1
|
Mai Y, Wu S, Zhang P, Chen N, Wu J, Wei F. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater 2025; 45:19-40. [PMID: 39588482 PMCID: PMC11585838 DOI: 10.1016/j.bioactmat.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc. Consequently, oxidative stress contributes to the degradation of the extracellular matrix (ECM), promotes cell apoptosis, and exacerbates disc tissue damage. Current treatment options for IVDD face significant challenges in effectively alleviating the oxidative stress-induced damage and facilitating disc tissue repair. However, recent advancements in biomaterials have opened new avenues of hope for IVDD treatment by addressing oxidative stress. In this review, we first provide an overview of the pathophysiological process of IVDD and explore the mechanisms and pathways associated with oxidative stress injury. Then, we delve into the current research on antioxidant biomaterials employed in the treatment of IVDD, and outline the advantages and limitations of hydrogel, nanomaterials, polyphenol and inorganic materials. Finally, we propose the future research direction of antioxidant biomaterials in IVDD treatment. The main idea of this review is shown in Scheme 1.
Collapse
Affiliation(s)
- Yingjie Mai
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Siying Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
| | - Penghui Zhang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Ningning Chen
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong SAR, 999077, China
| | - Fuxin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
2
|
Zhu J, Song T, Li Z, Zheng W, Liu Y, Li H, Wang S, Tang J, Feng S, Wang L, Lu X, Yuan F, Zhu Z. Integration of bioinformatics and multi-layered experimental validation reveals novel functions of acetylation-related genes in intervertebral disc degeneration. Gene 2025; 933:148974. [PMID: 39349110 DOI: 10.1016/j.gene.2024.148974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The molecular mechanisms underlying intervertebral disc degeneration (IDD) remain poorly understood. The purpose of this work is to elucidate key molecules and investigate the roles of acetylation-related RNAs and their associated pathways in IDD. METHOD Datasets GSE70362 and GSE124272 were obtained from the Gene Expression Omnibus (GEO) and combined to investigate differentially expressed genes (DEGs) associated with acetylation in IDD patients compared to healthy controls. Critical genes were pinpointed by integrating GO, KEGG and PPI networks. Furthermore, CIBERSORTx analysis was used to investigate the differences in immune cell infiltration between different groups and the biological processes (BP), cellular components (CC) and molecular functions (MF) were calculated by GSEA and GSVA. In addition, The single-cell database GSE165722 was incorporated to validate the specific expression patterns of hub genes in cells and identify distinct cell subtypes. This provides a theoretical basis for a more in-depth understanding of the roles played by critical cell subtypes in the process of IDD. Subsequently, tissues from IVD with varying degrees of degeneration were collected to corroborate the key DEGs using western blot, RT-qPCR, and immunofluorescence staining. RESULTS By integrating various datasets and references, we identified a total of 1620 acetylation-related genes. These genes were subjected to a combined analysis with the DEGs from the databases included in this study, resulting in the discovery of 358 acetylation-related differentially expressed genes (ARDEGs). A comparative analysis with differentially expressed genes obtained from three databases yielded 19 ARDEGs. The PPI network highlighted the top 10 genes (IL1B, LAMP1, PPIA, SOD2, LAMP2, FBL, MBP, SELL, IRF1 and KHDRBS1) based on their protein interaction relationships. CIBERSORTx immune infiltration analysis revealed a moderate positive correlation between the gene IL1β and Mast.cells.activated, as well as a similar correlation between the gene IRF1 and Mast.cells.activated. Single-cell dataset was used to identify cell types and illustrate the distribution of hub genes in different cell types. The two cell types with the highest AUCell scores (Neutrophils and Monocytes) were further explored, leading to the subdivision of Neutrophils into two new cell subtypes: S100A9-type Neutrophils and MARCKS-type Neutrophils. Monocytes were labeled as HLA-DRA9-type Monocytes and IGHG3-type Monocytes. Finally, molecular biology techniques were employed to validate the expression of the top 10 hub genes. Among them, four genes (IL1β, SOD2, LAMP2, and IRF1) were confirmed at the gene level, while two (IL1β and SOD2) were validated at the protein level. CONCLUSION In this study, we carried out a thorough analysis across three databases to identify and compare ARDEGs between IDD patients and healthy individuals. Furthermore, we validated a subset of these genes using molecular biology techniques on clinical samples. The identification of these differently expressed genes has the potential to offer new insights for diagnosing and treating IDD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Tongqu Song
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Zheng Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Yong Liu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Hao Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Song Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jinlong Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Shuo Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| | - Zhengya Zhu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhang X, Li G, Tan F, Yu T, Xu C, Li K, Zhang F, Zhang M, Wang J. MARCHF8-mediated ubiquitination via TGFBI regulates NF-κB dependent inflammatory responses and ECM degradation in intervertebral disc degeneration. PLoS One 2025; 20:e0314021. [PMID: 39752341 PMCID: PMC11698339 DOI: 10.1371/journal.pone.0314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/05/2024] [Indexed: 01/06/2025] Open
Abstract
AIM To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8). BACKGROUND IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored. OBJECTIVE Identify key modules associated with IDD and understand the impact of TGFBI on nucleus pulposus (NP) cell behavior, extracellular matrix (ECM)-related proteins, and the Nuclear Factor kappa-light-chain-enhancer of Activated B cells (NF-κB) signaling pathway. METHODS The GSE146904 dataset underwent Weighted Gene Co-Expression Network Analysis (WGCNA) for key module identification and Differentially Expressed Genes (DEGs) screening. Intersection analysis, network analysis, and co-expression identified TGFBI as a hub gene. In vitro experiments delved into the interplay between TGFBI and MARCHF8 and their effects on NP cells. RESULTS WGCNA linked the MEturquoise module with IDD samples, revealing 145 shared genes among DEGs. In vitro findings indicated that MARCHF8 determines TGFBI expression. TGFBI boosts apoptosis and ECM breakdown in Lipopolysaccharide-stimulated (LPS-stimulated) NP cells. Altering TGFBI levels modulated these effects and the NF-κB signaling pathway, influencing inflammatory cytokine concentrations. Moreover, MARCHF8 ubiquitination controlled TGFBI expression. CONCLUSION TGFBI, modulated by MARCHF8, significantly influences IDD progression by affecting NP cell apoptosis, ECM degradation, and inflammation through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingpeng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Guang Li
- Department of Traumatic Surgery, Emergency Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Tan
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Tao Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Chengping Xu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Kai Li
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Meiyan Zhang
- Shanghai Circle Harmony Xinyong Clinic, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
4
|
Coquelet P, Da Cal S, El Hage G, Tastet O, Balthazard R, Chaumont H, Yuh SJ, Shedid D, Arbour N. Specific plasma biomarker signatures associated with patients undergoing surgery for back pain. Spine J 2025; 25:32-44. [PMID: 39276871 DOI: 10.1016/j.spinee.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) affects numerous people worldwide. The role of inflammation is increasingly recognized but remains incompletely resolved. Peripheral molecules could access neovascularized degenerated discs and contribute to the ongoing pathology. PURPOSE To assess a large array of plasma molecules in patients with IDD to identify biomarkers associated with specific spinal pathologies and prognostic biomarkers for the surgery outcome. DESIGN Prospective observational study combining clinical data and plasma measures. PATIENT SAMPLE Plasma samples were collected just before surgery. Extensive clinical data (age, sex, smoking status, Modic score, glomerular filtration rate, etc.) were extracted from clinical files from 83 patients with IDD undergoing spine surgery. OUTCOME MEASURES Recovery 2 months postsurgery as assessed by the treating neurosurgeon. METHODS Over 40 biological molecules were measured in patients' plasma using multiplex assays. Statistical analyses were performed to identify associations between biological and clinical characteristics (age, sex, Body Mass Index (BMI), smoking status, herniated disc, radiculopathy, myelopathy, stenosis, MODIC score, etc.) and plasma levels of biological molecules. RESULTS Plasma levels of Neurofilament Light chain (NfL) were significantly elevated in patients with myelopathy and spinal stenosis compared to herniated disc. Plasma levels of C- reactive protein (CRP), Neurofilament Light chain (NfL), and Serum Amyloid A (SAA) were negatively associated, while CCL22 levels were positively associated with an efficient recovery 2 months postsurgery. CONCLUSIONS Our results show that CRP and CCL22 plasma levels combined with the age of the IDD patient can predict the 2-month postsurgery recovery (Area Under the Curve [AUC]=0.883). Moreover, NfL could become a valuable monitoring tool for patients with spinal cord injuries.
Collapse
Affiliation(s)
- Perrine Coquelet
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Gilles El Hage
- Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Hugo Chaumont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sung-Joo Yuh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Shedid
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Li Q, Guo R, Wu Z, Zhao C, Chen X, Wang H, Shen C. Endplate chondrocyte-derived exosomal miR-128-3p mitigates intervertebral disc degeneration by targeting TRAF6 via the miR-128-3p/TRAF6 axis to suppress pyroptosis. Int Immunopharmacol 2024; 143:113620. [PMID: 39550843 DOI: 10.1016/j.intimp.2024.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain and significantly impacts quality of life. The pathogenesis of IVDD is largely driven by inflammation, pyroptosis, and extracellular matrix (ECM) degradation, which current therapies fail to adequately address. In this study, we explore the therapeutic potential of exosomes derived from endplate chondrocytes (EPCs), with a particular focus on the microRNA miR-128-3p. Our findings reveal that exosomes isolated from third-generation EPCs, enriched with miR-128-3p, exhibit potent anti-inflammatory and anti-pyroptotic effects in lipopolysaccharide-treated nucleus pulposus cells, which are key contributors to IVDD pathology. Specifically, we demonstrate that miR-128-3p delivered via EPC-derived exosomes directly targets TRAF6, effectively suppressing activation of the NF-κB signaling pathway, which is known to play a pivotal role in inflammation and ECM breakdown, leading to a marked reduction in pro-inflammatory cytokine release and mitigation of ECM degradation. Importantly, third-generation EPC exosomes, with higher levels of miR-128-3p, showed superior efficacy compared to fifth-generation EPCs, underscoring the critical role of miR-128-3p in mediating these protective effects. Our research highlights the promise of EPC-derived exosomes, particularly those rich in miR-128-3p, as a novel, cell-free therapeutic approach for IVDD. Unlike current treatments that focus primarily on symptom management, our approach targets key molecular pathways underlying IVDD progression, including inflammation, pyroptosis, and ECM degradation. By elucidating the miR-128-3p/TRAF6 axis, this study provides a foundation for the development of targeted, biologically based interventions aimed at halting or even reversing IVDD, thereby offering hope for more effective and lasting therapeutic options.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Zuomeng Wu
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|
6
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
7
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
8
|
Chen H, Tang T, Xue C, Liu X, Xi Z, Xie L, Kang R. Exploration and breakthrough in the mode of intervertebral disc cell death may lead to significant advances in treatments for intervertebral disc degeneration. J Orthop Surg Res 2024; 19:825. [PMID: 39639370 PMCID: PMC11619685 DOI: 10.1186/s13018-024-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Low back pain caused by intervertebral disc degeneration (IDD) has emerged as a significant global public health concern, with far-reaching consequences for patients' quality of life and healthcare systems. Although previous research have revealed that the mechanisms of intervertebral disc cell apoptosis, pyroptosis and necroptosis can aggravate IDD damage by mediating inflammation and promoting extracellular matrix degradation, but they cannot explain the connection between different cell death mechanisms and ion metabolism disorders. The latest study shows that cell death mechanisms such as cellular senescence, ferroptosis, and cuproptosis, and PANopotosis have similar roles in the progression of intervertebral disc degeneration, but not exactly the same damage mechanism. This paper summarizes the effects of various cell death patterns on the disease progression of IDD, related molecular mechanisms and signaling pathways, providing new perspectives and potential clinical intervention strategies for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Heng Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Tian Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
9
|
Yang H, Chen X, Chen J, Dong Y, Huang Y, Qin L, Tan J, Yi W. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol 2024; 12:1492870. [PMID: 39687521 PMCID: PMC11647014 DOI: 10.3389/fcell.2024.1492870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, where degeneration and death of nucleus pulposus cells within the intervertebral disc (IVD) can be obviously revealed. This degeneration can result in an imbalance in the extracellular matrix due to the loss of proteoglycans and water content, which can further lead to catabolic and anabolic dysfunction of the IVD. Recently, the dysfunction of cartilage endplate (CEP) during aging has drawn large attention due to its essential functions in contributing nutrient exchange and maintaining IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of CEP not only accelerate the degradation of nucleus pulposus extracellular matrix, but also exacerbate IVDD by causing nucleus pulposus cell death through other pathological factors. Here in this review, we summarized the possible pathological factors and the underlying mechanisms of the CEP inflammation-induced IVDD, including exosomes degeneration, CEP calcification, ferroptosis, mechanical changes, and cell senescence. Besides, changes of miRNAs, pain-related neural reflex arc and pathways associated with CEP inflammation-induced IVDD are also reviewed. In addition, new strategies specifically designed for CEP inflammation-induced IVDD are also discussed in the last section. We hope this paper can not only offer some new insights for advancing novel strategies for treating IVDD, but also serve as a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Hantao Yang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xuandu Chen
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jun Chen
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Yansong Dong
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Yafang Huang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Lei Qin
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tan
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Weihong Yi
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Liu F, Chao S, Yang L, Chen C, Huang W, Chen F, Xu Z. Molecular mechanism of mechanical pressure induced changes in the microenvironment of intervertebral disc degeneration. Inflamm Res 2024; 73:2153-2164. [PMID: 39379638 DOI: 10.1007/s00011-024-01954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Lower back pain, as a typical clinical symptom of spinal degenerative diseases, is emerging as a major social problem. According to recent researches, the primary cause of this problem is intervertebral disc degeneration (IVDD). IVDD is closely associated with factors such as age, genetics, mechanical stimulation (MS), and inadequate nutrition. In recent years, an increasing number of studies have further elucidated the relationship between MS and IVDD. However, the exact molecular mechanisms by which MS induces IVDD remain unclear, highlighting the need for in-depth exploration and study of the relationship between MS and IVDD. METHODS Search for relevant literature on IVDD and MS published from January 1, 2010, to the present in the PubMed database. RESULTS One of the main causes of IVDD is MS, and loading modalities have an impact on the creation of matrix metalloproteinase, the metabolism of the cellular matrix, and other biochemical processes in the intervertebral disc. Nucleus pulposus cell death induced by MS, cartilage end-plate destruction accompanied by pyroptosis, apoptosis, iron death, senescence, autophagy, oxidative stress, inflammatory response, and ECM degradation interact with one another to form a cooperative signaling network. CONCLUSION This review discusses the molecular mechanisms of the changes in the microenvironment of intervertebral discs caused by mechanical pressure, explores the interaction between mechanical pressure and IVDD, and provides new insights and approaches for the clinical prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Fei Liu
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Song Chao
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lei Yang
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Chaoqi Chen
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Wutao Huang
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Feng Chen
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| | - Zhiwei Xu
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
- Department of National Medical Masters Hall, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| |
Collapse
|
11
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2024; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
13
|
Wang Z, Fan B, Gu L, Zhang X, Sun T, Liu H, Li R, Wang L, Wang K, Li S, Ma Y, You H, Zhang D. Collagenase Chemonucleolysis for Treating Cervical Disc Herniation: An Exploratory, Single-Arm, Open-Label, Multicenter Clinical Trial. Pain Ther 2024:10.1007/s40122-024-00678-3. [PMID: 39514049 DOI: 10.1007/s40122-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Cervical disc herniation (CDH) is the most common cause of cervical radiculopathy and causes persistent neck pain and neurological deficits. Collagenase chemonucleolysis has been successfully applied to treat lumbar disc herniation, which has a similar pathological mechanism to CDH. However, its application for CDH remains under-researched, and there is an even greater lack of high-quality clinical evidence. This study aims to evaluate the efficacy and safety of collagenase chemonucleolysis for treating CDH. METHODS Eligible patients with CDH underwent collagenase chemonucleolysis via anterior cervical intradiscal injection or epidural injection. The primary efficacy endpoint showed an excellent and good rate regarding the Odom criteria, which was not lower than the reference value (≥ 78%) at 6 months postoperatively. The secondary efficacy endpoints were the percentage reduction in Numeric Rating Scale (NRS) and Neck Disability Index (NDI) scores from baseline, which were not lower than the reference values (≥ 40%, ≥ 30%), and improvement in the 36-Item Short Form Health Survey (SF-36) score compared to the preoperative value. The pre- and postoperative CDH index of patients were also compared. Safety endpoints included the incidence of adverse events (AEs) and serious adverse events (SAEs). RESULTS An excellent and good rate regarding the Odom criteria 6 months postoperatively was 90.5% (133/147), which was significantly higher than 78% (P < 0.004, 95% confidence interval 85.7-95.2%). The reduction in NRS and NDI scores exceeded 40% (P < 0.001) and 30% (P < 0.001), respectively. The SF-36 scores at 3 months and 6 months postoperatively were significantly higher than those preoperatively (P < 0.001). A significant difference was observed in the pre- and postoperative CDH index (109.6 ± 119.1 vs. 70.8 ± 74.8, P < 0.001). The incidence of AEs was 22.5% (33/147), of which 97.8% were grade 1-2. No collagenase-related AEs and SAEs occurred. CONCLUSION Collagenase chemonucleolysis treatment for CDH exhibited favorable efficacy and safety and may be a better choice for patients in whom conservative treatment is ineffective. TRIAL REGISTRATION The trial was registered on www.Chictr.org.cn (ChiCTR2200063043).
Collapse
Affiliation(s)
- Zhijian Wang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Bifa Fan
- Department of Pain, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Xuexue Zhang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Tao Sun
- Department of Pain, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Hui Liu
- Department of Pain, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan, China
| | - Rongchun Li
- Department of Pain, Wuhan Fourth Hospital, Wuhan, 430000, Hubei, China
| | - Likui Wang
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Kaiqiang Wang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Yong Ma
- Department of Pain, The Third People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Haibo You
- Department of Pain, The Third People's Hospital of Linyi, Linyi, 276000, Shandong, China
| | - Daying Zhang
- Department of Pain, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
14
|
Zhao Z, Wang Y, Wang Z, Zhang F, Ding Z, Fan T. Senescence in Intervertebral Disc Degeneration: A Comprehensive Analysis Based on Bioinformatic Strategies. Immun Inflamm Dis 2024; 12:e70072. [PMID: 39555740 PMCID: PMC11571097 DOI: 10.1002/iid3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause for low back pain. Studies showed the association between senescence and degenerative diseases. Cell senescence can promote the occurrence and development of degenerative diseases through multiple mechanisms including inflammatory stress, oxidative stress and nutritional deprivation. The roles of senescence and senescence-associated genes (SAGs) remains unknown in IDD. METHODS Four differently expressed SAGs were identified as hub SAGs using "limma" package in R. We then calculated the immune infiltration of IDD patients, and investigated the relation between hub SAGs and immune infiltration. Enrichment analysis was performed to explore the functions of hub SAGs in IDD. Nomogram and LASSO model based on hub SAGs was constructed to predict the risk of severe degeneration (SD) for IDD patients. Subsequently, single cell analysis was conducted to describe the expression pattern of hub SAGs in intervertebral disc tissue. RESULTS We identified ASPH, CCND1, IGFBP3 and SGK1 as hub SAGs. Further analysis demonstrated that the hub SAGs might mediate the development of IDD by regulating immune infiltration and multiple pathways. The LASSO model based on the four hub SAGs showed good performance in predicting the risk of SD. Single cell analysis revealed that ASPH, CCND1 and SGK1 mainly expressed in nucleus pulposus cells, while IGFBP3 mainly expressed in epithelial cells. Eleven candidate drugs targeting hub SAGS were predicted for IDD patients through Comparative Toxicogenomics Database (CDT). PCR and immunohistochemical analysis showed that the levels of four hub SAGs were higher in SD than MD (mild degeneration) patients. CONCLUSIONS We performed a comprehensive analysis of SAGs in IDD, which revealed their functions and expression pattern in intervertebral disc tissue. Based on hub SAGs, we established a predictive model and explored the potential drugs. These findings provide new understandings of SAG mechanism and promising therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Yining Wang
- Graduate DepartmentJinzhou Medical UniversityJinzhouChina
| | - Zairan Wang
- Department of NeurosurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Zhang
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Ze Ding
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Tao Fan
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Wang W, Liu L, Ma W, Zhao L, Huang L, Zhou D, Fan J, Wang J, Liu H, Wu D, Zheng Z. An anti-senescence hydrogel with pH-responsive drug release for mitigating intervertebral disc degeneration and low back pain. Bioact Mater 2024; 41:355-370. [PMID: 39171275 PMCID: PMC11338064 DOI: 10.1016/j.bioactmat.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and aging lead to progressive senescence of nucleus pulposus (NP) cells, resulting in intervertebral disc (IVD) degeneration (IVDD). In some cases, degenerative IVD can further cause low back pain (LBP). Several studies have confirmed that delaying and rejuvenating the senescence of NP cells can attenuate IVDD. However, the relatively closed tissue structure of IVDs presents challenges for the local application of anti-senescence drugs. Here, we prepared an anti-senescence hydrogel by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with quercetin to alleviate IVDD by removing senescent NP cells. The hydrogel exhibited injectability, biodegradability, prominent biocompatibility and responsive release of quercetin under pathological conditions. In vitro experiments demonstrated that the hydrogel could reduce the expression of senescence markers and restore the metabolic balance in senescent NP cells. In vivo studies validated that a single injection of the hydrogel in situ could maintain IVD tissue structure and alleviate sensitivity to noxious mechanical force in the rat models, indicating a potential therapeutic approach for ameliorating IVDD and LBP. This approach helps prevent potential systemic toxicity associated with systemic administration and reduces the morbidity resulting from repeated injections of free drugs into the IVD, providing a new strategy for IVDD treatment.
Collapse
Affiliation(s)
- Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
16
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
17
|
Zhang C, Diaz-Hernandez ME, Fukunaga T, Sreekala S, Yoon ST, Haglund L, Drissi H. Protective effects of PDGF-AB/BB against cellular senescence in human intervertebral disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617862. [PMID: 39416006 PMCID: PMC11482872 DOI: 10.1101/2024.10.11.617862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cellular senescence, characterized by a permanent state of cell cycle arrest and a secretory phenotype contributing to inflammation and tissue deterioration, has emerged as a target for age-related interventions. Accumulation of senescent cells is closely linked with intervertebral disc (IVD) degeneration, a prevalent age-dependent chronic disorder causing low back pain. Previous studies have highlighted that platelet-derived growth factor (PDGF) mitigated IVD degeneration through anti-apoptosis, anti-inflammation, and pro-anabolism. However, its impact on IVD cell senescence remains elusive. In this study, human NP and AF cells derived from aged, degenerated IVDs were treated with recombinant human (rh) PDGF-AB/BB for 5 days and changes of transcriptome profiling were examined through mRNA sequencing. NP and AF cells demonstrated similar but distinct responses to the treatment. However, the effects of PDGF-AB and BB on human IVD cells were comparable. Specifically, PDGF-AB/BB treatment resulted in downregulation of gene clusters related to neurogenesis and response to mechanical stimulus in AF cells while the downregulated genes in NP cells were mainly associated with metabolic pathways. In both NP and AF cells, PDGF-AB and BB treatment upregulated the expression of genes involved in cell cycle regulation, mesenchymal cell differentiation, and response to reduced oxygen levels, while downregulating the expression of genes related to senescence associated phenotype, including oxidative stress, reactive oxygen species (ROS), and mitochondria dysfunction. Network analysis revealed that PDGFRA and IL6 were the top hub genes in treated NP cells. Furthermore, in irradiation-induced senescent NP cells, PDGFRA gene expression was significantly reduced compared to non-irradiated cells. However, rhPDGF-AB/BB treatment increased PDGFRA expression and mitigated the senescence progression through increased cell population in the S phase, reduced SA-β-Gal activity, and decreased expression of senescence related regulators including P21, P16, IL6, and NF-κB. Our findings reveal a novel anti-senescence role of PDGF in the IVD, demonstrating its ability to alleviate the senescent phenotype and protect against the progression of senescence. This makes it a promising candidate for preventing or treating IVD degeneration by targeting cellular senescence.
Collapse
Affiliation(s)
- Changli Zhang
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Martha Elena Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Takanori Fukunaga
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Shenoy Sreekala
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | | | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Qc., Canada
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
18
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Wang M, Wang H, Wang X, Shen Y, Zhou D, Jiang Y. Identification of cellular senescence-related genes and immune cell infiltration characteristics in intervertebral disc degeneration. Front Immunol 2024; 15:1439976. [PMID: 39328407 PMCID: PMC11424418 DOI: 10.3389/fimmu.2024.1439976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) progression involves multiple factors, including loss of nucleus pulposus cells and extracellular matrix as the basic pathological mechanism of degeneration, and is closely related to cellular senescence and immune cell infiltration. The aim of study was to identify critical cellular senescence-related genes and immune cell infiltration characteristics in IDD. Methods Four datasets, including GSE70362, GSE112216, GSE114169, and GSE150408, were downloaded from the Gene Expression Omnibus database. The senescence-related genes were acquired from the CellAge Database and intersected with differentially expressed genes (DEGs) between IDD and control samples for senescence-related DEGs (SRDEGs). Protein-protein interaction (PPI) network analysis was performed to obtain ten hub SRDEGs. A consensus cluster analysis based on these hub genes was performed to divide the patients into clusters. The functional enrichment, and immune infiltration statuses of the clusters were compared. Weighted gene co-expression network analysis was used to identified key gene modules. The overlapping genes from key modules, DEGs of clusters and hub SRDEGs were intersected to obtain potential biomarkers. To verify the expression of potential biomarkers, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were performed by using human intervertebral disc tissues. Results In the GSE70362 dataset, a total of 364 DEGs were identified, of which 150 were upregulated and 214 were downregulated, and 35 genes were selected as SRDEGs. PPI analysis revealed ten hub SRDEGs and consensus cluster analysis divided the patients into two clusters. Compared to Cluster 2, Cluster 1 was highly enriched in extracellular matrix organization and various metabolic process. The level of Follicular T helper cells in the Cluster 1 was significantly higher than that in the Cluster 2. IGFBP3 and NQO1 were identified as potential biomarkers. The remaining 3 datasets, and the result of qPCR and immunohistochemistry showed that the expression levels of NQO1 and IGFBP3 in the degenerated group were higher than those in the control or treatment groups. Conclusion Senescence-related genes play a key role in the development and occurrence of IDD. IGFBP3 and NQO1 are strongly correlated with immune infiltration in the IDD and could become novel therapeutic targets that prevent the progression of IDD.
Collapse
Affiliation(s)
- Muyi Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xin Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yifei Shen
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Zhou
- Department of Orthopedics, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yuqing Jiang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
21
|
Zou M, Chen W, Li J, Qi X, Wang X, Liu F, Hu J, Zhang Q. Apoptosis Signal-Regulated Kinase-1 Promotes Nucleus Pulposus Cell Senescence and Apoptosis to Regulate Intervertebral Disc Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1737-1751. [PMID: 38879082 DOI: 10.1016/j.ajpath.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the role of apoptosis signal-regulated kinase-1 (ASK1) in intervertebral disc degeneration (IDD). The nucleus pulposus (NP) tissues of non-IDD and IDD patients were subjected to hematoxylin and eosin, Safranin O-fast green, and immunohistochemical staining. Quantitative real-time PCR was used to assess the ASK1 mRNA level within NP tissue samples and cells. The Cell Counting Kit-8 assay, senescence-associated β-galactosidase staining, and flow cytometry were conducted to assess the viability, senescence, and apoptosis of NP cells, respectively. Extracellular matrix-related factors were detected using Western blot analysis. Furthermore, the effect of ASK1 on the IDD rat model was evaluated. Finally, c-Jun N-terminal kinase (JNK) inhibitors were used to verify the effect of the JNK/p38 signaling on IDD. ASK1 mRNA and protein were up-regulated within NP tissue samples from the IDD group, IL-1β-stimulated NP cells, and IDD rats. ASK1 inhibition promoted cell viability and repressed the senescence and apoptosis of NP cells, promoted collagen II and aggrecan, inhibited matrix metalloproteinase 3/9 and a disintegrin and metalloproteinase with thrombospondin motifs 4/5 protein levels, and increased NP cells in rat intervertebral disc tissues. ASK1 overexpression exerted the opposite effects of ASK1 inhibition on NP cells. Additionally, JNK/p38 signaling suppression could reverse the ASK1 up-regulation-induced dysfunction. In conclusion, ASK1 facilitated the senescence and apoptosis of NP cells in promoting IDD progression via the JNK/p38 pathway.
Collapse
Affiliation(s)
- Mingxiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenkang Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fubing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Bing T, Shanlin X, Jisheng W, Jie H, Ruichao C, Zhiwei Z, Bin Y, Zhaoxin M, Zhenming H, Nian Z. Dysregulated lipid metabolism and intervertebral disc degeneration: the important role of ox-LDL/LOX-1 in endplate chondrocyte senescence and calcification. Mol Med 2024; 30:117. [PMID: 39123116 PMCID: PMC11311918 DOI: 10.1186/s10020-024-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lipid metabolism disorders are associated with degeneration of multiple tissues and organs, but the mechanism of crosstalk between lipid metabolism disorder and intervertebral disc degeneration (IDD) has not been fully elucidated. In this study we aim to investigate the regulatory mechanism of abnormal signal of lipid metabolism disorder on intervertebral disc endplate chondrocyte (EPC) senescence and calcification. METHODS Human intervertebral disc cartilage endplate tissue, cell model and rat hyperlipemia model were performed in this study. Histology and immunohistochemistry were used to human EPC tissue detection. TMT-labelled quantitative proteomics was used to detect differential proteins, and MRI, micro-CT, safranin green staining and immunofluorescence were performed to observe the morphology and degeneration of rat tail intervertebral discs. Flow cytometry, senescence-associated β-galactosidase staining, alizarin red staining, alkaline phosphatase staining, DCFH-DA fluorescent probe, and western blot were performed to detect the expression of EPC cell senescence, senescence-associated secretory phenotype, calcification-related proteins and the activation of cell senescence-related signaling pathways. RESULTS Our study found that the highly expressed oxidized low-density lipoprotein (ox-LDL) and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in human degenerative EPC was associated with hyperlipidemia (HLP). TMT-labelled quantitative proteomics revealed enriched pathways such as cell cycle regulation, endochondral bone morphogenesis and inflammation. The rat model revealed that HLP could induce ox-LDL, LOX-1, senescence and calcification markers high expression in EPC. Moreover, we demonstrated that ox-LDL-induced EPCs senescence and calcification were dependent on the LOX-1 receptor, and the ROS/P38-MAPK/NF-κB signaling pathway was implicated in the regulation of senescence induced by ox-LDL/LOX-1 in cell model. CONCLUSIONS So our study revealed that ox-LDL/LOX-1-induced EPCs senescence and calcification through ROS/P38-MAPK/NF-κB signaling pathway, providing information on understanding the link between lipid metabolism disorders and IDD.
Collapse
Affiliation(s)
- Tan Bing
- Department of Spine Surgery, The Third Hospital of Mian Yang, Sichuan Mental Health Center, 621000, Mianyang, People's Republic of China
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Xiang Shanlin
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Wang Jisheng
- Department of Pharmacy, The Third Hospital of Mian Yang, Sichuan Mental Health Center, 621000, Mianyang, People's Republic of China
| | - Hao Jie
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Cao Ruichao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Zhang Zhiwei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Yu Bin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Ma Zhaoxin
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Hu Zhenming
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Zhou Nian
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China.
| |
Collapse
|
23
|
Yan X, Ding JY, Zhang RJ, Zhang HQ, Kang L, Jia CY, Liu XY, Shen CL. FSTL1 Accelerates Nucleus Pulposus Cell Senescence and Intervertebral Disc Degeneration Through TLR4/NF-κB Pathway. Inflammation 2024; 47:1229-1247. [PMID: 38316670 DOI: 10.1007/s10753-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), and inflammatory factors play crucial roles in its pathogenesis. Follistatin-like 1 (FSTL1) has been reported to induce an inflammatory response in chondrocytes, microglia and preadipocytes, but its role in the pathogenesis of nucleus pulposus cell (NPC) degeneration remains unclear. In this study, we mainly utilized an acidosis-induced NPC degeneration model and a rabbit puncture IVDD model to investigate the role of FSTL1 in IVDD both in vitro and in vivo. We confirmed that FSTL1 expression significantly increased in nucleus pulposus (NP) tissues from IVDD patients and rabbit puncture IVDD models. The expression levels of FSTL1 were significantly increased in all three models of NPC degeneration under harsh microenvironments. In addition, recombinant human FSTL1 (rh-FSTL1) was found to upregulate the expression of p16 and p21, increase the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells, induce senescence-related secretory phenotypes (SASP), and downregulate extracellular matrix (ECM) protein expressions, leading to an imbalance in ECM metabolism destructions. Conversely, silencing of FSTL1 by small interfering RNA (siRNA) ameliorated senescence of NPCs associated with inflammation in IVDD. Furthermore, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway plays a crucial role in regulating NPC senescence through FSTL1 regulation. Inhibition of TLR4 expression partly reversed the effects of rh-FSTL1 on NPC senescence-associated inflammation. Finally, rabbit IVDD model experiments demonstrated that the specific FSTL1 siRNA markedly repressed the development of IVDD. These findings may offer a therapeutic approach for mitigating inflammation-induced senescence associated with IVDD.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jing-Yu Ding
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiao-Ying Liu
- School of Life Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
24
|
Sun R, Wang F, Zhong C, Shi H, Peng X, Gao JW, Wu XT. The regulatory mechanism of cyclic GMP-AMP synthase on inflammatory senescence of nucleus pulposus cell. J Orthop Surg Res 2024; 19:421. [PMID: 39034400 PMCID: PMC11265083 DOI: 10.1186/s13018-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1β for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1β. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1β for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1β. CONCLUSION cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.
Collapse
Affiliation(s)
- Rui Sun
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Feng Wang
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Cong Zhong
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Hang Shi
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Xin Peng
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Jia-Wei Gao
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Xiao-Tao Wu
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China.
| |
Collapse
|
25
|
Penolazzi L, Chierici A, Notarangelo MP, Dallan B, Lisignoli G, Lambertini E, Greco P, Piva R, Nastruzzi C. Wharton's jelly-derived multifunctional hydrogels: New tools to promote intervertebral disc regeneration in vitro and ex vivo. J Biomed Mater Res A 2024; 112:973-987. [PMID: 38308554 DOI: 10.1002/jbm.a.37683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Chierici
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Obstetrics and Gynecology Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Bo Y, Zhang Y, Wei L, Pei X, Zhu B, Zanoli L, Kalantar-Zadeh K, Gao F, Yong Z, Zhang T, Zhao W, Wu J. BRD4 plays an antiaging role in the senescence of renal tubular epithelial cells. Transl Androl Urol 2024; 13:1014-1023. [PMID: 38983468 PMCID: PMC11228682 DOI: 10.21037/tau-24-214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Background Age-related kidney failure is often induced by a decrease in the bioavailability of tubular epithelial cells in elderly chronic kidney disease (CKD) patients. BRD4, an epigenetic regulator and a member of the bromodomain and extraterminal (BET) protein family, acts as a super-enhancer (SE) organizing and regulating genes expression during embryogenesis and cancer development. But the physiological function of BRD4 in normal cells has been less studied. This study aimed to research certain biological roles of BRD4 in the process of normal cell aging and discuss the potential mechanisms. Methods In this study, we investigated the biological functions of BRD4 proteins in the aging of renal tubular cells. At first, we used a D-galactose (D-gal) and BRD4 inhibitor (Abbv-075) to replicate kidney senescence in vivo. D-gal and Abbv-075 were then used to measure the aging-related changes, such as changes in cell cycle, β-galactosidase activity, cell migration, and p16 protein expression in vitro. At last, we knocked down and over-expressed BRD4 to investigate the aging-related physiological phenomena in renal tubular cells. Results In vitro, D-gal treatment induced noticeable aging-related changes such as inducing cell apoptosis and cell cycle arrest, increasing β-galactosidase activity as well as up-regulating p16 protein expression in primary human tubular epithelial cells. In the aging mice model, D-gal significantly induced renal function impairment and attenuated BRD4 protein expression. At the same time, the BRD4 inhibitor (Abbv-075) was able to mimic D-gal-induced cell senescence. In vivo, Abbv-075 also decreased kidney function and up-regulated p21 protein expression. When we knocked down the expression of BRD4, the senescence-associated β-galactosidase (SA-β-gal) activity increased dramatically, cell migration was inhibited, and the proportion of cells in the G0/G1 phase increased. Additionally, the knockdown also promoted the expression of the senescence-related proteins p16. When the renal tubular cells were overexpressed with BRD4, cell aging-related indicators were reversed in the D-gal-induced cell aging model. Conclusions BRD4 appears to have an active role in the aging of renal tubular cells in vivo and in vitro. The findings also suggest that BRD4 inhibitors have potential nephrotoxic effects for oncology treatment. BRD4 may be a potential therapeutic biomarker and drug target for aging-related kidney diseases, which warrants additional studies.
Collapse
Affiliation(s)
- Yun Bo
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wei
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohua Pei
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luca Zanoli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Tibor Rubin VA Medical Center, Long Beach, CA, USA
- Division of Nephrology, Hypertension, and Kidney Transplantation, University of California, Irvine, Orange, CA, USA
| | - Fei Gao
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhu Yong
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihong Zhao
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianqing Wu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Bahar ME, Hwang JS, Lai TH, Byun JH, Kim DH, Kim DR. The Survival of Human Intervertebral Disc Nucleus Pulposus Cells under Oxidative Stress Relies on the Autophagy Triggered by Delphinidin. Antioxidants (Basel) 2024; 13:759. [PMID: 39061828 PMCID: PMC11273539 DOI: 10.3390/antiox13070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Delphinidin (Delp), a natural antioxidant, has shown promise in treating age-related ailments such as osteoarthritis (OA). This study investigates the impact of delphinidin on intervertebral disc degeneration (IVDD) using human nucleus pulposus cells (hNPCs) subjected to hydrogen peroxide. Various molecular and cellular assays were employed to assess senescence, extracellular matrix (ECM) degradation markers, and the activation of AMPK and autophagy pathways. Initially, oxidative stress (OS)-induced hNPCs exhibited notably elevated levels of senescence markers like p53 and p21, which were mitigated by Delp treatment. Additionally, Delp attenuated IVDD characteristics including apoptosis and ECM degradation markers in OS-induced senescence (OSIS) hNPCs by downregulating MMP-13 and ADAMTS-5 while upregulating COL2A1 and aggrecans. Furthermore, Delp reversed the increased ROS production and reduced autophagy activation observed in OSIS hNPCs. Interestingly, the ability of Delp to regulate cellular senescence and ECM balance in OSIS hNPCs was hindered by autophagy inhibition using CQ. Remarkably, Delp upregulated SIRT1 and phosphorylated AMPK expression while downregulating mTOR phosphorylation in the presence of AICAR (AMPK activator), and this effect was reversed by Compound C, AMPK inhibitor. In summary, our findings suggest that Delp can safeguard hNPCs from oxidative stress by promoting autophagy through the SIRT1/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Medical Science, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (J.S.H.); (T.H.L.)
| |
Collapse
|
28
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
29
|
Zhan K, Zhu K, Gu B, Yao S, Fu F, Zeng H, Tian K, Ji W, Jin H, Tong P, Wu C, Yue M, Ruan H. MINK1 deficiency stimulates nucleus pulposus cell pyroptosis and exacerbates intervertebral disc degeneration. Int Immunopharmacol 2024; 134:112202. [PMID: 38723371 DOI: 10.1016/j.intimp.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Intervertebral disc (IVD) degeneration, induced by aging and irregular mechanical strain, is highly prevalent in the elderly population, serving as a leading cause of chronic low back pain and disability. Evolving evidence has revealed the involvement of nucleus pulposus (NP) pyroptosis in the pathogenesis of IVD degeneration, while the precise regulatory mechanisms of NP pyroptosis remain obscure. Misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1), a serine-threonine protein kinase, has the potential to modulate the activation of NLRP3 inflammasome, indicating its pivotal role in governing pyroptosis. In this study, to assess the significance of MINK1 in NP pyroptosis and IVD degeneration, NP tissues from patients with varying degrees of IVD degeneration, and IVD tissues from both aging-induced and lumbar spine instability (LSI) surgery-induced IVD degeneration mouse models, with or without MINK1 ablation, were meticulously evaluated. Our findings indicated a notable decline in MINK1 expression in NP tissues of patients with IVD degeneration and both mouse models as degeneration progresses, accompanied by heightened matrix degradation and increased NP pyroptosis. Moreover, MINK1 ablation led to substantial activation of NP pyroptosis in both mouse models, and accelerating ECM degradation and intensifying the degeneration phenotype in mechanically stress-induced mice. Mechanistically, MINK1 deficiency triggered NF-κB signaling in NP tissues. Overall, our data illustrate an inverse correlation between MINK1 expression and severity of IVD degeneration, and the absence of MINK1 stimulates NP pyroptosis, exacerbating IVD degeneration by activating NF-κB signaling, highlighting a potential innovative therapeutic target in treating IVD degeneration.
Collapse
Affiliation(s)
- Kunyu Zhan
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keying Zhu
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingyan Gu
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hanbing Zeng
- The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kun Tian
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Ji
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengliang Wu
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Hongfeng Ruan
- Institute of Orthopaedic and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine); The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Wu H, Wang J, Lin Y, He W, Hou J, Deng M, Chen Y, Liu Q, Lu A, Cui Z, Guan D, Yu B. Injectable Ozone-Rich Nanocomposite Hydrogel Loaded with D-Mannose for Anti-Inflammatory and Cartilage Protection in Osteoarthritis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309597. [PMID: 38279613 DOI: 10.1002/smll.202309597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1β, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.
Collapse
Affiliation(s)
- Hangtian Wu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yanpeng Lin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Wanling He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiahui Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510515, P. R. China
| | - Zhuang Cui
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
31
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
32
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
33
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
34
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Qu C, Wu Q, Lu J, Li F. Prognostic value and potential mechanism of cellular senescence and tumor microenvironment in hepatocellular carcinoma: Insights from bulk transcriptomics and single-cell sequencing analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2512-2527. [PMID: 38189188 DOI: 10.1002/tox.24121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024]
Abstract
The high mortality rate and postoperative recurrence of hepatocellular carcinoma (HCC) contribute to the burden on society and healthcare. The prognostic value and underlying mechanisms of cellular senescence and tumor microenvironment (TME) in HCC remain unclear. Bulk transcriptomic data were obtained from 368 HCC samples in The Cancer Genome Atlas-liver hepatocellular carcinoma cohort and 64 samples from the GSE116174 dataset. Single-cell RNA sequencing (scRNA-seq) data of HCC were obtained from the GSE149614 dataset, including 18 tumor samples from 10 patients. Prognosis-related cellular senescence genes and immune cells were identified through univariate analysis. Least absolute shrinkage and selection operator regression analysis was performed to construct the CellAge score and TME score, both of which were identified as independent prognostic factors for HCC based on multivariate Cox analysis. The combined CellAge and TME scores showed improved prognostic stratification for HCC patients, as confirmed by multivariate Cox analysis (p < .001). The gene set enrichment analysis (GSEA) revealed enrichment of the extracellular matrix receptor interaction signaling pathway in the group with high CellAge scores and low TME scores, which exhibited a worse prognosis. Single-cell sequencing results revealed higher expression activity of the cAMP response element modulator (CREM) extended transcription factor in HCC cells and most immune cells, indicating its involvement in TME remodeling. Finally, the tumor immune dysfunction and exclusion (TIDE) analysis demonstrated that the combined scores could predict the outcomes of immune therapy in patients with HCC. In conclusion, cellular senescence contributes to TME remodeling in HCC, and the developed CellAge and TME scores serve as independent prognostic factors and predictors of immune therapy in HCC.
Collapse
Affiliation(s)
- Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Qian Wu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Kritschil R, Li V, Wang D, Dong Q, Silwal P, Finkel T, Lee J, Sowa G, Vo N. Impact of autophagy inhibition on intervertebral disc cells and extracellular matrix. JOR Spine 2024; 7:e1286. [PMID: 38234974 PMCID: PMC10792703 DOI: 10.1002/jsp2.1286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a leading contributor to low back pain (LBP). Autophagy, strongly activated by hypoxia and nutrient starvation, is a vital intracellular quality control process that removes damaged proteins and organelles to recycle them for cellular biosynthesis and energy production. While well-established as a major driver of many age-related diseases, autophagy dysregulation or deficiency has yet been confirmed to cause IDD. Methods In vitro, rat nucleus pulposus (NP) cells treated with bafilomycin A1 to inhibit autophagy were assessed for glycosaminoglycan (GAG) content, proteoglycan synthesis, and cell viability. In vivo, a transgenic strain (Col2a1-Cre; Atg7 fl/fl) mice were successfully generated to inhibit autophagy primarily in NP tissues. Col2a1-Cre; Atg7 fl/fl mouse intervertebral discs (IVDs) were evaluated for biomarkers for apoptosis and cellular senescence, aggrecan content, and histological changes up to 12 months of age. Results Here, we demonstrated inhibition of autophagy by bafilomycin produced IDD features in the rat NP cells, including increased apoptosis and cellular senescence (p21 CIP1) and decreased expression of disc matrix genes Col2a1 and Acan. H&E histologic staining showed significant but modest degenerative changes in NP tissue of Col2a1-Cre; Atg7 fl/fl mice compared to controls at 6 and 12 months of age. Intriguingly, 12-month-old Col2a1-Cre; Atg7 fl/fl mice did not display increased loss of NP proteoglycan. Moreover, markers of apoptosis (cleaved caspase-3, TUNEL), and cellular senescence (p53, p16 INK4a , IL-1β, TNF-α) were not affected in 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls. However, p21 CIP1and Mmp13 gene expression were upregulated in NP tissue of 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls, suggesting p21 CIP1-mediated cellular senescence resulted from NP-targeted Atg7 knockout might contribute to the observed histological changes. Conclusion The absence of overt IDD features from disrupting Atg7-mediated macroautophagy in NP tissue implicates other compensatory mechanisms, highlighting additional research needed to elucidate the complex biology of autophagy in regulating age-dependent IDD.
Collapse
Affiliation(s)
- Rebecca Kritschil
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Vivian Li
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Drexel School of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qing Dong
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Prashanta Silwal
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Joon Lee
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nam Vo
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
37
|
Liu L, Sun H, Zhang Y, Liu C, Zhuang Y, Liu M, Ai X, Long D, Huang B, Li C, Zhou Y, Dong S, Feng C. Dynamics of N6-methyladenosine modification during aging and their potential roles in the degeneration of intervertebral disc. JOR Spine 2024; 7:e1316. [PMID: 38283178 PMCID: PMC10810761 DOI: 10.1002/jsp2.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Background The N6-methyladenosine (m6A) dynamics in the progression of intervertebral disc (IVD) aging remain largely unknown. This study aimed to explore the distribution and pattern of m6A modification in nucleus pulpous (NP) tissues of rats at different ages. Methods Histological staining and MRI were performed to evaluate the degeneration of IVD. The expression of m6A modifiers was analyzed using qRT-PCR and western blot. Subsequently, methylated RNA immunoprecipitation next generation sequencing and RNA-seq were conducted to identify differences in m6A methylome and transcriptome of NP tissues. Results Compared to 2-month-old rats, we found significant changes in the global m6A level and the expression of Mettl3 and FTO in NP tissues from 20-month-old rats. During the progression of NP aging, there were 1126 persistently differentially m6A peaks within 931 genes, and 51 persistently differentially expressed genes. GO and KEGG analyses showed that these m6A peaks and m6A modified genes were mainly engaged in the biological processes and pathways of intervertebral disc degermation (IDD), such as extracellular matrix metabolism, angiogenesis, inflammatory response, mTOR and AMPK signaling pathways. Meanwhile, conjoint analyses and Venn diagram revealed a total of 405 aging related genes contained significant methylation and expression levels in 20-month-old rats in contrast to 2-month-old and 10-month-old rats. Moreover, it was found that four aging related genes with hypermethylated modification including BUB1, CA12, Adamts1, and Adamts4 depicted differentially expressed at protein level, of which BUB1 and CA12 were decreased, while Adamts1 and Adamts4 were increased during the progression of NP aging. Conclusion Collectively, this study elucidated the distribution and pattern of m6A modification during the aging of IVD. Furthermore, the m6A modified genes were involved in the IDD related biological processes and pathways. These findings may provide novel insights into the mechanisms and therapies of IDD from the perspective of aging.
Collapse
Affiliation(s)
- Libangxi Liu
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yang Zhang
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Chang Liu
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xuezheng Ai
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Dan Long
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Bo Huang
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Changqing Li
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical EngineeringArmy Medical UniversityChongqingChina
- State Key Laboratory of Trauma, Burns and Combined InjuryArmy Medical UniversityChongqingChina
| | - Chencheng Feng
- Department of Orthopaedics, Xinqiao HospitalArmy Medical UniversityChongqingChina
- Department of Biomedical Materials Science, School of Biomedical EngineeringArmy Medical UniversityChongqingChina
| |
Collapse
|
38
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|
39
|
Montgomery-Song A, Ashraf S, Santerre P, Kandel R. Senescent response in inner annulus fibrosus cells in response to TNFα, H2O2, and TNFα-induced nucleus pulposus senescent secretome. PLoS One 2024; 19:e0280101. [PMID: 38181003 PMCID: PMC10769024 DOI: 10.1371/journal.pone.0280101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/01/2023] [Indexed: 01/07/2024] Open
Abstract
Senescence, particularly in the nucleus pulposus (NP) cells, has been implicated in the pathogenesis of disc degeneration, however, the mechanism(s) of annulus fibrosus (AF) cell senescence is still not well understood. Both TNFα and H2O2, have been implicated as contributors to the senescence pathways, and their levels are increased in degenerated discs when compared to healthy discs. Thus, the objective of this study is to identify factor(s) that induces inner AF (iAF) cell senescence. Under TNFα exposure, at a concentration previously shown to induce senescence in NP cells, bovine iAF cells did not undergo senescence, indicated by their ability to continue to proliferate as demonstrated by Ki67 staining and growth curves and lack of expression of the senescent markers, p16 and p21. The lack of senescent response occurred even though iAF express higher levels of TNFR1 than NP cells. Interestingly, iAF cells showed no increase in intracellular ROS or secreted H2O2 in response to TNFα which contrasted to NP cells that did. Following TNFα treatment, only iAF cells had increased expression of the superoxide scavengers SOD1 and SOD2 whereas NP cells had increased NOX4 gene expression, an enzyme that can generate H2O2. Treating iAF cells with low dose H2O2 (50 μM) induced senescence, however unlike TNFα, H2O2 did not induce degenerative-like changes as there was no difference in COL2, ACAN, MMP13, or IL6 gene expression or number of COL2 and ACAN immunopositive cells compared to untreated controls. The latter result suggests that iAF cells may have distinct degenerative and senescent phenotypes. To evaluate paracrine signalling by senescent NP cells, iAF and TNFα-treated NP cells were co-cultured. In contact co-culture the NP cells induced iAF senescence. Thus, senescent NP cells may secrete soluble factors that induce degenerative and senescent changes within the iAF. This may contribute to a positive feedback loop of disc degeneration. It is possible these factors may include H2O2 and cytokines (such as TNFα). Further studies will investigate if human disc cells respond similarly.
Collapse
Affiliation(s)
| | - Sajjad Ashraf
- Pathology and Laboratory Medicine, Mt. Sinai Hospital and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Paul Santerre
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita Kandel
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Miryutova NF, Badalov NG, Gameeva EV, Stepanova AM. [Effectiveness of spinal traction in degenerative spine diseases. (A literature review)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 102:60-69. [PMID: 39248588 DOI: 10.17116/kurort202410104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Back pain is one of the most urgent healthcare problems in many countries of the world. The high prevalence of the disease among persons of working age, the high disability indices and the high economic losses determine the relevance of this problem and its epidemiological and socio-economic significance. OBJECTIVE To analyze sources of scientific and technical literature and study materials of meta-analyses, systematic reviews on the issues of evaluation of the spinal traction effectiveness (dry and underwater, horizontal and vertical) in the treatment of patients with degenerative spine diseases. MATERIAL AND METHODS An analysis of 67 sources, including 54 periodical articles, 5 meta-analyses and 8 systematic reviews was conducted. The search depth was 20 years. RESULTS The ability of the spinal traction method to influence on the pain intensity, functional state, general improvement or return to work in patients with degenerative spine diseases has been identified. There has been a statistically significant regression of lumbar and radicular pain under the influence of «dry» horizontal tractions of the spine (13389 patients with degenerative spine diseases received them), including in combination with physiotherapy (vibration, impulse currents, laser therapy), and there has been an improvement in the motor function of the spine, a decrease in the disability rate in patients with herniated disks. These results were also obvious in short-term observation (up to 3 months after intervention). Underwater traction (5533 patients received it) had a positive impact on pain syndrome at rest and during activity, increased the activity of patients. All registered effects were related to short-term effect for up to 3 months after the intervention. CONCLUSION The evidence, based on the materials of meta-analyses and systematic reviews of medium and low quality, that «dry» and underwater spinal traction can be considered as a therapeutic tool for short-term (within 3 months) reducing pain and disability in patients with lumbar pain and lumbar radiculopathy, is presented.
Collapse
Affiliation(s)
- N F Miryutova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - N G Badalov
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - E V Gameeva
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| | - A M Stepanova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|
41
|
Song C, Xu Y, Peng Q, Chen R, Zhou D, Cheng K, Cai W, Liu T, Huang C, Fu Z, Wei C, Liu Z. Mitochondrial dysfunction: a new molecular mechanism of intervertebral disc degeneration. Inflamm Res 2023; 72:2249-2260. [PMID: 37925665 DOI: 10.1007/s00011-023-01813-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) is a chronic degenerative orthopedic illness that causes lower back pain as a typical clinical symptom, severely reducing patients' quality of life and work efficiency, and imposing a significant economic burden on society. IVDD is defined by rapid extracellular matrix breakdown, nucleus pulposus cell loss, and an inflammatory response. It is intimately related to the malfunction or loss of myeloid cells among them. Many mechanisms have been implicated in the development of IVDD, including inflammatory factors, oxidative stress, apoptosis, cellular autophagy, and mitochondrial dysfunction. In recent years, mitochondrial dysfunction has become a hot research topic in age-related diseases. As the main source of adenosine triphosphate (ATP) in myeloid cells, mitochondria are essential for maintaining myeloid cell survival and physiological functions. METHODS We searched the PUBMED database with the search term "intervertebral disc degeneration and mitochondrial dysfunction" and obtained 82 articles, and after reading the abstracts and eliminating 30 irrelevant articles, we finally obtained 52 usable articles. RESULTS Through a review of the literature, it was discovered that IVDD and cellular mitochondrial dysfunction are also linked. Mitochondrial dysfunction contributes to the advancement of IVDD by influencing a number of pathophysiologic processes such as mitochondrial fission/fusion, mitochondrial autophagy, cellular senescence, and cell death. CONCLUSION We examine the molecular mechanisms of IVDD-associated mitochondrial dysfunction and present novel directions for quality management of mitochondrial dysfunction as a treatment approach to IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Yulin Xu
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qinghua Peng
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Chenyi Huang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Cong Wei
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
42
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
43
|
Zhang G, Li L, Yang Z, Zhang C, Kang X. TMT-Based Proteomics Analysis of Senescent Nucleus Pulposus from Patients with Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13236. [PMID: 37686041 PMCID: PMC10488253 DOI: 10.3390/ijms241713236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Lower back pain, a leading cause of disability worldwide, is associated with intervertebral disc degeneration (IDD) in approximately 40% of cases. Although nucleus pulposus (NP) cell senescence is a major contributor to IDD, the underlying mechanisms remain unclear. We collected NP samples from IDD patients who had undergone spinal surgery. Healthy and senescent NP tissues (n = 3) were screened using the Pfirrmann grading system combined with immunohistochemistry, as well as hematoxylin and eosin, Safranin O, Alcian blue, and Masson staining. Differentially expressed proteins (DEPs) were identified using quantitative TMT-based proteomics technology. Bioinformatics analyses included gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) analyses. In addition, immunofluorescence was used to verify protein expression. In total, 301 DEPs were identified in senescent NP tissues, including 92 upregulated and 209 downregulated proteins. In GO, DEPs were primarily associated with NF-kappaB transcription factor, extracellular regions, cellular protein metabolic processes, and post-translational protein modification. The enriched KEGG pathways included TGF-β, Wnt, RAP1, interleukin-17, extracellular matrix-receptor adhesion, and PI3K/Akt signaling pathways. PPI analysis demonstrated interactions between multiple proteins. Finally, immunofluorescence verified the expressions of MMP3, LUM, TIMP1, and CDC42 in senescent NP cells. Our study provides valuable insights into the mechanisms underlying senescent NP tissues in IDD patients. DEPs provide a basis for further investigation of the effects of senescent factors on IDD.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China; (G.Z.); (L.L.); (Z.Y.); (C.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China; (G.Z.); (L.L.); (Z.Y.); (C.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China; (G.Z.); (L.L.); (Z.Y.); (C.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Cangyu Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China; (G.Z.); (L.L.); (Z.Y.); (C.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China; (G.Z.); (L.L.); (Z.Y.); (C.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
44
|
Geng Z, Wang J, Chen G, Liu J, Lan J, Zhang Z, Miao J. Gut microbiota and intervertebral disc degeneration: a bidirectional two-sample Mendelian randomization study. J Orthop Surg Res 2023; 18:601. [PMID: 37580794 PMCID: PMC10424333 DOI: 10.1186/s13018-023-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Although previous studies have suggested a close association between gut microbiota (GM) and intervertebral disc degeneration (IVDD), the causal relationship between them remains unclear. Hence, we thoroughly investigate their causal relationship by means of a two-sample Mendelian randomization (MR) study, aiming to determine the impact of gut microbiota on the risk of developing intervertebral disc degeneration. METHODS Summary data from genome-wide association studies of GM (the MiBioGen) and IVDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran's Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. A reverse MR analysis was conducted to assess potential reverse causation. RESULTS We identified nine gut microbial taxa that were causally associated with IVDD (P < 0.05). Following the Benjamini-Hochberg corrected test, the association between the phylum Bacteroidetes and a higher risk of IVDD remained significant (IVW FDR-corrected P = 0.0365). The results of the Cochrane Q test did not indicate heterogeneity (P > 0.05). Additionally, both the MR-Egger intercept test and the MR-PRESSO global test revealed that our results were not influenced by horizontal pleiotropy (P > 0.05). Furthermore, the leave-one-out analysis substantiated the reliability of the causal relationship. In the reverse analysis, no evidence was found to suggest that IVDD has an impact on the gut microbiota. CONCLUSION Our results validate the potential causal impact of particular GM taxa on IVDD, thus providing fresh insights into the gut microbiota-mediated mechanism of IVDD and laying the groundwork for further research into targeted preventive measures.
Collapse
Affiliation(s)
- Ziming Geng
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jian Wang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Guangdong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jianchao Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jie Lan
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| |
Collapse
|