1
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
2
|
Gao J, Sun W, Li J, Ban H, Zhang T, Liao J, Kim N, Lee SH, Dong Q, Madramootoo R, Chen Y, Li F. Rex1BD and the 14-3-3 protein control heterochromatin organization at tandem repeats by linking RNAi and HDAC. Proc Natl Acad Sci U S A 2023; 120:e2309359120. [PMID: 38048463 PMCID: PMC10723143 DOI: 10.1073/pnas.2309359120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Tandem DNA repeats are often organized into heterochromatin that is crucial for genome organization and stability. Recent studies revealed that individual repeats within tandem DNA repeats can behave very differently. How DNA repeats are assembled into distinct heterochromatin structures remains poorly understood. Here, we developed a genome-wide genetic screen using a reporter gene at different units in a repeat array. This screen led to identification of a conserved protein Rex1BD required for heterochromatin silencing. Our structural analysis revealed that Rex1BD forms a four-helix bundle structure with a distinct charged electrostatic surface. Mechanistically, Rex1BD facilitates the recruitment of Clr6 histone deacetylase (HDAC) by interacting with histones. Interestingly, Rex1BD also interacts with the 14-3-3 protein Rad25, which is responsible for recruiting the RITS (RNA-induced transcriptional silencing) complex to DNA repeats. Our results suggest that coordinated action of Rex1BD and Rad25 mediates formation of distinct heterochromatin structure at DNA repeats via linking RNAi and HDAC pathways.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, NY10003
| | - Wenqi Sun
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jie Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai201210, China
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY10003
| | - Tuokai Zhang
- Department of Biology, New York University, New York, NY10003
| | - Junwei Liao
- Department of Biology, New York University, New York, NY10003
| | - Namho Kim
- Department of Biology, New York University, New York, NY10003
| | - Soon Hoo Lee
- Department of Biology, New York University, New York, NY10003
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY10003
| | | | - Yong Chen
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Fei Li
- Department of Biology, New York University, New York, NY10003
| |
Collapse
|
3
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Kim H, Suyama M. Genome-wide identification of copy neutral loss of heterozygosity reveals its possible association with spatial positioning of chromosomes. Hum Mol Genet 2023; 32:1175-1183. [PMID: 36349694 PMCID: PMC10026252 DOI: 10.1093/hmg/ddac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.
Collapse
Affiliation(s)
- Hyeonjeong Kim
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Xin Y, Wang J, Wu Y, Li Q, Dong M, Liu C, He Q, Wang R, Wang D, Jiang S, Xiao W, Tian Y, Zhang W. Identification of Nanog as a novel inhibitor of Rad51. Cell Death Dis 2022; 13:193. [PMID: 35220392 PMCID: PMC8882189 DOI: 10.1038/s41419-022-04644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
AbstractTo develop inhibitors targeting DNA damage repair pathways is important to improve the effectiveness of chemo- and radiotherapy for cancer patients. Rad51 mediates homologous recombination (HR) repair of DNA damages. It is widely overexpressed in human cancers and overwhelms chemo- and radiotherapy-generated DNA damages through enhancing HR repair signaling, preventing damage-caused cancer cell death. Therefore, to identify inhibitors of Rad51 is important to achieve effective treatment of cancers. Transcription factor Nanog is a core regulator of embryonic stem (ES) cells for its indispensable role in stemness maintenance. In this study, we identified Nanog as a novel inhibitor of Rad51. It interacts with Rad51 and inhibits Rad51-mediated HR repair of DNA damage through its C/CD2 domain. Moreover, Rad51 inhibition can be achieved by nanoscale material- or cell-penetrating peptide (CPP)-mediated direct delivery of Nanog-C/CD2 peptides into somatic cancer cells. Furthermore, we revealed that Nanog suppresses the binding of Rad51 to single-stranded DNAs to stall the HR repair signaling. This study provides explanation for the high γH2AX level in unperturbed ES cells and early embryos, and suggests Nanog-C/CD2 as a promising drug candidate applied to Rad51-related basic research and therapeutic application studies.
Collapse
|
6
|
Radke DW, Sul JH, Balick DJ, Akle S, Green RC, Sunyaev SR. Purifying selection on noncoding deletions of human regulatory loci detected using their cellular pleiotropy. Genome Res 2021; 31:935-946. [PMID: 33963077 PMCID: PMC8168579 DOI: 10.1101/gr.275263.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a callset of deletions from genomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used deletions from The 1000 Genomes Project Consortium (1000GP) in order to examine whether purifying selection preserves noncoding sites of chromatin accessibility marked by DNase I hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we developed a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of "cellular pleiotropy" for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By comparing real deletion PlyRS values to simulations in a length-matched framework and by using genomic covariates in analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop anchors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic activity are preserved by selection.
Collapse
Affiliation(s)
- David W Radke
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, USA
| | - Daniel J Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Sebastian Akle
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Ariadne Labs, Boston, Massachusetts 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
7
|
Sławińska N, Krupa R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int J Mol Sci 2021; 22:ijms22020590. [PMID: 33435578 PMCID: PMC7827783 DOI: 10.3390/ijms22020590] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cells can become senescent in response to stress. Senescence is a process characterised by a stable proliferative arrest. Sometimes it can be beneficial—for example, it can suppress tumour development or take part in tissue repair. On the other hand, studies show that it is also involved in the ageing process. DNA damage response (DDR) is triggered by DNA damage or telomere shortening during cell division. When left unresolved, it may lead to the activation of senescence. Senescent cells secrete certain proteins in larger quantities. This phenomenon is referred to as senescence-associated secretory phenotype (SASP). SASP can induce senescence in other cells; evidence suggests that overabundance of senescent cells contributes to ageing. SASP proteins include proinflammatory cytokines and metalloproteinases, which degrade the extracellular matrix. Shortening of telomeres is another feature associated with organismal ageing. Older organisms have shorter telomeres. Restoring telomerase activity in mice not only slowed but also partially reversed the symptoms of ageing. Changes in chromatin structure during senescence include heterochromatin formation or decondensation and loss of H1 histones. During organismal ageing, cells can experience heterochromatin loss, DNA demethylation and global histone loss. Cellular and organismal ageing are both complex processes with many aspects that are often related. The purpose of this review is to bring some of these aspects forward and provide details regarding them.
Collapse
|
8
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
9
|
House NCM, Parasuram R, Layer JV, Price BD. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage. PLoS One 2020; 15:e0237759. [PMID: 33332350 PMCID: PMC7746297 DOI: 10.1371/journal.pone.0237759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
DNA repair requires reorganization of the local chromatin structure to facilitate access to and repair of the DNA. Studying DNA double-strand break (DSB) repair in specific chromatin domains has been aided by the use of sequence-specific endonucleases to generate targeted breaks. Here, we describe a new approach that combines KillerRed, a photosensitizer that generates reactive oxygen species (ROS) when exposed to light, and the genome-targeting properties of the CRISPR/Cas9 system. Fusing KillerRed to catalytically inactive Cas9 (dCas9) generates dCas9-KR, which can then be targeted to any desired genomic region with an appropriate guide RNA. Activation of dCas9-KR with green light generates a local increase in reactive oxygen species, resulting in "clustered" oxidative damage, including both DNA breaks and base damage. Activation of dCas9-KR rapidly (within minutes) increases both γH2AX and recruitment of the KU70/80 complex. Importantly, this damage is repaired within 10 minutes of termination of light exposure, indicating that the DNA damage generated by dCas9-KR is both rapid and transient. Further, repair is carried out exclusively through NHEJ, with no detectable contribution from HR-based mechanisms. Surprisingly, sequencing of repaired DNA damage regions did not reveal any increase in either mutations or INDELs in the targeted region, implying that NHEJ has high fidelity under the conditions of low level, limited damage. The dCas9-KR approach for creating targeted damage has significant advantages over the use of endonucleases, since the duration and intensity of DNA damage can be controlled in "real time" by controlling light exposure. In addition, unlike endonucleases that carry out multiple cut-repair cycles, dCas9-KR produces a single burst of damage, more closely resembling the type of damage experienced during acute exposure to reactive oxygen species or environmental toxins. dCas9-KR is a promising system to induce DNA damage and measure site-specific repair kinetics at clustered DNA lesions.
Collapse
Affiliation(s)
- Nealia C. M. House
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Jacob V. Layer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Brendan D. Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
10
|
Mukherjee K, English N, Meers C, Kim H, Jonke A, Storici F, Torres M. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair. DNA Repair (Amst) 2019; 86:102763. [PMID: 31821952 DOI: 10.1016/j.dnarep.2019.102763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Double strand-breaks (DSBs) of genomic DNA caused by ionizing radiation or mutagenic chemicals are a common source of mutation, recombination, chromosomal aberration, and cell death. Linker histones are DNA packaging proteins with established roles in chromatin compaction, gene transcription, and in homologous recombination (HR)-mediated DNA repair. Using a machine-learning model for functional prioritization of eukaryotic post-translational modifications (PTMs) in combination with genetic and biochemical experiments with the yeast linker histone, Hho1, we discovered that site-specific phosphorylation sites regulate HR and HR-mediated DSB repair. Five total sites were investigated (T10, S65, S141, S173, and S174), ranging from high to low function potential as determined by the model. Of these, we confirmed S173/174 are phosphorylated in yeast by mass spectrometry and found no evidence of phosphorylation at the other sites. Phospho-nullifying mutations at these two sites results in a significant decrease in HR-mediated DSB repair templated either with oligonucleotides or a homologous chromosome, while phospho-mimicing mutations have no effect. S65, corresponding to a mammalian phosphosite that is conserved in yeast, exhibited similar effects. None of the mutations affected base- or nucleotide-excision repair, nor did they disrupt non-homologous end joining or RNA-mediated repair of DSBs when sequence heterology between the break and repair template strands was low. More extensive analysis of the S174 phospho-null mutant revealed that its repression of HR and DSB repair is proportional to the degree of sequence heterology between DSB ends and the HR repair template. Taken together, these data demonstrate the utility of machine learning for the discovery of functional PTM hotspots, reveal linker histone phosphorylation sites necessary for HR and HR-mediated DSB repair, and provide insight into the context-dependent control of DNA integrity by the yeast linker histone Hho1.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Nolan English
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Hyojung Kim
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Alex Jonke
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA.
| |
Collapse
|
11
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
McKenzie LD, LeClair JW, Miller KN, Strong AD, Chan HL, Oates EL, Ligon KL, Brennan CW, Chheda MG. CHD4 regulates the DNA damage response and RAD51 expression in glioblastoma. Sci Rep 2019; 9:4444. [PMID: 30872624 PMCID: PMC6418088 DOI: 10.1038/s41598-019-40327-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/28/2019] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumour. Despite therapy with surgery, radiation, and alkylating chemotherapy, most people have recurrence within 6 months and die within 2 years. A major reason for recurrence is resistance to DNA damage. Here, we demonstrate that CHD4, an ATPase and member of the nucleosome remodelling and deactetylase (NuRD) complex, drives a component of this resistance. CHD4 is overexpressed in GBM specimens and cell lines. Based on The Cancer Genome Atlas and Rembrandt datasets, CHD4 expression is associated with poor prognosis in patients. While it has been known in other cancers that CHD4 goes to sites of DNA damage, we found CHD4 also regulates expression of RAD51, an essential component of the homologous recombination machinery, which repairs DNA damage. Correspondingly, CHD4 suppression results in defective DNA damage response in GBM cells. These findings demonstrate a mechanism by which CHD4 promotes GBM cell survival after DNA damaging treatments. Additionally, we found that CHD4 suppression, even in the absence of extrinsic treatment, cumulatively increases DNA damage. Lastly, we found that CHD4 is dispensable for normal human astrocyte survival. Since standard GBM treatments like radiation and temozolomide chemotherapy create DNA damage, these findings suggest an important resistance mechanism that has therapeutic implications.
Collapse
Affiliation(s)
- Lisa D McKenzie
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John W LeClair
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kayla N Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Averey D Strong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hilda L Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Edward L Oates
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston Children's Hospital, and Dana Farber Cancer Institute, Boston, MA, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Milan G Chheda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Honjo Y, Ichinohe T. Cellular responses to ionizing radiation change quickly over time during early development in zebrafish. Cell Biol Int 2019; 43:516-527. [PMID: 30791195 PMCID: PMC6850130 DOI: 10.1002/cbin.11117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/17/2019] [Indexed: 01/08/2023]
Abstract
Animal cells constantly receive information about and respond to environmental factors, including ionizing radiation. Although it is crucial for a cell to repair radiation-induced DNA damage to ensure survival, cellular responses to radiation exposure during early embryonic development remain unclear. In this study, we analyzed the effects of ionizing radiation in zebrafish embryos and found that radiation-induced γH2AX foci formation and cell cycle arrest did not occur until the gastrula stage, despite the presence of major DNA repair-related gene transcripts, passed on as maternal factors. Interestingly, P21/WAF1 accumulation began ∼6 h post-fertilization, although p21 mRNA was upregulated by irradiation at 2 or 4 h post-fertilization. These results suggest that the cellular responses of zebrafish embryos at 2 or 4 h post-fertilization to radiation failed to overcome P21 protein accumulation and further signaling. Regulation of P21/WAF1 protein stabilization appears to be a key factor in the response to genotoxins during early embryogenesis.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 754-8553, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 754-8553, Japan
| |
Collapse
|
14
|
Janssen JM, Chen X, Liu J, Gonçalves MAFV. The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:141-154. [PMID: 30884291 PMCID: PMC6424062 DOI: 10.1016/j.omtn.2019.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Gene editing based on homology-directed repair (HDR) depends on donor DNA templates and programmable nucleases, e.g., RNA-guided CRISPR-Cas9 nucleases. However, next to inducing HDR involving the mending of chromosomal double-stranded breaks (DSBs) with donor DNA substrates, programmable nucleases also yield gene disruptions, triggered by competing non-homologous end joining (NHEJ) pathways. It is, therefore, imperative to identify parameters underlying the relationship between these two outcomes in the context of HDR-based gene editing. Here we implemented quantitative cellular systems, based on epigenetically regulated isogenic target sequences and donor DNA of viral, non-viral, and synthetic origins, to investigate gene-editing outcomes resulting from the interaction between different chromatin conformations and donor DNA structures. We report that, despite a significantly higher prevalence of NHEJ-derived events at euchromatin over Krüppel-associated box (KRAB)-impinged heterochromatin, HDR frequencies are instead generally less impacted by these alternative chromatin conformations. Hence, HDR increases in relation to NHEJ when open euchromatic target sequences acquire a closed heterochromatic state, with donor DNA structures determining, to some extent, the degree of this relative increase in HDR events at heterochromatin. Finally, restricting nuclease activity to HDR-permissive G2 and S phases of the cell cycle through a Cas9-Geminin construct yields lower, hence more favorable, NHEJ to HDR ratios, independently of the chromatin structure.
Collapse
Affiliation(s)
- Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoyu Chen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
15
|
Ge XA, Hunter CP. Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase. G3 (BETHESDA, MD.) 2019; 9:281-286. [PMID: 30504134 PMCID: PMC6325892 DOI: 10.1534/g3.118.200758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
Abstract
The CRISPR/Cas9 nickase mutant is less prone to off-target double-strand (ds)DNA breaks than wild-type Cas9 because to produce dsDNA cleavage it requires two guide RNAs to target the nickase to nearby opposing strands. Like wild-type Cas9 lesions, these staggered lesions are repaired by either non-homologous end joining or, if a repair template is provided, by homologous recombination (HR). Here, we report very efficient (up to 100%) recovery of heterozygous insertions in Mus musculus produced by long (>300 nt), single-stranded DNA donor template-guided repair of paired-nickase lesions.
Collapse
Affiliation(s)
- Xi A Ge
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
16
|
Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. ACTA ACUST UNITED AC 2018; 63:235015. [DOI: 10.1088/1361-6560/aaeeee] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
McDonald JS, McDonald RJ, Ekins JB, Tin AS, Costes S, Hudson TM, Schroeder DJ, Kallmes K, Kaufmann SH, Young PM, Lu A, Kadirvel R, Kallmes DF. Gadolinium-enhanced cardiac MR exams of human subjects are associated with significant increases in the DNA repair marker 53BP1, but not the damage marker γH2AX. PLoS One 2018; 13:e0190890. [PMID: 29309426 PMCID: PMC5757995 DOI: 10.1371/journal.pone.0190890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging is considered low risk, yet recent studies have raised a concern of potential damage to DNA in peripheral blood leukocytes. This prospective Institutional Review Board-approved study examined potential double-strand DNA damage by analyzing changes in the DNA damage and repair markers γH2AX and 53BP1 in patients who underwent a 1.5 T gadolinium-enhanced cardiac magnetic resonance (MR) exam. Sixty patients were enrolled (median age 55 years, 39 males). Patients with history of malignancy or who were receiving chemotherapy, radiation therapy, or steroids were excluded. MR sequence data were recorded and blood samples obtained immediately before and after MR exposure. An automated immunofluorescence assay quantified γH2AX or 53BP1 foci number in isolated peripheral blood mononuclear cells. Changes in foci number were analyzed using the Wilcoxon signed-rank test. Clinical and MR procedural characteristics were compared between patients who had a >10% increase in γH2AX or 53BP1 foci numbers and patients who did not. The number of γH2AX foci did not significantly change following cardiac MR (median foci per cell pre-MR = 0.11, post-MR = 0.11, p = .90), but the number of 53BP1 foci significantly increased following MR (median foci per cell pre-MR = 0.46, post-MR = 0.54, p = .0140). Clinical and MR characteristics did not differ significantly between patients who had at least a 10% increase in foci per cell and those who did not. We conclude that MR exposure leads to a small (median 25%) increase in 53BP1 foci, however the clinical relevance of this increase is unknown and may be attributable to normal variation instead of MR exposure.
Collapse
Affiliation(s)
- Jennifer S. McDonald
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| | - Robert J. McDonald
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jacob B. Ekins
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Anthony S. Tin
- Exogen Biotechnology Inc., Berkeley, CA, United States of America
| | - Sylvain Costes
- Exogen Biotechnology Inc., Berkeley, CA, United States of America
| | - Tamara M. Hudson
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Dana J. Schroeder
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Kevin Kallmes
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Oncology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Philip M. Young
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Aiming Lu
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Ramanathan Kadirvel
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - David F. Kallmes
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Neuroscience, College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
18
|
Lorković ZJ, Berger F. Heterochromatin and DNA damage repair: Use different histone variants and relax. Nucleus 2017; 8:583-588. [PMID: 29077523 DOI: 10.1080/19491034.2017.1384893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Repair of damaged DNA requires the activation of kinases, which in turn phosphorylate diverse proteins including histone H2A.X, an event conserved from yeast to human. By combining genetics, biochemical, and cytological approaches, we recently reported that, in addition to H2A.X, phosphorylation of histone variant H2A.W.7 is required for DNA damage response in Arabidopsis. This work provides direct evidence for the functional diversification of plant-specific H2A.W histone variants, which are tightly associated with heterochromatin. We place our findings in perspective of other recent reports and discuss how DNA damage is being recognized and repaired in heterochromatin.
Collapse
Affiliation(s)
- Zdravko J Lorković
- a Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) , Dr. Bohr-Gasse 3, Vienna , Austria
| | - Frédéric Berger
- a Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) , Dr. Bohr-Gasse 3, Vienna , Austria
| |
Collapse
|