1
|
Frigerio G, Motta S, Siani P, Donadoni E, Di Valentin C. Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale. J Control Release 2025; 379:344-362. [PMID: 39798704 DOI: 10.1016/j.jconrel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure. Here, realistic atomistic GO models are designed as homogeneously/inhomogeneously oxidized flakes and then coated with stealth polymeric chains conjugated to an active targeting ligand (PEG-cRGD). Doxorubicin (DOX) adsorption is investigated by metadynamics simulations for accelerated loading/release events. The presence of PEG and cRGD are found not to affect the DOX adsorption, whereas the homogeneity of oxidation plays a crucial role. We also proved that a change in pH towards acidic conditions causes a reduction in the GO/DOX affinity in line with a pH-triggered release mechanism. Based on this study, the ideal graphene-based DOX carrier is identified as a homogeneously highly oxidized GO where graphitic regions with strong DOX π-π stacking are limited. Such interactions excessively stabilize DOX and are not weakened by a pH-change. On the contrary, DOX interactions with surface oxidized groups are H-bonding and electrostatic, which can effectively be modified by a pH reduction. Our findings are useful to the experimental community to further develop successful drug delivery systems.
Collapse
Affiliation(s)
- Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126, Milano, Italy
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| | - Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
2
|
Aziz MT, Gill WA, Khosa MK, Jamil S, Janjua MRSA. Adsorption of molecular hydrogen (H 2) on a fullerene (C 60) surface: insights from density functional theory and molecular dynamics simulation. RSC Adv 2024; 14:36546-36556. [PMID: 39553268 PMCID: PMC11565422 DOI: 10.1039/d4ra06171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding the adsorption behavior of molecular hydrogen (H2) on solid surfaces is essential for a variety of technological applications, including hydrogen storage and catalysis. We examined the adsorption of H2 (∼2800 configurations) molecules on the surface of fullerene (C60) using a combined approach of density functional theory (DFT) and molecular dynamics (MD) simulations with an improved Lennard-Jones (ILJ) potential force field. First, we determined the adsorption energies and geometries of H2 on the C60 surface using DFT calculations. Calculations of the electronic structure help elucidate underlying mechanisms administrating the adsorption process by revealing how H2 molecules interact with the C60 surface. In addition, molecular dynamics simulations were performed to examine the dynamic behavior of H2 molecules on the C60 surface. We accurately depicted the intermolecular interactions between H2 and C60, as well as the collective behavior of adsorbed H2 molecules, using an ILJ potential force field. Our findings indicate that H2 molecules exhibit robust physisorption on the C60 surface, forming stable adsorption structures with favorable adsorption energies. Calculated adsorption energies and binding sites are useful for designing efficient hydrogen storage materials and comprehending the nature of hydrogen's interactions with carbon-based nanostructures. This research provides a comprehensive understanding of H2 adsorption on the C60 surface by combining the theoretical framework of DFT calculations with the dynamical perspective of MD simulations. The outcomes of the present research provide new insights into the fields of hydrogen storage and carbon-based nanomaterials, facilitating the development of efficient hydrogen storage systems and advancing the use of molecular hydrogen in a variety of applications.
Collapse
Affiliation(s)
- Muhammad Tariq Aziz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Waqas Amber Gill
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Muhammad Kaleem Khosa
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | | |
Collapse
|
3
|
Shu Q, Huang P, Dong Z, Wang W. Molecular dynamics investigation on synthesis of a pH- and temperature-sensitive carbon nanotube loaded with doxorubicin. iScience 2024; 27:108812. [PMID: 38303688 PMCID: PMC10831279 DOI: 10.1016/j.isci.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The many exotic properties of carbon nanotubes (CNTs) make them a powerful attraction in the field of drug delivery systems (DDS). In this work, based on quantum chemical calculation and molecular simulation techniques, polyacrylic acid (PAA) and N-isopropyl acrylamide (NIP) are selected and acted simultaneously on the CNT to form a stable system (FCNT). As a potential DDS, FCNT captures the dispersed doxorubicin (DOX) molecules around it and maintains a stable configuration. In these processes, electrostatic and van der Waals forces act synergistically, with van der Waals forces dominating. Compared to NIP, PAA molecules exhibit stronger adhesion and encapsulation efficiency to CNT and stronger adsorption capacity to DOX. This study reveals the mechanism of action among PAA, NIP, CNT, and DOX, providing feasibility verification and prospective guidance for the experimental synthesis of PAA-NIP-CNT-type multifunctional DDS, and also broadening the idea for exploring more efficient DDS suitable for DOX.
Collapse
Affiliation(s)
- Qijiang Shu
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Traditional Chinese Medicine Prevention and Treatment Engineering Research Center, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Pengru Huang
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhi Dong
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
4
|
Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. ENVIRONMENTAL RESEARCH 2023; 237:117027. [PMID: 37659647 DOI: 10.1016/j.envres.2023.117027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Sadegh Abedin
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Chaleshgari
- Department of Avian Diseases, Faculty of Veterinary Medicine, Chamran University, Ahvaz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Reza Baeelashaki
- Department of Food Hygiene and Quality Control, Division of Animal Feed Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Recent advances and futuristic potentials of nano-tailored doxorubicin for prostate cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Eskandari S, Barzegar A, Mahnam K. Absorption of daunorubicin and etoposide drugs by hydroxylated and carboxylated carbon nanotube for drug delivery: theoretical and experimental studies. J Biomol Struct Dyn 2022; 40:10057-10064. [PMID: 34166598 DOI: 10.1080/07391102.2021.1938232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-cancer daunorubicin and etoposide drugs are mostly used in chemotherapy medicine to treat a wide variety of cancers. Many of the side effects and specific delivery to a target tissue are the main challenges of using chemotherapeutic agents. To avoid serious toxic side effects and improve treatment outcomes, functionalized carbon nanotubes (f-CNTs) are considered promising nano-carriers for the delivery of chemotherapeutic drugs to cancerous cells. We examined the effects of -OH and -COO- groups on CNTs surface for absorption of two anticancer drugs including daunorubicin and etoposide using molecular dynamics simulation and experimental assays. To evaluate the absorption of each drug in each CNT, the complexes of drugs/CNTs in water were simulated separately. Theoretical investigation demonstrated that CNT-OH and CNT-COO- are more suitable for absorption of daunorubicin and etoposide, respectively. Experimental findings also confirmed molecular dynamics simulation results. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sara Eskandari
- Research Center of Bioscience and Biotechnology (RBB), University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Center of Bioscience and Biotechnology (RBB), University of Tabriz, Tabriz, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
7
|
Torrik A, Zaerin S, Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
9
|
Kalika EB, Katin KP, Kochaev AI, Kaya S, Elik M, Maslov MM. Fluorinated carbon and boron nitride fullerenes for drug Delivery: Computational study of structure and adsorption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Ma X, Zhu X, Qu S, Cai L, Ma G, Fan G, Sun X. Fabrication of copper nanoparticle composite nanogel for high-efficiency management of Pseudomonas syringae pv. tabaci on tobacco. PEST MANAGEMENT SCIENCE 2022; 78:2074-2085. [PMID: 35142039 DOI: 10.1002/ps.6833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Copper nanoparticles (CuNPs) can release copper ions (Cu2+ ) to control bacterial diseases on crops. However, the high concentration of the CuNPs applied in disease controlling can highly limit their application. In this work, by in situ reducing CuNPs in alginate nanogels and coated with cetyl trimethyl ammonium chloride (CTAC), a CuNP composite nanogel was fabricated as a new nanopesticide with low copper content. RESULTS Data showed that the CTAC coating would affect the antibacterial activity and leaf surface adhesion of the nanogel, while CuNP content could also influence the membrane damage ability of the gel. The nanogel could depress the growth of bacteria by rupturing its membrane and show a minimum inhibitory concentration (MIC) as low as 500 μg mL-1 , which only contain 58 μg mL-1 CuNP, and achieve a 64% of therapeutic efficiency (with 1000 μg mL-1 nanogel) in in vivo experiments, higher than that of commercial bactericide thiodiazole copper. Furthermore, the application of the nanogel can also perform a growth-promoting effect on the plant, which may be due to the supplement of copper element provided by CuNP. CONCLUSION The CuNP composite nanogel fabricated in this work performed high leaf disease controllability and safety compared to the commercial bactericide thiodiazole copper. We hope this nanogel can provide a potential high-efficiency nano-bactericide that can be used in the leaf bacterial disease control.
Collapse
Affiliation(s)
- Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Saijiao Qu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lin Cai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Ali A, Bhadane R, Asl AA, Wilén CE, Salo-Ahen O, Rosenholm JM, Bansal KK. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv 2022; 12:26763-26775. [PMID: 36320859 PMCID: PMC9490767 DOI: 10.1039/d2ra03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Functionalization of polymers is an attractive approach to introduce specific molecular forces that can enhance drug–polymer interaction to achieve higher drug loading when used as drug delivery systems. The novel amphiphilic block copolymer of methoxy poly(ethylene glycol) and poly(jasmine lactone) i.e., mPEG-b-PJL, derived from renewable jasmine lactone provides free allyl groups on the backbone thus, allowing flexible and facile post-synthesis functionalization. In this study, mPEG-b-PJL and its carboxyl functionalized polymer mPEG-b-PJL-COOH were utilised to explore the effect of ionic interactions on the drug–polymer behaviour. Various drugs with different pKa values were employed to prepare drug-loaded polymeric micelles (PMs) of mPEG-b-PJL, mPEG-b-PJL-COOH and Soluplus® (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer) via a nanoprecipitation method. Electrostatic interactions between the COOH pendant on mPEG-b-PJL-COOH and the basic drugs were shown to influence the entrapment efficiency. Additionally, molecular dynamics (MD) simulations were employed to understand the polymer–drug interactions at the molecular level and how polymer functionalization influenced these interactions. The release kinetics of the anti-cancer drug sunitinib from mPEG-b-PJL and mPEG-b-PJL-COOH was assessed, and it demonstrated a sustainable drug release pattern, which depended on both pH and temperature. Furthermore, the cytotoxicity of sunitinib-loaded micelles on cancer cells was evaluated. The drug-loaded micelles exhibited dose-dependent toxicity. Also, haemolysis capacity of these polymers was investigated. In summary, polymer functionalization seems a promising approach to overcome challenges that hinder the application of polymer-based drug delivery systems such as low drug loading degree. Block copolymer micelles with a functional core have been synthesized and evaluated for their drug delivery capability. High drug loading was observed due to strong ionic interactions, while cytotoxicity of polymers was found to be low.![]()
Collapse
Affiliation(s)
- Aliaa Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Afshin Ansari Asl
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Outi Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
12
|
Mehdizadeh Chellehbari Y, Sayyad Amin J, Zendehboudi S. How Does a Microfluidic Platform Tune the Morphological Properties of Polybenzimidazole Nanoparticles? J Phys Chem B 2021; 126:308-326. [PMID: 34958735 DOI: 10.1021/acs.jpcb.1c08192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs. Microfluidic technology can control the mixing time well and engineer the morphology of the NPs. In the process of morphological changes, at the optimum time (about 11.5 ms), the attraction energy between the polymer molecules is at the highest level (-37.65 kJ/mol). The size of the polymer NPs is minimal (2.3 nm), and the aspect ratio and entropy are at the lowest level, equal to 1.07 and 11.024 kJ/mol·K, respectively. It was found that the presence of water leads to the precipitation of polymeric NPs owing to the dominance of hydrophobic forces. Both dimethylacetamide (DMA) and phosphoric acid (PA) improve the control of the size and morphology of NPs. However, the addition of PA has a greater impact; PA acts as a cross-linker, making PBI NPs finer and more spherical. In addition, MD simulation reveals that PA increases the proton diffusion coefficient in PBI and enhances its efficiency in fuel cells. This study paves a new efficient way for morphological engineering of polymeric NPs using microfluidic technology.
Collapse
Affiliation(s)
| | - Javad Sayyad Amin
- Department of Chemical Engineering, University of Guilan, Rasht IR 41335, Iran
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
13
|
Duan C, Townley HE. Nanoparticles as Vectors to Tackle Cancer. Biomolecules 2021; 11:1729. [PMID: 34827727 PMCID: PMC8615916 DOI: 10.3390/biom11111729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this Special Issue, "Nanoparticles for cancer therapy", was to offer readers a comprehensive and up-to-date insight into the various applications of nanoparticles in cancer treatments [...].
Collapse
Affiliation(s)
- Chengchen Duan
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Helen E Townley
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
- Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
14
|
Chudoba D, Jażdżewska M, Łudzik K, Wołoszczuk S, Juszyńska-Gałązka E, Kościński M. Description of Release Process of Doxorubicin from Modified Carbon Nanotubes. Int J Mol Sci 2021; 22:12003. [PMID: 34769431 PMCID: PMC8584310 DOI: 10.3390/ijms222112003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
The article discusses the release process of doxorubicin hydrochloride (DOX) from multi-wall carbon nanotubes (MWCNTs). The studies described a probable mechanism of release and actions between the surface of functionalized MWCNTs and anticancer drugs. The surface of carbon nanotubes (CNTs) has been modified via treatment in nitric acid to optimize the adsorption and release process. The modification efficiency and physicochemical properties of the MWCNTs+DOX system were analyzed by using SEM, TEM, EDS, FTIR, Raman Spectroscopy and UV-Vis methods. Based on computer simulations at pH 7.4 and the experiment at pH 5.4, the kinetics and the mechanism of DOX release from MWNT were discussed. It has been experimentally observed that the acidic pH (5.4) is appropriate for the efficient release of the drug from CNTs. It was noted that under acidic pH conditions, which is typical for the tumour microenvironment almost 90% of the drug was released in a relatively short time. The kinetics models based on different mathematical functions were used to describe the release mechanism of drugs from MWCNTs. Our studies indicated that the best fit of experimental kinetic curves of release has been observed for the Power-law model and the fitted parameters suggest that the drug release mechanism of DOX from MWCNTs is controlled by Fickian diffusion. Molecular dynamics simulations, on the other hand, have shown that in a neutral pH solution, which is close to the blood pH, the release process does not occur keeping the aggregation level constant. The presented studies have shown that MWCNTs are promising carriers of anticancer drugs that, depending on the surface modification, can exhibit different adsorption mechanisms and release.
Collapse
Affiliation(s)
- Dorota Chudoba
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; (M.J.); (S.W.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
| | - Monika Jażdżewska
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; (M.J.); (S.W.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
| | - Katarzyna Łudzik
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
- Department of Physical Chemistry, University of Lodz, 90-236 Lodz, Poland
| | - Sebastian Wołoszczuk
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; (M.J.); (S.W.)
| | - Ewa Juszyńska-Gałązka
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland;
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Mikołaj Kościński
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, University of Life Sciences, 60-637 Poznan, Poland;
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
15
|
Liu B, Jin Z, Chen H, Liang L, Li Y, Wang G, Zhang J, Xu T. Electrospun poly (L-lactic acid)/gelatine membranes loaded with doxorubicin for effective suppression of glioblastoma cell growth in vitro and in vivo. Regen Biomater 2021; 8:rbab043. [PMID: 34394954 PMCID: PMC8358479 DOI: 10.1093/rb/rbab043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022] Open
Abstract
Electrospun membranes are attracting interest as a drug delivery system because of their material composition flexibility and versatile drug loading. In this study, the electrospun membrane was loaded with doxorubicin (DOX) via electrostatic adsorption for long-term drug delivery. DOX loading process was optimized by varying temperature, time, drug concentration, pH and ionic strength of solutions. The loading process did not impair the structural properties of the membrane. Next, we investigated the drug release kinetics using spectroscopic techniques. The composite membranes released 22% of the adsorbed DOX over the first 48 h, followed by a slower and sustained release over 4 weeks. The DOX release was sensitive to acidic solutions that the release rate at pH 6.0 was 1.27 times as that at pH 7.4. The DOX-loaded membranes were found to be cytotoxic to U-87 MG cells in vitro that decreased the cell viability from 82.92% to 25.49% from 24 to 72 h of co-incubation. These membranes showed strong efficacy in suppressing tumour growth in vivo in glioblastoma-bearing mice that decreased the tumour volume by 77.33% compared with blank membrane-treated group on Day 20. In conclusion, we have developed an effective approach to load DOX within a clinically approved poly (L-lactic acid)/gelatine membrane for local and long-term delivery of DOX for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Zhizhong Jin
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110122, China
| | - Haiyan Chen
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lun Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Yao Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Guo Wang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Jing Zhang
- Medprin Regenerative Medical Technologies Co., Ltd, Guangzhou 510663, China
| | - Tao Xu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Rezvantalab S, Maleki R, Drude NI, Khedri M, Jans A, Keshavarz Moraveji M, Darguzyte M, Ghasemy E, Tayebi L, Kiessling F. Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS OMEGA 2021; 6:23117-23128. [PMID: 34549113 PMCID: PMC8444197 DOI: 10.1021/acsomega.1c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department
of Chemical Engineering, Urmia University
of Technology, 57166-93188 Urmia, Iran
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
| | - Natascha Ingrid Drude
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
- Department
of Experimental Neurology, Charité
−Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammad Khedri
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alexander Jans
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milita Darguzyte
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Ebrahim Ghasemy
- Centre
Énergie Matériaux Télécommunications, Institut national de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| |
Collapse
|
17
|
Chadar R, Afzal O, Alqahtani SM, Kesharwani P. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces 2021; 208:112044. [PMID: 34419810 DOI: 10.1016/j.colsurfb.2021.112044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Carbon nanotubes (CNTs), a versatile nanocarrier for doxorubicin (DOX) delivery had attracted significant attention in drug delivery of pharmaceuticals. Several properties such as high surface area, high drug loading capacity, stability, ease of functionalization, ultrahigh length to diameter ratio and good cellular uptake make them preferred nanocarrier as multipurpose drug delivery system. Several surface properties of CNTs can be easily modified by covalent/noncovalent functionalization, which can make CNTs a profound nanomaterial. Hydrophobic surface of CNTs facilitated π-π stacking interactions, with several drugs and therapeutic agents having aromatic ring in their structure, for example anthracyclines. In case some drug molecules, electrostatic interaction between drug and CNTs comes into the picture. DOX, an anthracycline anticancer drug, can easily adsorb on the surface of CNTs by π-π stacking interactions. In present article, we have reviewed various CNTs based drug delivery systems for the delivery of DOX alone or in combination with genetic materials and other drug molecules. In addition, we described recent updates in CNTs based drug delivery system for the delivery of DOX, we covered adsorption and desorption, different types of functionalization, to alter the properties of CNTs in vitro and in vivo. CNT attached many targeting ligands for the targeted delivery of DOX have also been discussed.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
18
|
Javadian S, Najafi K, Sadrpoor SM, Ektefa F, Dalir N, Nikkhah M. Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
20
|
Kost B, Gonciarz W, Krupa A, Socka M, Rogala M, Biela T, Brzeziński M. pH-tunable nanoparticles composed of copolymers of lactide and allyl-glycidyl ether with various functionalities for the efficient delivery of anti-cancer drugs. Colloids Surf B Biointerfaces 2021; 204:111801. [PMID: 33957491 DOI: 10.1016/j.colsurfb.2021.111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The designing of biocompatible nanocarriers for the efficient delivery of their cargos to the desired targets remains a challenge. In this regard, the most promising strategy relies on the construction of pH- or thermo-responsive nanoparticles (NPs). However, it is also important to preserve the balance between the responsiveness of the carrier and their stability in physiological conditions. Therefore, we described a new family of copolymers of lactide and allyl-glycidyl ether which were subsequently modified by thiol-ene reaction to functionalize the resulting copolymer with acetylcysteine (ACC) or thioglycolic acid (tGA) moieties. Subsequently, these copolymers were used to obtain blank and doxorubicin (DOX) loaded NPs with an average diameter of about 50-100 nm. Interestingly, the NPs were stable in different pH conditions, however, the presence of ACC or tGA units in the polymeric chain allows for the reduction of the undesired burst release due to the supramolecular interactions between polymeric pedant groups and DOX. The release tests of DOX from NPs showed that DOX release rate decrease depending on the pH values and the copolymer functionalization in order of non-modified NPs > ACC-modified NPs > tGA functionalized NPs. Most importantly, the MTT assay showed that all blank NPs are non-toxic against the normal L929 cell line. Subsequently, the antitumor efficiency of the obtained NPs was tested towards L929 (murine fibroblast cell line), HeLa (cervical cancer), and AGS (human gastric adenocarcinoma cancer) cells. The results demonstrated that DOX-loaded NPs efficiently induce the reduction in the viability of the HeLa and AGS cell, and this reduction in the viability was even below 20 % for the AGS cells. Together with their biocompatibility, the obtained NPs offer a novel route for the preparation of nanocarriers for the controlled and efficient delivery of anticancer drugs.
Collapse
Affiliation(s)
- B Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.
| | - W Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - A Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - M Socka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - M Rogala
- University of Lodz, Faculty of Physics and Applied Informatics, Department of Solid State Physics, Pomorska 149/153, 90-236, Lodz, Poland
| | - T Biela
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - M Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.
| |
Collapse
|
21
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Tohidifar L, Strodel B. Molecular dynamics studies for enhancing the anticancer drug efficacy: Toward designing a new carbon nanotube-based paclitaxel delivery system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Graphene nanoribbons: A state-of-the-art in health care. Int J Pharm 2021; 595:120269. [DOI: 10.1016/j.ijpharm.2021.120269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023]
|
24
|
Xu B, Yuan L, Hu Y, Xu Z, Qin JJ, Cheng XD. Synthesis, Characterization, Cellular Uptake, and In Vitro Anticancer Activity of Fullerenol-Doxorubicin Conjugates. Front Pharmacol 2021; 11:598155. [PMID: 33568999 PMCID: PMC7868567 DOI: 10.3389/fphar.2020.598155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic agents for treating human cancer. However, its clinical use has been limited by DOX-induced cardiotoxicity as well as other side effects. In the present study, we designed and synthesized the fullerenol (FU)-DOX conjugates and folic acid (FA)-grafted FU-DOX conjugates for improving the selectivity and activity of DOX in cancer cells. We further characterized the physicochemical properties and examined the release kinetics, cellular uptake, and in vitro anticancer activities of FU-DOX and FA-FU-DOX. The results showed that FU-DOX and FA-FU-DOX had a mean diameter of <200 nm and a low polydispersity. Both FU-DOX and FA-FU-DOX exhibited pH sensitivity and their DOX release rates were higher at pH 5.9 vs. pH 7.4. The cellular uptake studies indicated that FU conjugation enhanced the intracellular accumulation of DOX in human hepatocellular carcinoma (HCC) cell lines (BEL-7402 and HepG2) and the immortalized normal human hepatocytes (L02). The conjugation of FA to FU-DOX further promoted the drug internalization in an FR-dependent manner and enhanced the cytotoxicity against HCC cells. In conclusion, the newly prepared FA-FU-DOX conjugates can optimize the safety and efficacy profile of DOX.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
25
|
Khan A, Kumar Sahu N. Folate encapsulation in PEG-diamine grafted mesoporous Fe 3O 4 nanoparticles for hyperthermia and in vitro assessment. IET Nanobiotechnol 2020; 14:881-888. [PMID: 33399122 PMCID: PMC8675971 DOI: 10.1049/iet-nbt.2020.0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol-diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug-loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3+) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP's concentration of 1 mg/ml. The functionalised NPs possess non-appreciable toxicity in breast cancer cells (MCF-7) which is triggered under DOX-loaded SPION.
Collapse
Affiliation(s)
- Ahmaduddin Khan
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, TN, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, TN, India.
| |
Collapse
|
26
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Khoshoei A, Ghasemy E, Poustchi F, Shahbazi MA, Maleki R. Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan. Pharm Res 2020; 37:160. [PMID: 32747991 PMCID: PMC7399690 DOI: 10.1007/s11095-020-02881-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to introduce a smart and responsive drug carrier for Doxorubicin (DOX) and Paclitaxel (PAX) for desirable therapeutic application. METHOD Loading and releasing of DOX and PAX from smart and pH-sensitive functionalized single-walled carbon nanotube (SWCNTs) and graphene carriers have been simulated by molecular dynamics. The influences of chitosan polymer on proposed carriers have been studied, and both carriers were functionalized with carboxyl groups to improve the loading and releasing properties of the drugs. RESULTS The results showed that DOX could be well adsorbed on both functionalized SWCNTs and graphene. In contrast, there was a weak electrostatic and Van der Waals interaction between both these drugs and carriers at cancerous tissues, which is highly favorable for cancer therapy. Adding trimethyl chitosan (TMC) polymer to carriers facilitated DOX release at acidic tissues. Furthermore, at blood pH, the PAX loaded on the functionalized SWCNTs carrier represented the highest dispersion of the drug while the DOX-graphene showed the highest concentration of the drug at a point. In addition, the mean-square displacement (MSD) results of PAX-graphene indicated that the PAX could be adsorbed quickly and be released slowly. Finally, functionalized graphene-TMC-PAX is a smart drug system with responsive behavior and controllable drug release, which are essential in cancer therapy. CONCLUSION Simultaneous application of the carboxyl group and TMC can optimize the pH sensitivity of the SWCNTs and graphene to prepare a novel and smart drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Azadeh Khoshoei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Fatemeh Poustchi
- Department of Nanotechnology, University of Guilan, Guilan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
29
|
Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci 2020; 257:118059. [PMID: 32659368 DOI: 10.1016/j.lfs.2020.118059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Cancer includes a group of diseases involving unregulated cell growth with the potential to invade or expand to other parts of the body, resulting in an estimate of 9.6 million deaths worldwide in 2018. Manifold studies have been conducted to design more efficacious techniques for cancer therapy due to the inadequacy of conventional treatments including chemotherapy, surgery, and radiation therapy. With the advances in the biomedical applications of nanotechnology-based systems, nanomaterials have gained increasing attention as promising vehicles for targeted cancer therapy and optimizing treatment outcomes. Owing to their outstanding thermal, electrical, optical and chemical properties, carbon nanotubes (CNTs) have been profoundly studied to explore the various perspectives of their application in cancer treatment. The current study aims to review the role of CNTs whether as a carrier or mediator in cancer treatment for enhancing the efficacy as well as the specificity of therapy and reducing adverse side effects. This comprehensive review indicates that CNTs have the capability to be the next generation nanomaterials to actualize noninvasive targeted eradication of tumors. However, further studies are needed to evaluate the consequences of their biomedical application before the transition into clinical trials, since possible adverse effects of CNTs on biological systems have not been clearly understood.
Collapse
|
30
|
Maleki R, Khoshoei A, Ghasemy E, Rashidi A. Molecular insight into the smart functionalized TMC-Fullerene nanocarrier in the pH-responsive adsorption and release of anti-cancer drugs. J Mol Graph Model 2020; 100:107660. [PMID: 32659627 DOI: 10.1016/j.jmgm.2020.107660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022]
Abstract
The Doxorubicin (DOX) and Paclitaxel (PAX) are widely used for cancer-therapy. Herein, in the efforts devoted to developing smart drug carriers, the loading and releasing of the DOX and PAX on the pH sensitive functionalized Fullerene carrier was investigated by molecular dynamics (MD) simulations. The effects of chitosan polymer as a functionalizing agent of the Fullerene carrier was also studied. In addition, the Fullerene carrier was functionalized with carboxyl groups in order to improve the loading and releasing properties of the DOX and PAX. The results showed the DOX is well adsorbed on Fullerene which was functionalized with carboxyl group and it was released controllably in cancerous tissues. According to the results of the electrostatic and Van der Waals interactions, it was found that the functionalized Fullerene can be a proper carrier for DOX in comparison with PAX. Adding the trimethyl chitosan (TMC) polymer to the carrier could improve the Van der Waals attractions of the PAX and Fullerene which indicates that by passing the time at acidic pH, the Van der Waals energy reaches zero that leads to promote the release of the PAX in cancerous tissues. The carboxyl group which was employed as a functionalizing agent could also increase the number of hydrogen bonds for the PAX and DOX at acidic and neutral pH, respectively. Moreover, a significant rise in the number of hydrogen bonds between the PAX and Fullerene at neutral pH was achieved by adding the TMC to the carrier. A more decrease of gyration radius was obtained for the DOX at acidic pH which confirms that the DOX with TMC-Fullerene is a more stable carrier. So, this smart nanomedicine system is introduced as an promising composition for smart cancer therapy.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Azadeh Khoshoei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| |
Collapse
|
31
|
Rezvantalab S, Keshavarz Moraveji M, Khedri M, Maleki R. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach. SOFT MATTER 2020; 16:5250-5260. [PMID: 32458880 DOI: 10.1039/d0sm00203h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71345, Iran
| |
Collapse
|
32
|
Molecular Interpretation of Pharmaceuticals’ Adsorption on Carbon Nanomaterials: Theory Meets Experiments. Processes (Basel) 2020. [DOI: 10.3390/pr8060642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of carbon-based nanomaterials (CNM) to interact with a variety of pharmaceutical drugs can be exploited in many applications. In particular, they have been studied both as carriers for in vivo drug delivery and as sorbents for the treatment of water polluted by pharmaceuticals. In recent years, the large number of experimental studies was also assisted by computational work as a tool to provide understanding at molecular level of structural and thermodynamic aspects of adsorption processes. Quantum mechanical methods, especially based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were mainly applied to study adsorption/release of various drugs. This review aims to compare results obtained by theory and experiments, focusing on the adsorption of three classes of compounds: (i) simple organic model molecules; (ii) antimicrobials; (iii) cytostatics. Generally, a good agreement between experimental data (e.g. energies of adsorption, spectroscopic properties, adsorption isotherms, type of interactions, emerged from this review) and theoretical results can be reached, provided that a selection of the correct level of theory is performed. Computational studies are shown to be a valuable tool for investigating such systems and ultimately provide useful insights to guide CNMs materials development and design.
Collapse
|
33
|
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105303. [PMID: 31901633 DOI: 10.1016/j.cmpb.2019.105303] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin is one of the common drugs used for cancer therapy. Molecular dynamics were applied to investigate the loading of Doxorubicin with thermosensitive N-isopropyl acrylamide Carbon nanotube carrier. METHODS The results showed that the smaller polymer chain length has more decrease of gyration radius. A decrease of gyration radius resulted in more concentrated aggregation with stronger bonds. Therefore, the shorter the polymer chain lengths, the more stable polymer interaction and better Doxorubicin delivery. Smaller polymers also form more hydrogen bonds with the drug leading to stronger and more stable carriers. RESULTS A lower amount of wall shear stress was found near the inner wall of the artery, distal to the plaque region (stenosis), and in both percentages of stenosis the maximum wall shear stress will accrue in the middle of the stenosis; however it is much more in the higher rate of stenosis. CONCLUSIONS The results indicated that N-isopropyl acrylamide - Carbon nanotube is suitable for the delivery of Doxorubicin, and five mer N-isopropyl acrylamide is the optimum carrier for Doxorubicin loading.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | | | - Mirollah Hosseini
- Department of Mechanical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Sara Rostami
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
34
|
Khodabandeh R, Mohammadpour F, Zolghadr AR, Klein A. Zn capped Al2O3 and TiO2 nanoporous arrays as pH sensitive drug delivery systems: a combined experimental and simulation study. NEW J CHEM 2020. [DOI: 10.1039/d0nj02840a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
pH sensitive nanotube arrays based on Zn capped Al2O3 and TiO2 were reported for the release of vitamin C in an experimental/theoretical study using MD simulations.
Collapse
Affiliation(s)
| | | | | | - Axel Klein
- Department of Chemistry
- Shiraz University
- Shiraz
- Iran
- Department für Chemie
| |
Collapse
|
35
|
Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110201. [PMID: 31761243 DOI: 10.1016/j.msec.2019.110201] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 μm) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named GO-PEG-Fol, with small size and narrow size distribution (∼30 ± 5 nm), and the ability of efficiently converting NIR light into heat. GO-PEG-Fol consists of a nano-GO sheet, obtained by fragmentation of GO by means of non-equilibrium plasma etching, fully functionalized with folic acid-terminated PEG2000 chains through amidic coupling and azide-alkyne click cycloaddition, which we showed as active targeting agents to selectively recognize breast cancer cells such as MCF7 and MDA-MB-231. The GO-PEG-Fol incorporated a high amount of doxorubicin hydrochloride (Doxo) (>33%) and behaves as NIR-light-activated heater capable of triggering sudden Doxo delivery inside cancer cells and localized hyperthermia, thus provoking efficient breast cancer death. The cytotoxic effect was found to be selective for breast cancer cells, being the IC50 up to 12 times lower than that observed for healthy fibroblasts. This work established plasma etching as a cost-effective strategy to get functionalized nano-GO with a smart combination of properties such as small size, good photothermal efficiency and targeted cytotoxic effect, which make it a promising candidate as photothermal agent for the treatment of breast cancer.
Collapse
|