1
|
Bayırlı AB, Gürhan C, Saruhan E. Evaluation of salivary melatonin and MMP-9 levels in periodontal diseases. Arch Oral Biol 2025; 169:106116. [PMID: 39461024 DOI: 10.1016/j.archoralbio.2024.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate salivary matrix metalloproteinase-9 (MMP-9) and melatonin levels in individuals with periodontal health, gingivitis, and periodontitis. DESIGN A total of 170 participants were enrolled in this study. They included 57 periodontally healthy individuals, 58 gingivitis patients, and 55 periodontitis patients. Saliva samples were collected by passive drool technique. The levels of MMP-9 and melatonin in saliva were measured biochemically using the ELISA method. RESULTS Salivary MMP-9 levels in the periodontitis group were significantly higher than those in the gingivitis and periodontally healthy groups, while salivary melatonin levels were significantly lower (p<0.001). A positive correlation was observed between clinical periodontal parameters and salivary MMP-9 levels, while salivary melatonin levels were negatively correlated (p<0.001). A negative correlation was also observed between salivary MMP-9 levels and salivary melatonin levels (p<0.001). CONCLUSION This study shows that the level of melatonin in saliva is associated with periodontal disease and with the level of MMP-9 in saliva, which plays a role in this disease.
Collapse
Affiliation(s)
- Ali Batuhan Bayırlı
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Department of Periodontology, Muğla 48000, Turkey.
| | - Ceyda Gürhan
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Muğla 48000, Turkey
| | - Ercan Saruhan
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Medical Biochemistry, Muğla 48000, Turkey
| |
Collapse
|
2
|
Marzouk M, Greco S, Gbahou F, Küblbeck J, Labani N, Jockers R, Holzgrabe U, Wiesmüller L, Zlotos DP. Cancer Cells Show Higher Sensitivity to Melatonin-Tamoxifen Drug Conjugates than to Combination of Melatonin and Tamoxifen. ACS OMEGA 2024; 9:47857-47871. [PMID: 39651096 PMCID: PMC11618438 DOI: 10.1021/acsomega.4c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024]
Abstract
Drug conjugates of tamoxifen and melatonin linked through the amide side chain of melatonin (4a,4b) were reported as promising agents for future treatment of breast cancer, possibly reversing the adverse effects of tamoxifen. Here, we report the synthesis and pharmacological evaluation of a novel series of anticancer drug conjugates linking melatonin with tamoxifen through polymethylene spacers through the ether oxygen of melatonin (16a-c, 19a-c, 21) and compare them to the previously reported amide-linked analogues 4a and 4b. All hybrid ligands are antagonists of estrogen receptor alpha and agonists of the melatonin MT1 receptor with variable potencies. Several drug conjugates including the (CH2)4-linked analogues 4a and 16a and the (CH2)6-linked compound 16c showed higher potency to inhibit cell viability than the combination of melatonin and tamoxifen on at least one cancer cell line including MCF-7, MDA-MB-231, and HT-1080.
Collapse
Affiliation(s)
- Mohamed
Akmal Marzouk
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Würzburg 97074, Germany
| | - Sara Greco
- Department
of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, Ulm 89075, Germany
| | - Florence Gbahou
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Jenni Küblbeck
- A.I. Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- School of
Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
| | - Nedjma Labani
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Ralf Jockers
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Würzburg 97074, Germany
| | - Lisa Wiesmüller
- Department
of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, Ulm 89075, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo 11835, Egypt
| |
Collapse
|
3
|
Galvani F, Cammarota M, Vacondio F, Rivara S, Boscia F. Protective Activity of Melatonin Combinations and Melatonin-Based Hybrid Molecules in Neurodegenerative Diseases. J Pineal Res 2024; 76:e70008. [PMID: 39582467 PMCID: PMC11586835 DOI: 10.1111/jpi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The identification of protective agents for the treatment of neurodegenerative diseases is the mainstay therapeutic goal to modify the disease course and arrest the irreversible disability progression. Pharmacological therapies synergistically targeting multiple pathogenic pathways, including oxidative stress, mitochondrial dysfunction, and inflammation, are prime candidates for neuroprotection. Combination or synergistic therapy with melatonin, whose decline correlates with altered sleep/wake cycle and impaired glymphatic "waste clearance" system in neurodegenerative diseases, has a great therapeutic potential to treat inflammatory neurodegenerative states. Despite the protective outcomes observed in preclinical studies, mild or poor outcomes were observed in clinical settings, suggesting that melatonin combinations promoting synergistic actions at appropriate doses might be more suitable to treat multifactorial neurodegenerative disorders. In this review, we first summarize the key melatonin actions and pathways contributing to cell protection and its therapeutic implication in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We remark the major controversies in the field, mostly generated by the lack of a common consensus for the optimal dosing, molecular targets, and toxicity. Then, we review the literature investigating the efficacy of melatonin combinations with approved or investigational neuroprotective agents and of melatonin-containing hybrid molecules, both in vitro and in animal models of AD, PD, and MS, as well as the efficacy of add-on melatonin in clinical settings. We highlight the rationale for such melatonin combinations with a focus on the comparison with single-agent treatment and on the assays in which an additive or a synergistic effect has been achieved. We conclude that a better characterization of the mechanisms underlying such melatonin synergistic actions under neuroinflammation at appropriate doses needs to be tackled to advance successful clinical translation of neuroprotective melatonin combination therapies or melatonin-based hybrid molecules.
Collapse
Affiliation(s)
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| | | | - Silvia Rivara
- Department of Food and DrugUniversity of ParmaParmaItaly
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| |
Collapse
|
4
|
Kennaway DJ. The appropriate and inappropriate uses of saliva melatonin measurements. Chronobiol Int 2024; 41:1351-1364. [PMID: 39533493 DOI: 10.1080/07420528.2024.2428197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Melatonin is produced in the pineal gland under very tight control through the influences of light and the suprachiasmatic nucleus. As such, melatonin circulates in the blood at levels <3 pg/ml during the day and is only actively secreted at night reaching levels of approximately 100 pg/ml. As a consequence of binding to plasma proteins, free melatonin appears in saliva at approximately one third the plasma concentration. Measurement of melatonin is technically challenging because of these very low concentrations and while a number of commercial immunoassay kits are available and mass spectrometry assay methods have been published, not all are fit for purpose and can lead to unreliable conclusions. In this review I discuss the aspects of pineal melatonin production that saliva melatonin reflects, the factors influencing melatonin production or metabolism, saliva collection and analysis methods. Examples are provided of the appropriate use of saliva melatonin measurements; Dim Light Melatonin Onset (DLMO) assessment, impact of light on melatonin and the monitoring of rhythms prior to specific treatments. Examples of inappropriate use of saliva melatonin measurements are also provided including the use of poorly validated assays, morning saliva collections, attempts to stimulate melatonin, and linking specific illnesses to saliva melatonin levels.
Collapse
Affiliation(s)
- David J Kennaway
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
7
|
Paditz E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1197. [PMID: 39457162 PMCID: PMC11506472 DOI: 10.3390/children11101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow's milk with melatonin-poor day milk and melatonin-rich night milk.
Collapse
Affiliation(s)
- Ekkehart Paditz
- Center for Applied Prevention®, Blasewitzer Str. 41, D-01307 Dresden, Germany
| |
Collapse
|
8
|
Noguchi Y, Masuda R, Aizawa H, Yoshimura T. Relationship Between Melatonin Receptor Agonists and Parkinson's Disease. J Pineal Res 2024; 76:e13002. [PMID: 39119925 DOI: 10.1111/jpi.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease affects millions of people worldwide, and without significant progress in disease prevention and treatment, its incidence and prevalence could increase by more than 30% by 2030. Researchers have focused on targeting sleep and the circadian system as a novel treatment strategy for Parkinson's disease. This study investigated the association between melatonin receptor agonists and Parkinson's disease, using the Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS). The target drugs were melatonin receptor agonists including ramelteon, tasimelteon, and agomelatine. Parkinson's disease cases were defined according to the Medical Dictionary for Regulatory Activities (MedDRA) 25.0; Standardized MedDRA Query (SMQ) using both the "narrow" and "broad" preferred terms (PTs) associated with Parkinson's disease. The association between melatonin receptor agonists (ramelteon, tasimelteon, and agomelatine) and Parkinson's disease was evaluated by the reporting odds ratio. Upon analyzing the data from all patients registered in the FAERS, ramelteon (ROR: 0.66, 95% confidence interval [95% CI]: 0.51-0.84) and tasimelteon (ROR: 0.49, 95% CI: 0.38-0.62) showed negative correlations with Parkinson's disease. Conversely, only agomelatine was positively correlated with Parkinson's disease (ROR: 2.63, 95% CI: 2.04-3.40). These results suggest that among the melatonin receptor agonists, ramelteon and tasimelteon are negatively correlated with Parkinson's disease. In contrast, agomelatine was shown to be positively correlated with Parkinson's disease. These results should be used in research to develop drugs for the treatment of Parkinson's disease, fully considering the limitations of the spontaneous reporting system.
Collapse
Affiliation(s)
- Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Rikuto Masuda
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Haruka Aizawa
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoaki Yoshimura
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
9
|
Anderson AR, Ostermiller L, Lastrapes M, Hales L. Does sunlight exposure predict next-night sleep? A daily diary study among U.S. adults. J Health Psychol 2024:13591053241262643. [PMID: 39077837 DOI: 10.1177/13591053241262643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Poor sleep is becoming increasingly prevalent and is associated with adverse health outcomes. Sunlight exposure may improve sleep by regulating circadian rhythms, increasing vitamin D, and influencing melatonin production. However, research on the sunlight-sleep association is limited, especially outside of cross-sectional designs. This study examined associations between daily self-reported sunlight exposure and next-night sleep quality in 103 adults for up to 70 days. The timing of sunlight exposure predicted next-night sleep quality. Specifically, morning sunlight exposure, relative to no sunlight, predicted better sleep quality based on responses to the brief Pittsburg Sleep Quality Index. Duration of sunlight exposure was generally not associated with sleep quality. Morning sunlight may regulate circadian rhythms, subsequently improving sleep. Findings have potential implications for sleep interventions and daylight savings time policies. Future research should test whether morning sunlight exposure can enhance the effectiveness of sleep interventions.
Collapse
|
10
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
11
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
12
|
Bedini A, Boutin JA, Legros C, Zlotos DP, Spadoni G. Industrial and academic approaches to the search for alternative melatonin receptor ligands: An historical survey. J Pineal Res 2024; 76:e12953. [PMID: 38682544 DOI: 10.1111/jpi.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
MESH Headings
- Ligands
- Humans
- Animals
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Melatonin/agonists
- Melatonin/metabolism
- History, 20th Century
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
13
|
Tain YL, Hsu CN. Melatonin Use during Pregnancy and Lactation Complicated by Oxidative Stress: Focus on Offspring's Cardiovascular-Kidney-Metabolic Health in Animal Models. Antioxidants (Basel) 2024; 13:226. [PMID: 38397824 PMCID: PMC10886428 DOI: 10.3390/antiox13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome has emerged as a major global public health concern, posing a substantial threat to human health. Early-life exposure to oxidative stress may heighten vulnerability to the developmental programming of adult diseases, encompassing various aspects of CKM syndrome. Conversely, the initiation of adverse programming processes can potentially be thwarted through early-life antioxidant interventions. Melatonin, originally recognized for its antioxidant properties, is an endogenous hormone with diverse biological functions. While melatonin has demonstrated benefits in addressing disorders linked to oxidative stress, there has been comparatively less focus on investigating its reprogramming effects on CKM syndrome. This review consolidates the current knowledge on the role of oxidative stress during pregnancy and lactation in inducing CKM traits in offspring, emphasizing the underlying mechanisms. The multifaceted role of melatonin in regulating oxidative stress, mediating fetal programming, and preventing adverse outcomes in offspring positions it as a promising reprogramming strategy. Currently, there is a lack of sufficient information in humans, and the available evidence primarily originates from animal studies. This opens up new avenues for novel preventive intervention in CKM syndrome.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Zhou H, Chen N, He B, Ma Z, Liu W, Xu B. Melatonin modulates the differentiation of neural stem cells exposed to manganese via SIRT1/β-catenin signaling. Food Chem Toxicol 2024; 184:114349. [PMID: 38081531 DOI: 10.1016/j.fct.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Excessive exposure of children to manganese (Mn) in the environment has a bearing on developmental neurotoxicity. Although melatonin (Mel) can play a neuroprotective role by modulating the differentiation of neural stem cells (NSCs) in the developing brain, its specific mechanism under Mn overexposure remains to be explored. Here, we cultured primary NSCs as an available model to investigate the relevant molecular mechanism of Mel mitigation on Mn-induced disorder of NSCs differentiation through sirtuin 1 (SIRT1)/β-catenin pathway. It was found that Mel could facilitate the differentiation of Mn-treated NSCs into neurons. Further, our results uncovered that the pro-differentiation mechanism of Mel depended upon ascending the activity of SIRT1, thereby weakening β-catenin acetylation and increasing phosphorylation of β-catenin ser675 in the cytoplasm, which facilitates the nuclear translocation of β-catenin. Furthermore, the role of SIRT1 in Mel-mediated signal transduction was investigated through the pretreatment of NSCs using a highly specific SIRT1 inhibitor, EX527. After EX527 pretreatment, Mel could not maintain its protective effect. Overall, our results revealed that Mel could alleviate Mn-induced disorder of NSCs differentiation through the activation of the SIRT1/β-catenin pathway.
Collapse
Affiliation(s)
- Han Zhou
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Nan Chen
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Bin He
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhuo Ma
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Wei Liu
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Bin Xu
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
15
|
Zhang W, Yang H, Liu Z, Wang S, Chen T, Song H, Xu Y, Li F, Luo G, Wang H. Enterovirus 71 leads to abnormal mitochondrial dynamics in human neuroblastoma SK-N-SH cells. Virus Res 2024; 339:199267. [PMID: 37949375 PMCID: PMC10682842 DOI: 10.1016/j.virusres.2023.199267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
EV71, a significant pathogen causing hand-foot-mouth disease, is associated with severe neurological complications such as brain stem encephalitis, aseptic meningitis, and acute flaccid paralysis. While the role of mitochondrial dynamics in regulating the replication of numerous viruses is recognized, its specific involvement in EV71 remains unclear. This study aimed to elucidate the role of mitochondrial dynamics in human neuroblastoma SK-N-SH cells during EV71 infection. Utilizing laser confocal microscopy and transmission electron microscopy, we observed that EV71 infection induced mitochondrial elongation and damage to cristae structures, concurrently accelerating mitochondrial movement. Furthermore, we identified the reduction in the expression of dynamin-related protein 1 (Drp1) and optic atrophy protein 1 (Opa1) and the increased expression of Mitofusion 2 (Mfn2) upon EV71 infection. Notably, EV71 directly stimulated the generation of mitochondrial reactive oxygen species (ROS), leading to a decline in mitochondrial membrane potential and ATP levels. Remarkably, the application of melatonin, a potent mitochondrial protector, inhibited EV71 replication by restoring Drp1 expression. These findings collectively indicate that EV71 induces alterations in mitochondrial morphology and dynamics within SK-N-SH cells, potentially impairing mitochondrial function and contributing to nervous system dysfunction. The restoration of proper mitochondrial dynamics may hold promise as a prospective approach to counteract EV71 infection.
Collapse
Affiliation(s)
- Wanling Zhang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Yang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengyun Liu
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shengyu Wang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tianyang Chen
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hong Song
- Department of Microbiology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yunbin Xu
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fajin Li
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Guo Luo
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Huan Wang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
16
|
Chandra Shekhar H, Joshua L, Thomas JV. Standardized Extract of Valeriana officinalis Improves Overall Sleep Quality in Human Subjects with Sleep Complaints: A Randomized, Double-Blind, Placebo-Controlled, Clinical Study. Adv Ther 2024; 41:246-261. [PMID: 37899385 PMCID: PMC10796483 DOI: 10.1007/s12325-023-02708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Sleep deficit or poor sleep leads to ill-health, whereas sleep deprivation for longer periods of time increases the risk of developing adverse conditions associated with poor quality of life, and high socioeconomic impact. The treatments for sleep disturbances include melatonin and over-the-counter medicines like diphenhydramine and doxylamine, all of which have negative side effects. Valerian (Valeriana officinalis L.) is a traditional herb and the most preferred alternate sleep solution to manage sleep complaints. METHODS Eighty adult subjects with sleep complaints were randomized in 1:1 ratio to receive either V. officinalis extract (VE) or placebo for 8 weeks in a double-blind, placebo-controlled, parallel, clinical study. Primary efficacy endpoints included the Pittsburgh Sleep Quality Index (PSQI) and sleep latency using wrist actigraphy (WA), as well as a number of secondary endpoints, including sleep parameters such as actual sleep time and sleep efficiency using WA, the Epworth Sleepiness Scale (ESS), the Beck Anxiety Inventory (BAI), the Visual Analogue Scale (VAS) for the feeling of waking up refreshed, and a tertiary endpoint of sleep parameters using polysomnography (PSG) in a subset of 20 subjects per group. Safety parameters included physical examination, vital sign measurements, hematology, and clinical chemistry tests. Adverse events and serious adverse events were monitored throughout the study period. RESULTS Seventy-two subjects (35 and 37 subjects in the placebo and VE groups, respectively) completed the study and were included in the efficacy assessments. On Days 14, 28, and 56, the PSQI Total Score in the VE group decreased significantly (p < 0.05) compared to the placebo group. Further, the VE group showed significant improvements (p < 0.05) in sleep latency and actual sleep time on Days 3, 14, 28, and 56, and sleep efficiency on Days 14, 28, and 56, as evaluated by WA. There was a decrease (p < 0.05) in anxiety (BAI) on Days 14, 28, and 56, daytime drowsiness (ESS) on Days 28 and 56, and an increased feeling of waking up refreshed (VAS) on Days 28 and 56 compared to placebo. PSG results carried out in subset of subjects revealed significant improvements (p < 0.05) in total sleep time, sleep latency, and sleep efficiency on Day 56 in the VE group compared to the placebo group. No safety concerns were observed throughout the study. CONCLUSION VE supplementation significantly improved various subjective and objective parameters of sleep in young subjects with mild insomnia symptoms, such as overall sleep quality, sleep latency, sleep efficiency, and total sleep time. We also observed decreased anxiety and daytime sleepiness, and improved feeling of being refreshed after waking up with VE supplementation. VE was found to be safe and well tolerated throughout the study. TRIAL REGISTRATION Clinical Trials Registry of India: CTRI/2022/05/042818.
Collapse
Affiliation(s)
- Harshith Chandra Shekhar
- BGS Global Institute of Medical Sciences, No. 67, BGS Health and Education City, Uttarahalli Road, Kengeri, Bengaluru, 560060, Karnataka, India
| | - Lincy Joshua
- Leads Clinical Research and Bio Services Pvt. Ltd., No. 9, 1st Floor Mythri Legacy, Kalyan Nagar, Chelekere Main Road, Bengaluru, 560043, Karnataka, India
| | - Jestin V Thomas
- Leads Clinical Research and Bio Services Pvt. Ltd., No. 9, 1st Floor Mythri Legacy, Kalyan Nagar, Chelekere Main Road, Bengaluru, 560043, Karnataka, India.
| |
Collapse
|
17
|
Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage-gated sodium, potassium, and calcium channels. J Pineal Res 2024; 76:e12919. [PMID: 37794846 DOI: 10.1111/jpi.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Besides its role in the circadian rhythm, the pineal gland hormone melatonin (MLT) also possesses antiepileptogenic, antineoplastic, and cardioprotective properties, among others. The dosages necessary to elicit beneficial effects in these diseases often far surpass physiological concentrations. Although even high doses of MLT are considered to be largely harmless to humans, the possible side effects of pharmacological concentrations are so far not well investigated. In the present study, we report that pharmacological doses of MLT (3 mM) strongly altered the electrophysiological characteristics of cultured primary mouse cerebellar granule cells (CGCs). Using whole-cell patch clamp and ratiometric Ca2+ imaging, we observed that pharmacological concentrations of MLT inhibited several types of voltage-gated Na+ , K+ , and Ca2+ channels in CGCs independently of known MLT-receptors, altering the character and pattern of elicited action potentials (APs) significantly, quickly and reversibly. Specifically, MLT reduced AP frequency, afterhyperpolarization, and rheobase, whereas AP amplitude and threshold potential remained unchanged. The altered biophysical profile of the cells could constitute a possible mechanism underlying the proposed beneficial effects of MLT in brain-related disorders, such as epilepsy. On the other hand, it suggests potential adverse effects of pharmacological MLT concentrations on neurons, which should be considered when using MLT as a pharmacological compound.
Collapse
Affiliation(s)
| | - Maria Schilling
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Ahmet Korkmaz
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Boutin JA, Liberelle M, Yous S, Ferry G, Nepveu F. Melatonin facts: Lack of evidence that melatonin is a radical scavenger in living systems. J Pineal Res 2024; 76:e12926. [PMID: 38146602 DOI: 10.1111/jpi.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/27/2023]
Abstract
Melatonin is a small natural compound, so called a neuro-hormone that is synthesized mainly in pineal gland in animals. Its main role is to master the clock of the body, under the surveillance of light. In other words, it transfers the information concerning night and day to the peripheral organs which, without it, could not "know" which part of the circadian rhythm the body is in. Besides its main circadian and circannual rhythms mastering, melatonin is reported to be a radical scavenger and/or an antioxidant. Because radical scavengers are chemical species able to neutralize highly reactive and toxic species such as reactive oxygen species, one would like to transfer this property to living system, despite impossibilities already largely reported in the literature. In the present commentary, we refresh the memory of the readers with this notion of radical scavenger, and review the possible evidence that melatonin could be an in vivo radical scavenger, while we only marginally discuss here the fact that melatonin is a molecular antioxidant, a feature that merits a review on its own. We conclude four things: (i) the evidence that melatonin is a scavenger in acellular systems is overwhelming and could not be doubted; (ii) the transposition of this property in living (animal) systems is (a) theoretically impossible and (b) not proven in any system reported in the literature where most of the time, the delay of the action of melatonin is over several hours, thus signing a probable induction of cellular enzymatic antioxidant defenses; (iii) this last fact needs a confirmation through the discovery of a nuclear factor-a key relay in induction processes-that binds melatonin and is activated by it and (iv) we also gather the very important description of the radical scavenging capacity of melatonin in acellular systems that is now proven and shared by many other double bond-bearing molecules. We finally discussed briefly on the reason-scientific or else-that led this description, and the consequences of this claim, in research, in physiology, in pathology, but most disturbingly in therapeutics where a vast amount of money, hope, and patient bien-être are at stake.
Collapse
Affiliation(s)
- Jean A Boutin
- Laboratory of Regulatory Peptides, Energy Metabolism and Motivated Behavior, Department of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | - Maxime Liberelle
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | - Saïd Yous
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | | | - Françoise Nepveu
- Dpt Sciences Pharmaceutiques, Faculté de santé, PHARMADEV, UMR 152, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
20
|
Patel A, Dewani D, Jaiswal A, Yadav P, Reddy LS. Exploring Melatonin's Multifaceted Role in Polycystic Ovary Syndrome Management: A Comprehensive Review. Cureus 2023; 15:e48929. [PMID: 38106751 PMCID: PMC10725523 DOI: 10.7759/cureus.48929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting a significant portion of the female population, characterized by hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders. This review explores the multifaceted role of melatonin, a hormone primarily known for regulating circadian rhythms, in PCOS management. Melatonin's potential impact on hormonal balance, oxidative stress, sleep quality, and mood is comprehensively examined. It has been shown to enhance insulin sensitivity, regulate sex hormones, and influence gonadotropins, offering promise in addressing the intricate hormonal imbalances common in PCOS. As a potent antioxidant and anti-inflammatory agent, melatonin mitigates oxidative stress and its associated complications. Its role in improving sleep quality and mood can significantly enhance the psychological well-being and daily functioning of PCOS patients. We discuss the potential implications of melatonin as a complementary or adjunct therapy, alongside existing PCOS treatments, and its significance in improving the overall quality of life for individuals with this syndrome. While further research is needed, melatonin's multifaceted effects promise a brighter future for PCOS patients.
Collapse
Affiliation(s)
- Archan Patel
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepika Dewani
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Yadav
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Lucky Srivani Reddy
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
Araújo ADO, Figueira-de-Oliveira ML, Noya AGAFDC, Oliveira E Silva VP, de Carvalho JM, Vieira Filho LD, Guedes RCA. Effect of neonatal melatonin administration on behavioral and brain electrophysiological and redox imbalance in rats. Front Neurosci 2023; 17:1269609. [PMID: 37901423 PMCID: PMC10603194 DOI: 10.3389/fnins.2023.1269609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Melatonin (MLT) reportedly has beneficial effects in neurological disorders involving brain excitability (e.g., Epilepsy and Migraine) and behavioral patterns (e.g., Anxiety and Depression). This study was performed to investigate, in the developing rat brain, the effect of early-in-life administration of two different doses of exogenous MLT on behavioral (anxiety and memory) and electrophysiological (CSD analysis) aspects of brain function. Additionally, brain levels of malondialdehyde (MDA) and superoxide dismutase (SOD), both cellular indicators of redox balance status, were evaluated. We hypothesize that MLT differentially affects the behavioral and CSD parameters as a function of the MLT dose. Materials and methods Male Wistar rats received, from the 7th to the 27th postnatal day (PND), on alternate days, vehicle solution, or 10 mg/kg/or 40 mg/kg MLT (MLT-10 and MLT-40 groups), or no treatment (intact group). To perform behavioral and cognition analysis, from PND30 to PND32, they were tested in the open field apparatus, first for anxiety (PND30) and then for object recognition memory tasks: spatial position recognition (PND31) and shape recognition (PND32). On PND34, they were tested in the elevated plus maze. From PND36 to 42, the excitability-related phenomenon known as cortical spreading depression (CSD) was recorded, and its features were analyzed. Results Treatment with MLT did not change the animals' body weight or blood glucose levels. The MLT-10 treatment, but not the MLT-40 treatment, was associated with behaviors that suggest less anxiety and improved memory. MLT-10 and MLT-40 treatments, respectively, decelerated and accelerated CSD propagation (speed of 2.86 ± 0.14 mm/min and 3.96 ± 0.16 mm/min), compared with the control groups (3.3 ± 0.10 mm/min and 3.25 ± 0.11 mm/min, for the intact and vehicle groups, respectively; p < 0.01). Cerebral cortex levels of malondialdehyde and superoxide dismutase were, respectively, lower and higher in the MLT-10 group but not in the MLT40 group. Conclusion Our findings suggest that MLT intraperitoneal administration during brain development may differentially act as an antioxidant agent when administered at a low dose but not at a high dose, according to behavioral, electrophysiological, and biochemical parameters.
Collapse
Affiliation(s)
- Amanda de Oliveira Araújo
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
22
|
Mańka S, Smolewski P, Cebula-Obrzut B, Majchrzak A, Szmejda K, Witkowska M. Cytotoxic Activity of Melatonin Alone and in Combination with Doxorubicin and/or Dexamethasone on Diffuse Large B-Cell Lymphoma Cells in In Vitro Conditions. J Pers Med 2023; 13:1314. [PMID: 37763082 PMCID: PMC10532635 DOI: 10.3390/jpm13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Melatonin (MLT), a pineal gland hormone, not only regulates circadian and seasonal rhythms, but also plays an important role in many aspects of human physiology and pathophysiology. MLT is of great interest as a natural substance with anti-cancer activities. The aim of this study was to assess the cytotoxicity and apoptosis of MLT, used alone or in combination with one of the most active anti-cancer drugs, doxorubicin (DOX), and a well-known anti-inflammatory drug, dexamethasone (DEX), on a diffuse large B-cell lymphoma (DLBCL)-derived cell line. The cytotoxicity and cell cycle distribution were measured using propidium iodide staining, while apoptosis was assessed using the annexin-V binding method. Additionally, to elucidate the mechanisms of action, caspase-3, -8, and -9 and a decline in the mitochondrial potential were determined using flow cytometry. MLT inhibited cell viability as well as induced apoptosis and cell cycle arrest at the G0/G1 phase. The pro-apoptotic effect was exerted through both the mitochondrial and caspase-dependent pathways. Furthermore, we observed increased cytotoxic and pro-apoptotic activity as well as the modulation of the cell cycle after the combination of MLT with DOX, DEX, or a combination of DOX + DEX, compared with both drugs or MLT used alone. Our findings confirm that MLT is a promising in vitro anti-tumour agent that requires further evaluation when used with other drugs active against DLBCL.
Collapse
Affiliation(s)
- Sylwia Mańka
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Barbara Cebula-Obrzut
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Agata Majchrzak
- Department of Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland;
| | - Klaudia Szmejda
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Magdalena Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| |
Collapse
|