Chitosan Electrospun Membrane as Enhanced Wound Dressing. ACS APPLIED BIO MATERIALS 2024; 7:961-976. [PMID: 38308644 DOI: 10.1021/acsabm.3c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Electrospun nanofibrous membranes are of great interest for tissue engineering, active material delivery, and wound dressing. These nanofibers possess unique three-dimensional (3D) interconnected porous structures that result in a higher surface-area-to-volume ratio and porosity. This study was carried out to prepare nanofibrous membranes by electrospinning a blend of PVA/chitosan polymeric solution functionalized with different ratios of copper oxide. Chitosan-stabilized CuO nanoparticles (CH-CuO NPs) were biosynthesized successfully utilizing chitosan as the capping and reducing agent. XRD analysis confirmed the monoclinic structure of CH-CuO NPs. In addition, the electrospun nanofibrous membranes were UV-crosslinked for a definite time. The membranes containing CH-CuO NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and dynamic light scattering (DLS). SEM results showed the nanosize of the fiber diameter in the range of 147-207 nm. The FTIR spectroscopy results indicated the successful incorporation of CH-CuO NPs into the PVA/chitosan nanofibrous membranes. DSC analysis proved the enhanced thermal stability of the nanofibrous membranes due to UV-crosslinking. Swelling and degradation tests were carried out to ensure membrane stability. Greater antimicrobial activity was observed in the nanoparticle-loaded membrane. An in vitro release study of Cu2+ ions from the membrane was carried out for 24 h. The cytotoxicity of CH-CuO NP-incorporated membranes was investigated to estimate the safe dose of nanoparticles. An in vivo test using the CH-CuO NP-loaded PVA/chitosan membrane was conducted on a mice model, in which wound healing occurred in approximately 12 days. These results confirmed that the biocompatible, nontoxic nanofibrous membranes are ideal for wound-dressing applications.
Collapse
Affiliation(s)
- M Nuruzzaman Khan
- Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Tarik Arafat
- Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Taslim Ur Rashid
- Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Papia Haque
- Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
11
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
12
|
Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers. Polymers (Basel) 2024; 16:501. [PMID: 38399879 PMCID: PMC10892691 DOI: 10.3390/polym16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| | | | | | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| |
Collapse
|
13
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Yu DG, Xu L. Impact Evaluations of Articles in Current Drug Delivery based on Web of Science. Curr Drug Deliv 2024; 21:360-367. [PMID: 37157193 DOI: 10.2174/1567201820666230508115356] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
A total of 1534 and 308 articles were published in the journal Current Drug Delivery (CDD), from 2004 and 2019 to 2021, respectively. In this commentary, their impacts were analyzed based on search data about citation times in the Web of Science. These publications were categorized from different standpoints and evaluated in terms of their citations, particularly in the year 2021. The thematic, contemporary, and local features of these articles, as well as the article types and publication formats, were interpreted. Results demonstrated that CDD should be loyal to the contents about drug delivery, particularly nano-drug delivery systems and nano-pharmaceutical technologies. Publications from the developing and developed countries and regions showed no remarkable differences; therefore, submissions are similarly welcomed. Research articles and review articles are the main stream of CDD. The ratio of review papers is about 30%, which is reasonable but should not be further extended. Moreover, open publications with an article processing charge always have a high impact than those with subscription.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
15
|
Chen X, Liu Y, Liu P. Electrospun Core-Sheath Nanofibers with a Cellulose Acetate Coating for the Synergistic Release of Zinc Ion and Drugs. Mol Pharm 2024; 21:173-182. [PMID: 37990999 DOI: 10.1021/acs.molpharmaceut.3c00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Precisely modulating the synergistic release behavior of multiple bioactive substances has emerged as a formidable challenge in recent years. In this work, we successfully prepared core-sheath nanofibers, where a thin cellulose acetate (CA) coating enrobed the core. Curcumin (Cur) was encapsulated in the core layer as a model drug, while zinc oxide (ZnO) nanoparticles were loaded on the sheath layer. The prepared fiber exhibited a straight cylindrical morphology containing nanoparticles, and the distinct core-sheath nanostructure was demonstrated through transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were conducted to study the physical state and compatibility among CA, Cur, and ZnO. Drug release data indicated that core-sheath nanofibers were able to decelerate the rate of drug release, and the thickness of the sheath layer increased in the presence of ZnO particles. Most remarkably, these core-sheath nanofibers exhibited the remarkable ability to sustain the release of drugs and zinc ion (Zn2+), the two-day synergistically release behavior leading to a significant increase in cell proliferation. This material preparation strategy for the synergistic and controlled release of two bioactive substances is instructive for the exploration of innovative and versatile drug delivery systems.
Collapse
Affiliation(s)
- Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
16
|
Sun L, Zhou J, Chen Y, Yu DG, Liu P. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines. Front Bioeng Biotechnol 2023; 11:1308004. [PMID: 38033817 PMCID: PMC10684662 DOI: 10.3389/fbioe.2023.1308004] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Bacterial prostatitis is a challenging condition to treat with traditional dosage forms. Physicians often prescribe a variety of dosage forms with different administration methods, which fail to provide an efficient and convenient mode of drug delivery. The aim of this work was to develop a new type of hybrid material incorporating both electrosprayed core-shell microparticles and electrospun nanofibers. A traditional Chinese medicine (Ningmitai, NMT) and a Western medicine (ciprofloxacin, CIP) were co-encapsulated within this material and were designed to be released in a separately controlled manner. Utilizing polyvinylpyrrolidone (PVP) as a hydrophilic filament-forming polymer and pH-sensitive Eudragit® S100 (ES100) as the particulate polymeric matrix, a combined electrohydrodynamic atomization (EHDA) method comprising coaxial electrospraying and blending electrospinning, was used to create the hybrids in a single-step and straightforward manner. A series of characterization methods were conducted to analyze both the working process and its final products. Scanning electron microscopy and transmission electron microscopy revealed that the EHDA hybrids comprised of both CIP-PVP nanofibers and NMT-ES100 core-shell microparticles. Multiple methods confirmed the rapid release of CIP and the sustained release of NMT. The antibacterial experiments indicated that the hybrids exhibited a more potent antibacterial effect against Escherichia coli dh5α and Bacillus subtilis Wb800 than either the separate nanofibers or microparticles. The amalgamation of fibrous nanomedicine and particulate micromedicine can expand the horizon of new types of medicines. The integration of electrospinning and coaxial electrospraying provides a straightforward approach to fabrication. By combining hydrophilic soluble polymers and pH-sensitive polymers in the hybrids, we can ensure the separate sequential controlled release of CIP and NMT for a potential synergistic and convenient therapy for bacterial prostatitis.
Collapse
Affiliation(s)
- Liang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Yu DG, Zhou J. How can Electrospinning Further Service Well for Pharmaceutical Researches? J Pharm Sci 2023; 112:2719-2723. [PMID: 37643699 DOI: 10.1016/j.xphs.2023.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The past two decades have witnessed the enormous success and progress of electrospinning, as well as its broad and useful applications in pharmaceutics as a laboratory pharmaceutical nanotechnology. Everything in the past is a preface, in which the large screen opens for electrospinning and electrospun nanofibers (particularly those multiple-fluid electrospinning processes and the related multiple-chamber nanostructures) to stride into a new stage and the real commercial applications. In this commentary, four hot regions are identified for the further progress of the applications of electrospinning in pharmaceutics, in which electrospinning and its products can provide more and better services to the development of pharmaceutics.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, Univeristy of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jianfeng Zhou
- School of Materials and Chemistry, Univeristy of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
18
|
Wang Y, Liu L, Zhu Y, Wang L, Yu DG, Liu LY. Tri-Layer Core-Shell Fibers from Coaxial Electrospinning for a Modified Release of Metronidazole. Pharmaceutics 2023; 15:2561. [PMID: 38004540 PMCID: PMC10674365 DOI: 10.3390/pharmaceutics15112561] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polymers are the backbone of drug delivery. Electrospinning has greatly enriched the strategies that have been explored for developing novel drug delivery systems using polymers during the past two decades. In this study, four different kinds of polymers, i.e., the water-soluble polymer poly (vinyl alcohol) (PVA), the insoluble polymer poly(ε-caprolactone) (PCL), the insoluble polymer Eudragit RL100 (ERL100) and the pH-sensitive polymer Eudragit S100 (ES100) were successfully converted into types of tri-layer tri-polymer core-shell fibers through bi-fluid coaxial electrospinning. During the coaxial process, the model drug metronidazole (MTD) was loaded into the shell working fluid, which was an emulsion. The micro-formation mechanism of the tri-layer core-shell fibers from the coaxial emulsion electrospinning was proposed. Scanning electron microscope and transmission electron microscope evaluations verified the linear morphology of the resultant fibers and their obvious tri-layer multiple-chamber structures. X-ray diffraction and Fourier transform infrared spectroscopy measurements demonstrated that the drug MTD presented in the fibers in an amorphous state and was compatible with the three polymeric matrices. In vitro dissolution tests verified that the three kinds of polymer could act in a synergistic manner for a prolonged sustained-release profile of MTD in the gut. The drug controlled-release mechanisms were suggested in detail. The protocols reported here pioneer a new route for creating a tri-layer core-shell structure from both aqueous and organic solvents, and a new strategy for developing advanced drug delivery systems with sophisticated drug controlled-release profiles.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Lin Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Yuanjie Zhu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Liangzhe Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Li-ying Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| |
Collapse
|
19
|
Zhou J, Wang L, Gong W, Wang B, Yu DG, Zhu Y. Integrating Chinese Herbs and Western Medicine for New Wound Dressings through Handheld Electrospinning. Biomedicines 2023; 11:2146. [PMID: 37626643 PMCID: PMC10452315 DOI: 10.3390/biomedicines11082146] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In this nanotechnology era, nanostructures play a crucial role in the investigation of novel functional nanomaterials. Complex nanostructures and their corresponding fabrication techniques provide powerful tools for the development of high-performance functional materials. In this study, advanced micro-nanomanufacturing technologies and composite micro-nanostructures were applied to the development of a new type of pharmaceutical formulation, aiming to achieve rapid hemostasis, pain relief, and antimicrobial properties. Briefly, an approach combining a electrohydrodynamic atomization (EHDA) technique and reversed-phase solvent was employed to fabricate a novel beaded nanofiber structure (BNS), consisting of micrometer-sized particles distributed on a nanoscale fiber matrix. Firstly, Zein-loaded Yunnan Baiyao (YB) particles were prepared using the solution electrospraying process. Subsequently, these particles were suspended in a co-solvent solution containing ciprofloxacin (CIP) and hydrophilic polymer polyvinylpyrrolidone (PVP) and electrospun into hybrid structural microfibers using a handheld electrospinning device, forming the EHDA product E3. The fiber-beaded composite morphology of E3 was confirmed through scanning electron microscopy (SEM) images. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis revealed the amorphous state of CIP in the BNS membrane due to the good compatibility between CIP and PVP. The rapid dissolution experiment revealed that E3 exhibits fast disintegration properties and promotes the dissolution of CIP. Moreover, in vitro drug release study demonstrated the complete release of CIP within 1 min. Antibacterial assays showed a significant reduction in the number of adhered bacteria on the BNS, indicating excellent antibacterial performance. Compared with the traditional YB powders consisting of Chinese herbs, the BNS showed a series of advantages for potential wound dressing. These advantages include an improved antibacterial effect, a sustained release of active ingredients from YB, and a convenient wound covering application, which were resulted from the integration of Chinese herbs and Western medicine. This study provides valuable insights for the development of novel multiscale functional micro-/nano-composite materials and pioneers the developments of new types of medicines from the combination of herbal medicines and Western medicines.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Liangzhe Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Wenjian Gong
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Bo Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Yuanjie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| |
Collapse
|
20
|
Yu DG, Huang C. Electrospun Biomolecule-Based Drug Delivery Systems. Biomolecules 2023; 13:1152. [PMID: 37509187 PMCID: PMC10376994 DOI: 10.3390/biom13071152] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Drug delivery, mainly a professional term in pharmaceutics, is a field of interdisciplinary intersection and integration [...].
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jun-Gong Road, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jun-Gong Road, Shanghai 200093, China
| |
Collapse
|
21
|
Zhou J, Dai Y, Fu J, Yan C, Yu DG, Yi T. Dual-Step Controlled Release of Berberine Hydrochloride from the Trans-Scale Hybrids of Nanofibers and Microparticles. Biomolecules 2023; 13:1011. [PMID: 37371591 DOI: 10.3390/biom13061011] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In this nano era, nanomaterials and nanostructures are popular in developing novel functional materials. However, the combinations of materials at micro and macro scales can open new routes for developing novel trans-scale products with improved or even new functional performances. In this work, a brand-new hybrid, containing both nanofibers and microparticles, was fabricated using a sequential electrohydrodynamic atomization (EHDA) process. Firstly, the microparticles loaded with drug (berberine hydrochloride, BH) molecules in the cellulose acetate (CA) were fabricated using a solution electrospraying process. Later, these microparticles were suspended into a co-dissolved solution that contained BH and a hydrophilic polymer (polypyrrolidone, PVP) and were co-electrospun into the nanofiber/microparticle hybrids. The EHDA processes were recorded, and the resultant trans-scale products showed a typical hybrid topography, with microparticles distributed all over the nanofibers, which was demonstrated by SEM assessments. FTIR and XRD demonstrated that the components within the hybrids were presented in an amorphous state and had fine compatibility with each other. In vitro dissolution tests verified that the hybrids were able to provide the designed dual-step drug release profiles, a combination of the fast release step of BH from the hydrophilic PVP nanofibers through an erosion mechanism and the sustained release step of BH from the insoluble CA microparticles via a typical Fickian diffusion mechanism. The present protocols pave a new way for developing trans-scale functional materials.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yelin Dai
- Wenqi Middle School, East Jiangchuan Road 980, Shanghai 200240, China
- High School Affiliated to Fudan University, Qingpu Campus, Longpu Road 500, Shanghai 201700, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
22
|
Wang H, Lu Y, Yang H, Yu DG, Lu X. The influence of the ultrasonic treatment of working fluids on electrospun amorphous solid dispersions. Front Mol Biosci 2023; 10:1184767. [PMID: 37234919 PMCID: PMC10206001 DOI: 10.3389/fmolb.2023.1184767] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Based on a working fluid consisting of a poorly water-soluble drug and a pharmaceutical polymer in an organic solvent, electrospinning has been widely exploited to create a variety of amorphous solid dispersions However, there have been very few reports about how to prepare the working fluid in a reasonable manner. In this study, an investigation was conducted to determine the influences of ultrasonic fluid pretreatment on the quality of resultant ASDs fabricated from the working fluids. SEM results demonstrated that nanofiber-based amorphous solid dispersions from the treated fluids treated amorphous solid dispersions exhibited better quality than the traditional nanofibers from untreated fluids in the following aspects: 1) a straighter linear morphology; 2) a smooth surface; and 3) a more evener diameter distribution. The fabrication mechanism associated with the influences of ultrasonic treatments of working fluids on the resultant nanofibers' quality is suggested. Although XRD and ATR-FTIR experiments clearly verified that the drug ketoprofen was homogeneously distributed all over the TASDs and the traditional nanofibers in an amorphous state regardless of the ultrasonic treatments, the in vitro dissolution tests clearly demonstrated that the TASDs had a better sustained drug release performance than the traditional nanofibers in terms of the initial release rate and the sustained release time periods.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yingying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Yang Y, Chen W, Wang M, Shen J, Tang Z, Qin Y, Yu DG. Engineered Shellac Beads-on-the-String Fibers Using Triaxial Electrospinning for Improved Colon-Targeted Drug Delivery. Polymers (Basel) 2023; 15:polym15102237. [PMID: 37242812 DOI: 10.3390/polym15102237] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Colon-targeted drug delivery is gradually attracting attention because it can effectively treat colon diseases. Furthermore, electrospun fibers have great potential application value in the field of drug delivery because of their unique external shape and internal structure. In this study, a core layer of hydrophilic polyethylene oxide (PEO) and the anti-colon-cancer drug curcumin (CUR), a middle layer of ethanol, and a sheath layer of the natural pH-sensitive biomaterial shellac were used in a modified triaxial electrospinning process to prepare beads-on-the-string (BOTS) microfibers. A series of characterizations were carried out on the obtained fibers to verify the process-shape/structure-application relationship. The results of scanning electron microscopy and transmission electron microscopy indicated a BOTS shape and core-sheath structure. X-ray diffraction results indicated that the drug in the fibers was in an amorphous form. Infrared spectroscopy revealed the good compatibility of the components in the fibers. In vitro drug release revealed that the BOTS microfibers provide colon-targeted drug delivery and zero-order drug release. Compared to linear cylindrical microfibers, the obtained BOTS microfibers can prevent the leakage of drugs in simulated gastric fluid, and they provide zero-order release in simulated intestinal fluid because the beads in BOTS microfibers can act as drug reservoirs.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Wei Chen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiachen Shen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zheng Tang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yongming Qin
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
24
|
Zhou J, Wang P, Yu DG, Zhu Y. Biphasic drug release from electrospun structures. Expert Opin Drug Deliv 2023; 20:621-640. [PMID: 37140041 DOI: 10.1080/17425247.2023.2210834] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Biphasic release, as a special drug-modified release profile that combines immediate and sustained release, allows fast therapeutic action and retains blood drug concentration for long periods. Electrospun nanofibers, particularly those with complex nanostructures produced by multi-fluid electrospinning processes, are potential novel biphasic drug delivery systems (DDSs). AREAS COVERED This review summarizes the most recent developments in electrospinning and related structures. In this review, the role of electrospun nanostructures in biphasic drug release was comprehensively explored. These electrospun nanostructures include monolithic nanofibers obtained through single-fluid blending electrospinning, core-shell and Janus nanostructures prepared via bifluid electrospinning, three-compartment nanostructures obtained via trifluid electrospinning, nanofibrous assemblies obtained through the layer-by-layer deposition of nanofibers, and the combined structure of electrospun nanofiber mats with casting films. The strategies and mechanisms through which complex structures facilitate biphasic release were analyzed. EXPERT OPINION Electrospun structures can provide many strategies for the development of biphasic drug release DDSs. However, many issues such as the scale-up productions of complex nanostructures, the in vivo verification of the biphasic release effects, keeping pace with the developments of multi-fluid electrospinning, drawing support from the state-of-the-art pharmaceutical excipients, and the combination with traditional pharmaceutical methods need to be addressed for real applications.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Pu Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 2023; 11:1172133. [PMID: 37091339 PMCID: PMC10117974 DOI: 10.3389/fbioe.2023.1172133] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: As an interdisciplinary field, drug delivery relies on the developments of modern science and technology. Correspondingly, how to upgrade the traditional dosage forms for a more efficacious, safer, and convenient drug delivery poses a continuous challenge to researchers. Methods, results and discussion: In this study, a proof-of-concept demonstration was conducted to convert a popular traditional liquid dosage form (a commercial oral compound solution prepared from an intermediate licorice fluidextract) into a solid dosage form. The oral commercial solution was successfully encapsulated into the core-shell nanohybrids, and the ethanol in the oral solution was removed. The SEM and TEM evaluations showed that the prepared nanofibers had linear morphologies without any discerned spindles or beads and an obvious core-shell nanostructure. The FTIR and XRD results verified that the active ingredients in the commercial solution were compatible with the polymeric matrices and were presented in the core section in an amorphous state. Three different types of methods were developed, and the fast dissolution of the electrospun core-shell nanofibers was verified. Conclusion: Coaxial electrospinning can act as a nano pharmaceutical technique to upgrade the traditional oral solution into fast-dissolving solid drug delivery films to retain the advantages of the liquid dosage forms and the solid dosage forms.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yelin Dai
- Wenqi Middle School, Shanghai, China
- Qingpu Campus, High School Affiliated to Fudan University, Shanghai, China
| | - Jia Li
- Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J. A Sequential Electrospinning of a Coaxial and Blending Process for Creating Double-Layer Hybrid Films to Sense Glucose. SENSORS (BASEL, SWITZERLAND) 2023; 23:3685. [PMID: 37050745 PMCID: PMC10099372 DOI: 10.3390/s23073685] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of β-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of β-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in β-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Shixiong Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| |
Collapse
|
27
|
Feng Z, Wang K, Liu Y, Han B, Yu DG. Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071243. [PMID: 37049335 PMCID: PMC10096487 DOI: 10.3390/nano13071243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/30/2023]
Abstract
Electrospinning is considered to be an efficient method to prepare piezoelectric thin films because of its ability to transform the phase of the polymers. A core-sheath structure can endow fibers with more functions and properties. In this study, fibers with a core-sheath structure were prepared using polyvinylidene fluoride (PVDF) included with nanoparticles (NPs) as the shell layer and polycaprolactone (PCL) as the core layer. Their mechanical and piezoelectric properties were studied in detail. During the course of the electrospinning process, PVDF was demonstrated to increase the amount of its polar phase, with the help of nanoparticles acting as a nucleating agent to facilitate the change. PCL was chosen as a core material because of its good mechanical properties and its compatibility with PVDF. Transmission electron microscope (TEM) assessments revealed that the fibers have a core-sheath structure, and shell layers were loaded with nanoparticles. Mechanical testing showed that the core layer can significantly improve mechanical properties. The XRD patterns of the core-sheath structure fibers indicated the β phase domain the main component. Piezoelectric testing showed that the doped nanoparticles were able to enhance piezoelectric performances. The increases of mechanical and piezoelectric properties of core-sheath structure fibers provide a feasible application for wearable electronics, which require flexibility and good mechanical properties.
Collapse
Affiliation(s)
| | - Ke Wang
- Correspondence: (K.W.); (D.-G.Y.)
| | | | | | | |
Collapse
|
28
|
Wang M, Ge RL, Zhang F, Yu DG, Liu ZP, Li X, Shen H, Williams GR. Electrospun fibers with blank surface and inner drug gradient for improving sustained release. BIOMATERIALS ADVANCES 2023; 150:213404. [PMID: 37060792 DOI: 10.1016/j.bioadv.2023.213404] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
New engineering methods and advanced strategies are highly desired for creating novel drug sustained release nanomaterials. In this study, a trilayer concentric spinneret was explored to implement several multifluid electrospinning processes. A trilayer core-shell nanofiber was successfully fabricated, which comprise a drug-free polymeric coating and an inner drug gradient distribution, and then compared with bilayer core-shell and monolithic medicated nanofibers. All the electrospun nanofibers similarly consisted of two components (guest drug acetaminophen and host polymer cellulose acetate) and presented a linear morphology. Due to the secondary interactions within nanofibers, loaded drug with amorphous state was detected, as demonstrated by SEM, DSC, XRD, and FTIR determinations. In vitro and in vivo gavage treatments to rats tests were carried out, the trilayer nanofiber with an elaborate structure design were demonstrated to provide better drug sustained release profile than the bilayer core-shell nanofibers in term of initial burst release, later tail-off release and long sustained release time period. The synergistic mechanism for improving the drug sustained release behaviors is disclosed. By breaking the traditional concepts about the implementation of multifluid electrospinning and the strategy of combining surface properties and inner structural characteristics, the present protocols open a new way for developing material processing methods and generating novel functional nanomaterials.
Collapse
|
29
|
Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023; 15:polym15040921. [PMID: 36850206 PMCID: PMC9961710 DOI: 10.3390/polym15040921] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Electrospun porous nanofibers have gained a lot of interest recently in various fields because of their adjustable porous structure, high specific surface area, and large number of active sites, which can further enhance the performance of materials. This paper provides an overview of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly, the polymers commonly used to construct porous structures and the main pore-forming methods in porous nanofibers by electrospinning, namely the template method and phase separation method, are introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions for the future study of electrospun porous nanofibers are discussed.
Collapse
|
30
|
A Correlation Analysis between Undergraduate Students' Safety Behaviors in the Laboratory and Their Learning Efficiencies. Behav Sci (Basel) 2023; 13:bs13020127. [PMID: 36829356 PMCID: PMC9952147 DOI: 10.3390/bs13020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Students' behaviors have a close relationship with their learning efficiencies, particularly about professional knowledge. Different types of behaviors should have different influences. Disclosing the special relationship between undergraduate students' conscious safety behaviors in their laboratory experiments with their learning efficiencies is important for fostering them into professional talents. In this study, a course entitled "Advanced Methods of Materials Characterization" was arranged to contain three sections: theoretical learning in the classroom, eight characterization experiments in the laboratory in sequence, and self-training to apply the knowledge. In the final examination, eighteen percent was allocated to the examination questions about safety issues. The students' scores for this section were associated with their total roll scores. Two quantitative relationships are disclosed. One is between the students' final examination score (y) and their subjective consciousness of safety behaviors (x) in their laboratory experiments, as y = 5.56 + 4.83 x (R = 0.9192). The other is between their grade point average (y) and safety behavior evaluation (x) as y = 0.51 + 0.15 x (R = 0.7296). Undergraduate students' behaviors in scientific laboratories need to be verified to have a close and positive relationship with their professional knowledge learning efficiencies. This offers a hint that improving students' safety behaviors and enhancing their subjective safety awareness are conducive to improving their learning efficiency for professional knowledge.
Collapse
|
31
|
Mahmood T, Sarfraz RM, Ismail A, Ali M, Khan AR. Pharmaceutical Methods for Enhancing the Dissolution of Poorly Water-Soluble Drugs. Assay Drug Dev Technol 2023; 21:65-79. [PMID: 36917562 DOI: 10.1089/adt.2022.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Low water solubility is the main hindrance in the growth of pharmaceutical industry. Approximately 90% of newer molecules under investigation for drugs and 40% of novel drugs have been reported to have low water solubility. The key and thought-provoking task for the formulation scientists is the development of novel techniques to overcome the solubility-related issues of these drugs. The main intention of present review is to depict the conventional and novel strategies to overcome the solubility-related problems of Biopharmaceutical Classification System Class-II drugs. More than 100 articles published in the last 5 years were reviewed to have a look at the strategies used for solubility enhancement. pH modification, salt forms, amorphous forms, surfactant solubilization, cosolvency, solid dispersions, inclusion complexation, polymeric micelles, crystals, size reduction, nanonization, proliposomes, liposomes, solid lipid nanoparticles, microemulsions, and self-emulsifying drug delivery systems are the various techniques to yield better bioavailability of poorly soluble drugs. The selection of solubility enhancement technique is based on the dosage form and physiochemical characteristics of drug molecules.
Collapse
Affiliation(s)
- Tahir Mahmood
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Rai M Sarfraz
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asmara Ismail
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Muhammad Ali
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Abdur Rauf Khan
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Ge R, Ji Y, Ding Y, Huang C, He H, Yu DG. Electrospun self-emulsifying core-shell nanofibers for effective delivery of paclitaxel. Front Bioeng Biotechnol 2023; 11:1112338. [PMID: 36741747 PMCID: PMC9892910 DOI: 10.3389/fbioe.2023.1112338] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The poor solubility of numerous drugs pose a long-existing challenge to the researchers in the fields of pharmaceutics, bioengineering and biotechnology. Many "top-down" and "bottom-up" nano fabrication methods have been exploited to provide solutions for this issue. In this study, a combination strategy of top-down process (electrospinning) and bottom-up (self-emulsifying) was demonstrated to be useful for enhancing the dissolution of a typical poorly water-soluble anticancer model drug (paclitaxel, PTX). With polyvinylpyrrolidone (PVP K90) as the filament-forming matrix and drug carrier, polyoxyethylene castor oil (PCO) as emulsifier, and triglyceride (TG) as oil phase, Both a single-fluid blending process and a coaxial process were utilized to prepare medicated nanofibers. Scanning electron microscope and transmission electron microscope (TEM) results clearly demonstrated the morphology and inner structures of the nanofibers. The lipid nanoparticles of emulsions after self-emulsification were also assessed through TEM. The encapsulation efficiency (EE) and in vitro dissolution tests demonstrated that the cores-shell nanofibers could provide a better self-emulsifying process int terms of a higher EE and a better drug sustained release profile. Meanwhile, an increase of sheath fluid rate could benefit an even better results, suggesting a clear process-property-performance relationship. The protocols reported here pave anew way for effective oral delivery of poorly water-soluble drug.
Collapse
Affiliation(s)
- Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanfei Ding
- Sinopec Shanghai Engineering Co., Ltd., Shanghai, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua He
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| |
Collapse
|
33
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
34
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
35
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
36
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|
37
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|
38
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|