1
|
Parsad R, Ahlawat S, Bagiyal M, Gera R, Chhabra P, Sharma U, Arora R, Sharma R. Cathelicidins in farm animals: Structural diversity, mechanisms of action, and therapeutic potential in the face of antimicrobial resistance. Vet Immunol Immunopathol 2025; 279:110866. [PMID: 39708585 DOI: 10.1016/j.vetimm.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Cathelicidins are a diverse family of antimicrobial peptides found across many vertebrate species, playing a pivotal role in the innate immune system. These peptides exhibit a variety of structural motifs, including α-helices, β-hairpins, and random coils, contributing to their broad-spectrum antimicrobial activity. The structural diversity of cathelicidins allows them to interact with a wide range of microbial targets, thereby enhancing their antimicrobial efficacy. Distinct species produce specific cathelicidins, each adapted to meet their unique immune requirements. Cathelicidins primarily function by disrupting microbial membranes, leading to cell lysis. Beyond their direct antimicrobial action, they possess immunomodulatory properties that bolster host defense mechanisms. These properties include promoting chemotaxis, enhancing phagocytosis, and inducing cytokine production, thereby modulating the host immune response. The therapeutic potential of cathelicidins is significant, especially in light of the growing challenge of antimicrobial resistance (AMR). As conventional antibiotics lose efficacy, cathelicidins emerge as promising alternatives due to their unique mechanisms of action and reduced likelihood of inducing resistance. Recent research underscores their potential in treating infections, inflammatory diseases, and even cancer. Advances in synthetic biology offer promising prospects for effective cathelicidin-based therapies in the future. This review summarizes the diversity, modes of action, and clinical prospects of cathelicidins specific to farm animals.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Sun S. Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10402-4. [PMID: 39557756 DOI: 10.1007/s12602-024-10402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The occurrence and spread of antimicrobial resistance (AMR) pose a looming threat to human health around the world. Novel antibiotics are urgently needed to address the AMR crisis. In recent years, antimicrobial peptides (AMPs) have gained increasing attention as potential alternatives to conventional antibiotics due to their abundant sources, structural diversity, broad-spectrum antimicrobial activity, and ease of production. Given its significance, there has been a tremendous advancement in the research and development of AMPs. Numerous AMPs have been identified from various natural sources (e.g., plant, animal, human, microorganism) based on either well-established isolation or bioinformatic pipelines. Moreover, computer-assisted strategies (e.g., machine learning (ML) and deep learning (DL)) have emerged as a powerful and promising technology for the accurate prediction and design of new AMPs. It may overcome some of the shortcomings of traditional antibiotic discovery and contribute to the rapid development and translation of AMPs. In these cases, this review aims to appraise the latest advances in identifying and designing AMPs and their significant antimicrobial activities against a wide range of bacterial pathogens. The review also highlights the critical challenges in discovering and applying AMPs.
Collapse
Affiliation(s)
- Shengwei Sun
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden.
| |
Collapse
|
3
|
Brummerhop AS, Lee CT, Weltman R, Tribble GD, van der Hoeven R, Chiu Y, Hong J, Wang BY. Synergistic effects of antimicrobial components of the human-derived composite amnion-chorion membrane on bacterial growth. Front Cell Infect Microbiol 2024; 14:1472737. [PMID: 39435187 PMCID: PMC11491435 DOI: 10.3389/fcimb.2024.1472737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The human-derived amnion-chorion membrane (ACM) has endogenous antimicrobial properties, which are important for preventing the colonization and survival of oral bacteria on exposed membranes. This project aimed to decipher the underlying mechanism by identifying the components of ACM that confer antibacterial properties. In addition, the antimicrobial efficacy of these identified components on oral bacteria was assessed. Methods Four antimicrobial proteins, histone H2A/H2B, cathelicidin LL-37, lactoferrin, and lysozyme, were identified via mass spectrometry in ACM. These proteins were then assessed for their efficacy in killing Streptococcus gordonii Challis. Log-phased bacterial cells were cultured with the commercially available proteins that were identified in ACM, either individually or in combination, at different concentrations. After incubation for 8 or 24 hours, the bacteria were stained with a live/dead viability kit and analyzed via confocal microscopy. Results The combination of these proteins effectively killed S. gordonii in a dose-dependent fashion after 8 or 24 hours of incubation. When each protein was tested individually, it killed S. gordonii at a much lower efficacy relative to the combinations. The synergistic effects of the antimicrobial protein combinations were also observed in both the viable cell count recovery and minimum inhibitory concentration assays. Discussion By shedding light on the mechanisms in the ACM's antimicrobial property, this study may raise more awareness of the potential benefit of utilization of a membrane with endogenous antimicrobial properties in regeneration surgeries.
Collapse
Affiliation(s)
- Alexandra Su Brummerhop
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Robin Weltman
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
- Department of Clinical Sciences, University of Nevada School of Dental Medicine, Las Vegas, NV, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, United States
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, United States
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianming Hong
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Bing-Yan Wang
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
4
|
De Stefano M, Singh K, Raina A, Mohan S, Ul Haq MI, Ruggiero A. Tribocorrosion of 3D printed dental implants: An overview. J Taibah Univ Med Sci 2024; 19:644-663. [PMID: 38807965 PMCID: PMC11131088 DOI: 10.1016/j.jtumed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
With the advancements in dental science and the growing need for improved dental health, it has become imperative to develop new implant materials which possess better geometrical, mechanical, and physical properties. The oral environment is a corrosive environment and the relative motion between the teeth also makes the environment more hostile. Therefore, the combined corrosion and tribology commonly known as tribocorrosion of implants needs to be studied. The complex shapes of the dental implants and the high-performance requirements of these implants make manufacturing difficult by conventional manufacturing processes. With the advent of additive manufacturing or 3D-printing, the development of implants has become easy. However, the various requirements such as surface roughness, mechanical strength, and corrosion resistance further make the manufacturing of implants difficult. The current paper reviews the various studies related to3D-printed implants. Also, the paper tries to highlight the role of 3D-Printing can play in the area of dental implants. Further studies both experimental and numerical are needed to devise optimized conditions for 3D-printing implants to develop implants with improved mechanical, corrosion, and biological properties.
Collapse
Affiliation(s)
- Marco De Stefano
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Khushneet Singh
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Sanjay Mohan
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Alessandro Ruggiero
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
5
|
Lešić S, Ivanišević Z, Špiljak B, Tomas M, Šoštarić M, Včev A. The Impact of Vitamin Deficiencies on Oral Manifestations in Children. Dent J (Basel) 2024; 12:109. [PMID: 38668021 PMCID: PMC11049216 DOI: 10.3390/dj12040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamins play a vital role in human health, particularly in the development and maintenance of oral health in children. These nutrients are broadly categorized into fat-soluble and water-soluble types, crucial for children's well-being. The objective of this study is to investigate the impact of vitamin deficiencies on the oral health of children, focusing on how these deficiencies contribute to various oral health issues and determining the relationship between specific vitamin shortages and oral diseases. Findings indicate that shortages in vitamins A and D lead to enamel issues and a higher susceptibility to dental diseases, vitamin E assists in treating oral mucositis, and vitamin K is essential for blood clotting in dental surgeries. Deficits in B-complex and vitamin C result in enamel hypomineralization and soft tissue ailments, including aphthous stomatitis and gingival petechiae. Additionally, a lack of vitamin B7 compromises the immune response, increasing oral candidiasis risk. Therefore, vitamin deficiencies markedly affect children's oral health, highlighting the need for joint efforts between dental professionals and caregivers for effective pediatric care. Addressing vitamin deficiencies through supplementation and tailored dental care emphasizes the significance of nutritional health in children's overall and dental well-being, advocating for a collaborative approach to achieve optimal health outcomes.
Collapse
Affiliation(s)
- Stjepanka Lešić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.L.); (Z.I.)
| | - Zrinka Ivanišević
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.L.); (Z.I.)
| | - Bruno Špiljak
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.L.); (Z.I.)
| | - Magdalena Šoštarić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Aleksandar Včev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
6
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Ozola L, Pilmane M. Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. J Pers Med 2023; 14:27. [PMID: 38248728 PMCID: PMC10817640 DOI: 10.3390/jpm14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most frequent congenital orofacial defects is the cleft lip and palate. Local tissue defense factors are known to be important in immune response and inflammatory and healing processes in the cleft tissue; however, they have only been researched in older children during mixed dentition. Thus, the aim of this study is to assess the distribution of LL-37, CD-163, IL-10, HBD-2, HBD-3, and HBD-4 in children before and during milk dentition. The unique and rare material of palate tissue was obtained from 13 patients during veloplastic surgeries during the time span of 20 years. Immunohistochemistry, light microscopy, semi-quantitative evaluation, and non-parametric statistical analysis were used. A significant decrease in HBD-3 and HBD-4 in the connective tissue was found, as well as several mutual statistically significant and strong correlations between HBD-2, HBD-3, HBD-4, and LL-37. Deficiency of HBD-3 and HBD-4 suggests promotion of chronic inflammation. The scarcity of HBD-4 could be connected to the different signaling pathways of dental pulp cells. Mutual correlations imply changes in the epithelial barrier, amplified healing efficiency, and increased antibacterial line of defense. Deprivation of changes in IL-10 quantity points to possible suppression of the factor. The presence of similar CD-163 immunoreactive substances produced by M2 macrophages was also observed.
Collapse
Affiliation(s)
- Laura Ozola
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
9
|
Tripathi AK, Singh J, Trivedi R, Ranade P. Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications. J Funct Biomater 2023; 14:539. [PMID: 37998108 PMCID: PMC10672284 DOI: 10.3390/jfb14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and biomaterials, along with their diverse clinical applications. The incorporation of AMPs into various medical implants and biomaterials has shown immense potential in mitigating biofilm formation and preventing implant-related infections. We review the latest advancements in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their efficacy and stability within the implant environment. We also highlight successful examples of AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications, AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally, we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness, instability and implant-related complications. We also discuss strategies that can be employed to overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Jyotsana Singh
- Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Payal Ranade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| |
Collapse
|
10
|
Labossiere A, Ramsey M, Merritt J, Kreth J. Molecular commensalism-how to investigate underappreciated health-associated polymicrobial communities. mBio 2023; 14:e0134223. [PMID: 37754569 PMCID: PMC10653818 DOI: 10.1128/mbio.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The study of human commensal bacteria began with the first observation of prokaryotes >340 years ago. Since then, the study of human-associated microbes has been justifiably biased toward the study of infectious pathogens. However, the role of commensal microbes has in recent years begun to be understood with some appreciation of them as potential protectors of host health rather than bystanders. As our understanding of these valuable microbes grows, it highlights how much more remains to be learned about them and their roles in maintaining health. We note here that a thorough framework for the study of commensals, both in vivo and in vitro is overall lacking compared to well-developed methodologies for pathogens. The modification and application of methods for the study of pathogens can work well for the study of commensals but is not alone sufficient to properly characterize their relationships. This is because commensals live in homeostasis with the host and within complex communities. One difficulty is determining which commensals have a quantifiable impact on community structure and stability as well as host health, vs benign microbes that may indeed serve only as bystanders. Human microbiomes are composed of bacteria, archaea, fungi, and viruses. This review focuses particularly on oral bacteria, yet many of the principles of commensal impacts on host health observed in the mouth can translate well to other host sites. Here, we discuss the value of commensals, the shortcomings involved in model systems for their study, and some of the more notable impacts they have upon not only each other but host health.
Collapse
Affiliation(s)
- Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Benlier N, Solakhan M, Sever ÖN, Yıldırım Z, Orhan N, Çiçek H, Yıldırım M. Role of serum cathelicidin in diagnosis of patient with prostatitis and prostate carcinoma. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Abstract
Background
This study investigated the diagnostic role of 75 levels measured in serum prostatitis and prostate carcinoma and in the differentiation of these two conditions.
Methods
The study was conducted with 75 patients histopathologically diagnosed with prostate carcinoma or prostatitis and followed up at the Departments of Urology and Medical Oncology and 21 healthy male subjects. Serum cathelicidin levels were investigated using the ELISA method. Statistical analyses were performed using the SPSS for Windows 22.0 package software. Compliance of the variables to normal distribution was examined using visual and analytic methods. In the Kolmogorov–Smirnov test, cases with a p value of greater than 0.05 were accepted as normal distribution.
Results
A total of 75 patients including 45 diagnosed with prostate carcinoma and 30 diagnosed with prostatitis, as well as 21 healthy control subjects were included in the study. Prostate-specific antigen (PSA) was detected as 23 (4–1200) ng/mL in the patients with prostate carcinoma and as 9.85 (3.9–405 ng/mL) in the patients with prostatitis. The cathelicidin levels were diagnostically significant when assessed by ROC analysis in the prostate cancer, prostatitis and control groups (p = 0.005). The cutoff values derived from the ROC curve analysis were 3.5151 ng/mL for distinguishing prostate cancer from prostatitis, 2.2620 ng/mL for prostate cancer versus control group and 1.2340 ng/mL for prostatitis versus control group.
Conclusions
In this study we showed that the serum cathelicidin levels were significantly higher in the patients diagnosed with prostate carcinoma. Measurement of serum cathelicidin levels could be used as a diagnostic marker in prostate carcinoma as well as facilitating differential diagnosis to strengthen the diagnostic suspicion before prostate biopsy and distinguish the diagnosis from prostatitis cases.
Collapse
|
12
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
13
|
Zhang L, Ghosh SK, Basavarajappa SC, Chen Y, Shrestha P, Penfield J, Brewer A, Ramakrishnan P, Buck M, Weinberg A. HBD-2 binds SARS-CoV-2 RBD and blocks viral entry: Strategy to combat COVID-19. iScience 2022; 25:103856. [PMID: 35128350 PMCID: PMC8808565 DOI: 10.1016/j.isci.2022.103856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 01/28/2022] [Indexed: 12/26/2022] Open
Abstract
New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19-related deaths and medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell-derived host defense peptide that has anti-viral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical measurements confirm that hBD-2 indeed binds to the CoV-2-receptor-binding domain (RBD) (KD ∼ 2μM by surface plasmon resonance), preventing it from binding to ACE2-expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSVG-mediated infection, of ACE2-expressing human cells with an IC50 of 2.8 ± 0.4 μM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as agents to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Santosh K. Ghosh
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Yinghua Chen
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pravesh Shrestha
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jackson Penfield
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Ann Brewer
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aaron Weinberg
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Chen M, Lin W, Gan J, Lu W, Wang M, Wang X, Yi J, Zhao Z. Transcriptomic Mapping of Human Parotid Gland at Single-Cell Resolution. J Dent Res 2022; 101:972-982. [PMID: 35220796 DOI: 10.1177/00220345221076069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the largest salivary gland in oral cavity, the parotid gland plays an important role in initial digesting and lubricating food. The abnormal secretory function of the parotid gland can lead to dental caries and oral mucosal inflammation. In recent years, single-cell RNA sequencing (scRNA-seq) has been used to explore the heterogeneity and diversity of cells in various organs and tissues. However, the transcription profile of the human parotid gland at single-cell resolution has not been reported yet. In this study, we constructed the cell atlas of human parotid gland using the 10× Genomics platform. Characteristic gene analysis identified the biological functions of serous acinar cell populations in secreting digestive enzymes and antibacterial proteins. We revealed the specificity and similarity of the parotid gland compared to other digestive glands through comparative analyses of other published scRNA-seq data sets. We also identified the cell-specific expression of hub genes for Sjögren syndrome in the human parotid gland by integrating the results of genome-wide association studies and bulk RNA-seq, which highlighted the importance of immune cell dysfunction in parotid Sjögren syndrome pathogenesis.
Collapse
Affiliation(s)
- M. Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z. Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
González JA, Vallejo JR. Relics and Historical Uses of Human Zootherapeutic Products in Contemporary Spanish Ethnoveterinary Medicine. Vet Sci 2021; 8:vetsci8120323. [PMID: 34941850 PMCID: PMC8707080 DOI: 10.3390/vetsci8120323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: this review documents the wide repertoire of practices and remedies based on the use of human-derived products in Spanish ethnoveterinary medicine (EVM) from the early 20th century to the present. These practices are compared with historical data and those of other countries; (2) Methods: a search using advanced functions in the most important databases in the fields of ethnobiology, EVM, folklore, and ethnography was performed. Information was obtained from 29 documentary sources; (3) Results: from the search of the literature, 46 use-reports related to the veterinary use of human urine, menstrual fluid, saliva, breast milk, and faeces were recorded. These zootherapeutic resources are/were used to treat 20 animal diseases, in particular dermatological ailments. In addition, many practices of the magical-religious type are documented; (4) Conclusions: the veterinary uses described and analysed here are fundamental to the development of therapeutic tools and creating teaching and learning processes in new popular veterinary practices adapted to the users and those who demand them. The information collected could form a scientific foundation for future inventories of local veterinary knowledge (LVK) and research addressing the discovery of new drugs for livestock. This work contributes to the inventory of some uses, traditional practices, and rituals seriously threatened by the progressive loss of LVK in Europe.
Collapse
Affiliation(s)
- José A. González
- Grupo de Investigación de Recursos Etnobiológicos del Duero-Douro (GRIRED), Facultad de Biología, Universidad de Salamanca, E-37071 Salamanca, Spain;
| | - José Ramón Vallejo
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología, Área de Historia de la Ciencia, Facultad de Medicina, Universidad de Cádiz, E-11003 Cádiz, Spain
- Correspondence:
| |
Collapse
|
16
|
Host Defence Peptides in Diabetes Mellitus Type 2 Patients with Periodontal Disease. A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11122210. [PMID: 34943445 PMCID: PMC8700015 DOI: 10.3390/diagnostics11122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/09/2022] Open
Abstract
The aim of the study was to critically assess and review the latest evidence relating the associations between host defence peptides (HDPs), periodontal diseases (PD) and diabetes mellitus type 2 (DM2). To explore studies on HDPs, periodontal disease, and DM2, researchers utilised specific key phrases to search the electronic databases PubMed (National Library of Medicine), Embase (Ovid), Medline (EBSCO), and Dentistry and Oral Sciences (EBSCO). Quality assessment was conducted by means of the Newcastle Ottawa scale and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. Following a thorough screening process, a total of 12 papers (4 case-control, 6 cross-sectional, 1 animal, and 1 in vitro) fulfilled the selection criteria and were included. The majority of research found that HDPs were upregulated in DM2 patients with PD. Three investigations, however, found that HDPs were downregulated in DM2 patients with PD. HDPs play a part in the pathophysiology of PD and DM2. Nonetheless, more human, animal and laboratory investigations are needed to fully understand validation of the link, as the evidence is limited. Understanding HDPs as common moderators is critical, aimed at unlocking their potential as therapeutic and diagnostic agents.
Collapse
|
17
|
Lin B, Li R, Handley TN, Wade JD, Li W, O’Brien-Simpson NM. Cationic Antimicrobial Peptides Are Leading the Way to Combat Oropathogenic Infections. ACS Infect Dis 2021; 7:2959-2970. [PMID: 34587737 DOI: 10.1021/acsinfecdis.1c00424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oral dental infections are one of the most common diseases affecting humans, with caries and periodontal disease having the highest incidence. Caries and periodontal disease arise from infections caused by oral bacterial pathogens. Current misuse and overuse of antibiotic treatments have led to the development of antimicrobial resistance. However, recent studies have shown that cationic antimicrobial peptides are a promising family of antibacterial agents that are active against oral pathogenic bacteria and also possess less propensity for development of antimicrobial resistance. This timely Review has a focus on two primary subjects: (i) the oral bacterial pathogens associated with dental infections and (ii) the current development of antimicrobial peptides targeting oral pathogens.
Collapse
Affiliation(s)
- Bruce Lin
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rong Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas N.G. Handley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Angarita-Díaz MP, Simon-Soro A, Forero D, Balcázar F, Sarmiento L, Romero E, Mira A. Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age. J Oral Microbiol 2021; 13:1956219. [PMID: 34434531 PMCID: PMC8381948 DOI: 10.1080/20002297.2021.1956219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Unstimulated saliva was collected, and the biomarkers quantified in duplicate, using commercial Enzyme Linked Immunosorbent Assay (ELISA) kits to determine IgA, fibronectin, cathelicidin LL-37, and statherin levels, as well as colorimetric tests to detect formate and phosphate. Results: Significantly higher concentrations of statherin was detected in the CF group (Median: 94,734.6; IQR: 92,934.6-95,113.7) compared to the CA2 group (90,875.0; IQR: 83,580.2-94,633.4) (p = 0.03). Slightly higher median IgA (48,250.0; IQR: 31,461.9-67,418.8) and LL-37 levels (56.1; IQR 43.6-116.2) and a lower concentration of formate were detected in the CF group (0.02; IQR 0.0034-0.15) compared to the group with caries (IgA: 37,776.42; IQR: 33,383.9-44,128.5; LL-37: 46.3; IQR: 40.1011-67.7; formate: 0.10; IQR: 0.01-0.18), but these differences were not statistically significant. Conclusion: The fact that these compounds have been identified as good markers for caries among European adults highlights the difficulty of identifying universal biomarkers that are applicable to all ages or to different populations.
Collapse
Affiliation(s)
- María P Angarita-Díaz
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Aurea Simon-Soro
- Department of Health and Genomics, Foundation for the Promotion of Health and Biomedical Research, Valencia, Spain
| | - Diana Forero
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Felipe Balcázar
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Luisa Sarmiento
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Erika Romero
- Department of Health Sciences, School of Dentistry, Universidad Cooperativa De Colombia, Villavicencio Campus, Colombia
| | - Alex Mira
- Department of Health and Genomics, Foundation for the Promotion of Health and Biomedical Research, Valencia, Spain
- Centre for Oral Health, School of Health and Welfare, Jönköping University, Sweden
| |
Collapse
|
19
|
Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing. Biomolecules 2021; 11:biom11070952. [PMID: 34203393 PMCID: PMC8301823 DOI: 10.3390/biom11070952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous wound healing is a vital biological process that aids skin regeneration upon injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes, or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood tissue supply. The most significant hallmark of chronic wounds is heavily aberrant immune skin function. The immune response in humans relies on a large network of signalling molecules and their interactions. Research studies have reported on the dual role of host defence peptides (HDPs), which are also often called antimicrobial peptides (AMPs). Their duality reflects their potential for acting as antibacterial peptides, and as immunodulators that assist in modulating several biological signalling pathways related to processes such as wound healing, autoimmune disease, and others. HDPs may differentially control gene regulation and alter the behaviour of epithelial and immune cells, resulting in modulation of immune responses. In this review, we shed light on the understanding and most recent advances related to molecular mechanisms and immune modulatory features of host defence peptides in human skin wound healing. Understanding their functional role in skin immunity may further inspire topical treatments for chronic wounds.
Collapse
|
20
|
Immunomodulatory Expression of Cathelicidins Peptides in Pulp Inflammation and Regeneration: An Update. Curr Issues Mol Biol 2021; 43:116-126. [PMID: 34068275 PMCID: PMC8929016 DOI: 10.3390/cimb43010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The role of inflammatory mediators in dental pulp is unique. The local environment of pulp responds to any changes in the physiology that are highly fundamental, like odontoblast cell differentiation and other secretory activity. The aim of this review is to assess the role of cathelicidins based on their capacity to heal wounds, their immunomodulatory potential, and their ability to stimulate cytokine production and stimulate immune-inflammatory response in pulp and periapex. Accessible electronic databases were searched to find studies reporting the role of cathelicidins in pulpal inflammation and regeneration published between September 2010 and September 2020. The search was performed using the following databases: Medline, Scopus, Web of Science, SciELO and PubMed. The electronic search was performed using the combination of keywords "cathelicidins" and "dental pulp inflammation". On the basis of previous studies, it can be inferred that LL-37 plays an important role in odontoblastic cell differentiation and stimulation of antimicrobial peptides. Furthermore, based on these outcomes, it can be concluded that LL-37 plays an important role in reparative dentin formation and provides signaling for defense by activating the innate immune system.
Collapse
|
21
|
Zhang L, Ghosh SK, Basavarajappa SC, Muller-Greven J, Penfield J, Brewer A, Ramakrishnan P, Buck M, Weinberg A. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.07.425621. [PMID: 33442698 PMCID: PMC7805467 DOI: 10.1101/2021.01.07.425621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical and biochemical assays confirm that hBD-2 indeed binds to the CoV-2-receptor binding domain (RBD) (KD ~ 300 nM), preventing it from binding to ACE2 expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSV-G mediated infection, of ACE2 expressing human cells with an IC50 of 2.4± 0.1 μM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as novel agents to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
- contributed equally
| | - Santosh K. Ghosh
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44124
- contributed equally
| | - Shrikanth C. Basavarajappa
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
- contributed equally
| | - Jeannine Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
| | - Jackson Penfield
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
| | - Ann Brewer
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
| | | | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
| | - Aaron Weinberg
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44124
- Lead contact
| |
Collapse
|
22
|
Khurshid Z, Warsi I, Moin SF, Slowey PD, Latif M, Zohaib S, Zafar MS. Biochemical analysis of oral fluids for disease detection. Adv Clin Chem 2020; 100:205-253. [PMID: 33453866 DOI: 10.1016/bs.acc.2020.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of diagnostics using invasive blood testing represents the majority of diagnostic tests used as part of routine health monitoring. The relatively recent introduction of salivary diagnostics has lead to a major paradigm shift in diagnostic analyses. Additionally, in this era of big data, oral fluid testing has shown promising outcomes in a number of fields, particularly the areas of genomics, microbiomics, proteomics, metabolomics, and transcriptomics. Despite the analytical challenges involved in the interpretation of large datasets generated from biochemical studies involving bodily fluids, including saliva, many studies have identified novel oral biomarkers for diagnosing oral and systemic diseases. In this regard, oral biofluids, including saliva, gingival crevicular fluid (GCF), peri-implant crevicular fluid (PICF), dentinal tubular fluid (DTF), are now attracting increasing attention due to their important attributes, such as noninvasive sampling, easy handling, low cost, and more accurate diagnosis of oral diseases. Recently, the utilization of salivary diagnostics to evaluate systemic diseases and monitor general health has increased in popularity among clinicians. Saliva contains a wide range of protein, DNA and RNA biomarkers, which assist in the diagnosis of multiple diseases and conditions, including cancer, cardiovascular diseases (CVD), auto-immune and degenerative diseases, respiratory infections, oral diseases, and microbial (viral, bacterial and fungal) diseases. Moreover, due to its noninvasive nature and ease-of-adoption by children, it is now being used in mass screening programs, oral health-related studies and clinical trials in support of the development of therapeutic agents. The recent advent of highly sensitive technologies, such as next-generation sequencing, mass spectrometry, highly sensitives ELISAs, and homogeneous immunoassays, suggests that even small quantities of salivary biomarkers are able to be assayed accurately, providing opportunities for the development of many future diagnostic applications (including emerging technologies, such as point-of-care and rapid molecular technologies). The present article explores the omics and biochemical compositions of various oral biofluids with important value in diagnostics and monitoring.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Warsi
- Masters in Medical Science and Clinical Investigation, Harvard Medical School, Boston, MA, United States
| | - Syed F Moin
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Paul D Slowey
- Oasis Diagnostics® Corporation, Vancouver, WA, United States
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Sana Zohaib
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
23
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
24
|
Uwitonze AM, Rahman S, Ojeh N, Grant WB, Kaur H, Haq A, Razzaque MS. Oral manifestations of magnesium and vitamin D inadequacy. J Steroid Biochem Mol Biol 2020; 200:105636. [PMID: 32084549 DOI: 10.1016/j.jsbmb.2020.105636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Adequate nutrition is essential for maintaining good oral health. Minerals such as magnesium, calcium, and phosphorus found in the diet constitute the main structural components of the tooth. Their inadequacy leads to absorption impairment, increased bleeding tendency, bone resorption, looseness, and premature tooth loss. Inadequacy of those essential minerals is associated with delayed tooth eruption and with enamel or dentin hypoplasia. Taking calcium without magnesium results in soft dental enamel, which cannot resist the acids causing tooth decay. In addition to magnesium, calcium, and phosphorus, adequate vitamin D is needed to maintain optimal oral health. Vitamin D exerts anti-inflammatory effects and helps in calcium absorption and bone remodeling. Moreover, adequate vitamin D status could reduce formation of dental caries by delaying its onset and progression. Here we summarize the oral manifestations of vitamin D and magnesium inadequacy.
Collapse
Affiliation(s)
- Anne Marie Uwitonze
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Sayeeda Rahman
- Department of Pharmacology & Public Health, School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Nkemcho Ojeh
- Faculty of Medical Sciences, University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | - William B Grant
- Sunlight, Nutrition, & Health Research Center, San Francisco, CA, USA
| | - Harleen Kaur
- Department of Computer Science & Engineering, School of Engineering Sciences & Technology, Jamia Hamdard, New Delhi, India
| | - Afrozul Haq
- Department of Food Technology, School of Interdisciplinary Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed S Razzaque
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda; College of Advancing & Professional Studies (CAPS), University of Massachusetts Boston (UMB), Boston, MA, USA; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
25
|
Feng X, Jin S, Wang M, Pang Q, Liu C, Liu R, Wang Y, Yang H, Liu F, Liu Y. The Critical Role of Tryptophan in the Antimicrobial Activity and Cell Toxicity of the Duck Antimicrobial Peptide DCATH. Front Microbiol 2020; 11:1146. [PMID: 32670215 PMCID: PMC7326067 DOI: 10.3389/fmicb.2020.01146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted more attention for their potential candidates for new antibiotic drugs. As a novel identified cathelicidin AMP from duck, dCATH owns broad-spectrum antimicrobial activities but with a noticeable toxicity. To explore dCATH-derived AMPs with reduced cell toxicity and improved cell selectivity, a series of truncated and tryptophan-replaced peptides of dCATH were designed. Two truncated peptides containing one of the two tryptophan (Trp) residues at the positions of 4 and 17 (W4 and W17) of dCATH, dCATH(1-16) and dCATH(5-20), showed strong antibacterial activity, but didn't show obvious hemolytic activity and cytotoxicity. The derived peptides not containing Trp didn't possess obvious antimicrobial activity, and their hemolytic and cytotoxic effect was also diminished. Also as evidence by Trp fluorescence experiment that existence of W4 and W17 was crucially important to the antimicrobial activity, hemolysis and cytotoxicity of dCATH, and one of the two Trp residues was competent and necessary to retain its antimicrobial activity. Antibacterial mechanism analysis showed that dCATH(1-16) and dCATH(5-20) killed bacterial cells by increasing permeability and causing a loss of membrane integrity. dCATH(1-16) and dCATH(5-20) possessed insignificant inhibitory activity against levels of IL-6, TNF-α, and NO in RAW 264.7 cells treated with LPS. In vivo, intraperitoneal administration of the two peptides significantly decreased mortality and provided protection against LPS-induced inflammation in mice challenged with lethal dose of LPS. The two peptides, dCATH(1-16) and dCATH(5-20), which possessed high antibacterial activity and cell selectivity, may herald development prospects as new antibacterial agents in the future.
Collapse
Affiliation(s)
- Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Min Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunlong Liu
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin, China
| | - Ruiqi Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Fangju Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yueying Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
27
|
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, United States of America
- * E-mail:
| | - Alexandra M. Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, United States of America
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, United States of America
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, United States of America
| |
Collapse
|
28
|
Yoshida K, Suzuki S, Kawada-Matsuo M, Nakanishi J, Hirata-Tsuchiya S, Komatsuzawa H, Yamada S, Shiba H. Heparin-LL37 complexes are less cytotoxic for human dental pulp cells and have undiminished antimicrobial and LPS-neutralizing abilities. Int Endod J 2019; 52:1327-1343. [PMID: 31002379 DOI: 10.1111/iej.13130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
AIM To investigate whether glycosaminoglycans (GAGs) binding to high-dose LL37 eliminates its cytotoxicity to dental pulp cells (hDPCs) whilst retaining undiminished antimicrobial and LPS-neutralizing abilities. METHODOLOGY hDPCs were stimulated with varying concentrations of LL37, and their cell viability was analysed by MTT. Then, high-dose LL37 (10 μmol L-1 ) was bound to varying concentrations of three GAGs, heparin, chondroitin sulphate and hyaluronic acid, and their cytotoxic effects on hDPCs and antimicrobial effects were evaluated and compared. Furthermore, the LPS-neutralizing ability of heparin (5 μg mL-1 )-LL37 (10 μmol L-1 ) complexes, which were found to be less cytotoxic for hDPCs with undiminished antimicrobial ability, was investigated. Statistical analysis was performed using one-way analysis of variance (anova), followed by Dunnett's test. P values below 0.05 were considered significant. RESULTS LL37 significantly reduced the cell viability of hDPCs in a dose-dependent manner (P < 0.01). LL37 (10 μmol L-1 ) binding to heparin within a limited concentration range (2~6 μg mL-1 ) eliminated the cytotoxicity for hDPCs (P < 0.01) whilst exerting potent antimicrobial effects against Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Aggegatibacter actinomycetemcomitans and Escherichia coli. LL37 (10 μmol L-1 ) binding to chondroitin sulphate exhibited similar functions (P < 0.01); however, the effective chondroitin sulphate concentration was highly restricted (3 μg mL-1 ). LL37 (10 μmol L-1 ) binding to hyaluronic acid was unable to abrogate the cytotoxicity of LL37 even at higher concentrations (10 and 100 μg mL-1 ). Moreover, exogenous addition of LPS dose-dependently reduced the amount of LL37 precipitated with the heparin-LL37 agarose beads (P < 0.01), and the released LL37 simultaneously neutralized the pro-inflammatory ability of LPS in macrophages (P < 0.01). CONCLUSIONS Heparin-LL37 complexes generated at suitable concentration ratios are easy to make, are less cytotoxic and are broad-range antimicrobial materials that can neutralize LPS by providing LL37 in accordance with the amount of free LPS. They may be a potential treatment to save dental pulp tissue from the acute inflammation exacerbated by invading bacteria and the LPS they release.
Collapse
Affiliation(s)
- K Yoshida
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - S Suzuki
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - M Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - S Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - S Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - H Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1–18) and its analogue mutBMAP18. J Struct Biol 2018; 204:435-448. [DOI: 10.1016/j.jsb.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
30
|
Antibacterial and Antibiofilm Activity and Mode of Action of Magainin 2 against Drug-Resistant Acinetobacter baumannii. Int J Mol Sci 2018; 19:ijms19103041. [PMID: 30301180 PMCID: PMC6213043 DOI: 10.3390/ijms19103041] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic agents for treating antibiotic-resistant bacterial infections. Previous studies showed that magainin 2 (isolated from African clawed fogs Xenopus laevis) has antimicrobial activity against gram-positive and gram-negative bacteria. The present study was conducted to investigate the antibacterial activity of magainin 2 against Acinetobacter baumannii. Magainin 2 showed excellent antibacterial activity against A. baumannii strains and high stability at physiological salt concentrations. This peptide was not cytotoxic towards HaCaT cells and showed no hemolytic activity. Biofilm inhibition and elimination were significantly induced in all A. baumannii strains exposed to magainin 2. We confirmed the mechanism of magainin 2 on the bacterial outer and inner membranes. Collectively, these results suggest that magainin 2 is an effective antimicrobial and antibiofilm agent against A. baumannii strains.
Collapse
|