1
|
Denti V, Monza N, Bindi G, Porto NS, L’Imperio V, Pagni F, Piga I, Smith A. 6-Aza-2-Thiothymine as an Alternative Matrix for Spatial Proteomics with MALDI-MSI. Int J Mol Sci 2024; 25:13678. [PMID: 39769439 PMCID: PMC11678892 DOI: 10.3390/ijms252413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Matrix Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) is a well-established spatial omic technique which enables the untargeted mapping of various classes of biomolecules, including tryptic peptides, directly on tissue. This method relies on the use of matrices for the ionisation and volatilisation of analytes, and α-Cyano-4-hydroxycinnamic acid (CHCA) represents the most widespread matrix for tryptic peptides analysis. However, CHCA also presents certain limitations that foster the quest for novel matrix compounds. 6-aza-2-thiothymine (ATT), traditionally used in MALDI mass spectrometry (MS) for oligonucleotides, small molecules and oxidised phospholipids, has not been thoroughly investigated as a potential matrix for tryptic peptide analysis in MALDI-MS or MALDI-MSI. Therefore, this study addresses this gap by evaluating the capability of ATT to ionise tryptic peptides from Bovine Serum Albumin (BSA) and map in situ-digested peptides from formalin-fixed paraffin-embedded (FFPE) tissue sections in these respective applications. Comparative analysis with CHCA demonstrated the complementary strengths of these matrices for detecting tryptic peptides, establishing ATT as a feasible alternative to CHCA in the MALDI-MSI field and paving the way for future advancements in spatial proteomics.
Collapse
Affiliation(s)
- Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Nicole Monza
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Greta Bindi
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Natalia Shelly Porto
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Vincenzo L’Imperio
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Fabio Pagni
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Isabella Piga
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| |
Collapse
|
2
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
3
|
Sibińska E, Walczak-Skierska J, Arendowski A, Ludwiczak A, Radtke A, Piszczek P, Gabryś D, Robotnik K, Pomastowski P. Advances in LDI-MS Analysis: The Role of Chemical Vapor Deposition-Synthesized Silver Nanoparticles in Enhancing Detection of Low-Molecular-Weight Biomolecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2041-2055. [PMID: 39140654 PMCID: PMC11378275 DOI: 10.1021/jasms.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this investigation, we detail the synthesis of silver nanoparticles (AgNPs) via a precise chemical vacuum deposition (CVD) methodology, aimed at augmenting the analytical performance of laser desorption/ionization mass spectrometry (LDI-MS) for the detection of low-molecular-weight analytes. Employing a precursor supply rate of 0.0014 mg/s facilitated the formation of uniformly dispersed AgNPs, characterized by SEM and AFM to have an average diameter of 33.5 ± 1.5 nm and a surface roughness (Ra) of 11.8 nm, indicative of their homogeneous coverage and spherical morphology. XPS and SEM-EDX analyses confirmed the metallic silver composition of the nanoparticles with Ag peak splitting, reflecting the successful synthesis of metallic Ag. Comparative analytical evaluation with traditional MALDI matrices revealed that AgNPs significantly reduce signal suppression, thereby enhancing the sensitivity and specificity of LDI-MS for low-molecular-weight compounds such as triglycerides, saccharides, amino acids, and carboxylic acids. Notably, the application of AgNPs demonstrated a superior linear response for triglyceride signals with regression coefficients surpassing 0.99, markedly outperforming conventional matrices. The study further extends into quantitative analysis through nanoparticle-based laser desorption/ionization (NALDI), where AgNPs exhibited enhanced ionization efficiency, characterized by substantially lower limits of detection (LOD) and quantification (LOQ) for tested standards. Particular attention was paid to lipids with a detailed examination of their fragmentation pathways. These results highlight the significant potential of AgNPs synthesized via CVD to transform the analytical detection and quantification of low-molecular-weight compounds using NALDI. This approach offers a promising avenue for expanding the scope of analytical applications in mass spectrometry and introducing innovative methodologies for enhanced precision and sensitivity.
Collapse
Affiliation(s)
- Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
| | - Justyna Walczak-Skierska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
| | - Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
| | - Agnieszka Ludwiczak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Str., 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 15 Str., 44-102 Gliwice, Poland
| | - Kinga Robotnik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
4
|
Minenkova IV, Lebedev VV, Buryak AK. Application of matrix-assisted laser desorption/ionization in the studies of phosphotungstic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9870. [PMID: 39004785 DOI: 10.1002/rcm.9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
RATIONALE Phosphorotungstic acid (PTA) has many applications, especially in the field of catalysis, due to its structural properties. However, the structure of PTA is studied mainly using theoretical methods. Matrix-assisted laser desorption/ionization (MALDI) has the potential to be an effective method for the experimental study of heteropolyacids. Limitations of MALDI are the high molecular weight of the particles and the complex distribution of isotopic peak intensities. Both problems can be solved by automatically identifying observed signals by generating hypothetical molecular formulas and estimating their isotopic distributions. METHODS Phosphotungstic acid was studied under conditions of laser desorption/ionization in the absence and in the presence of the matrix. Three types of matrices were used: 2,5-dihydroxybenzoic acid in water, α-cyano-4-hydroxycinnamic acid in acetonitrile, and sinapic acid (SA) in tetrahydrofuran. Part of the peaks in the resulting mass spectra was identified using in-house developed software that implements the automated isotopic distribution brute force. RESULTS The most informative mass spectra were obtained using SA as the matrix, which enabled the detection of particles containing PTA dimers for the first time. The compositions of particles incorporating PTA dimers were determined in an automated manner and can be written as [H3PW12O40]2·2H2O (m/z = 5791.2 Da) and [H3PW12O40]2·4H2O (m/z = 5836.5 Da). Other observed species included (WO3)n·PO3 -, HPO2·(WO3)n, and WO2·(WO3)n clusters, with the latter containing W in mixed oxidation states. CONCLUSIONS The combined use of MALDI and an automated identification procedure provided valuable experimental data on the structure and fragmentation of phosphotungstic acid. To the best of our knowledge, this study was the first to report on particles containing phosphotungstic acid dimers.
Collapse
Affiliation(s)
- Irina V Minenkova
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| | - Viacheslav V Lebedev
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| | - Alexey K Buryak
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| |
Collapse
|
5
|
Braglia C, Alberoni D, Di Gioia D, Giacomelli A, Bocquet M, Bulet P. Application of a robust MALDI mass spectrometry approach for bee pollen investigation. Anal Bioanal Chem 2024; 416:4315-4324. [PMID: 38879687 PMCID: PMC11271380 DOI: 10.1007/s00216-024-05368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia.
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia
| | - Alessandra Giacomelli
- Unione Nazionale Associazioni Apicoltori Italiani (UNA API), Via Pietro Boselli 2, Firenze, Italia
| | - Michel Bocquet
- Apimedia, 82 Route de Proméry, Pringy, 74370, Annecy, France
| | - Philippe Bulet
- CR, University Grenoble Alpes, IAB Inserm 1209, CNRS UMR5309, 38000, Grenoble, France
- Plateforme BioPark of Archamps, 74160, Archamps, France
| |
Collapse
|
6
|
Cen X, Fang Y, Chen Z, Zhu X. Development of benzimidazole derivatives as efficient matrices for the analysis of acidic small-molecule compounds using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry in negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9751. [PMID: 38680091 DOI: 10.1002/rcm.9751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
RATIONALE With the development of matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) in spatial localisation omics research on small molecules, the detection sensitivity of the matrix must increase. However, the types of matrices suitable for detecting acidic small molecules in (-) MALDI-MS mode are very limited and are either not sensitive enough or difficult to obtain. METHODS More than 10 commercially available benzimidazole and benzothiazole derivatives were selected as MALDI matrices in negative ion mode. MALDI-MS analysis was performed on 38 acidic small molecules and mouse serum, and the matrix effects were compared with those of the common commercial matrices 9-aminoacridine (9AA), 1,5-naphthalenediamine (DAN) and 3-aminoquinoline (3AQ). Moreover, the proton affinity (PA) of the selected potential matrix was calculated, and the relationships among the compound structure, PA value and matrix effect were discussed. RESULTS In (-) MALDI-MS mode, a higher PA value generally indicates a better matrix effect. Amino-substituted 2-phenyl-1H-benzo[d]imidazole derivatives had well-defined matrix effects on all analytes and were generally superior to the commonly used matrices 9AA, DAN and 3AQ. Among them, 2-(4-(dimethylamino-phenyl)-1H-benzo[d]imidazole-5-amine (E-4) has the best sensitivity and versatility for detecting different analytes and has the best ability to detect fatty acids in mouse serum; moreover, the limit of detection (LOD) of some analytes can reach as low as ng/L. CONCLUSIONS Compared to 9AA, DAN and 3AQ, matrix E-4 is more effective at detecting low-molecular-weight acidic compounds in (-) MALDI-MS mode, with higher sensitivity and better versatility. In addition, there is a clear correlation between compound structure, PA and matrix effects, which provides a basis for designing more efficient matrices.
Collapse
Affiliation(s)
- Xianyi Cen
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yuhao Fang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zilong Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Serrano J, Martine L, Grosjean Y, Acar N, Alves G, Masson EAY. The importance of choosing the appropriate cholesterol quantification method: enzymatic assay versus gas chromatography. J Lipid Res 2024; 65:100561. [PMID: 38762123 PMCID: PMC11237936 DOI: 10.1016/j.jlr.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Cholesterol is a major lipid of the animal realm with many biological roles. It is an important component of cellular membranes and a precursor of steroid hormones and bile acids. It is particularly abundant in nervous tissues, and dysregulation of cholesterol metabolism has been associated with neurodegenerative diseases such as Alzheimer's and Huntington's diseases. Deciphering the pathophysiological mechanisms of these disorders often involves animal models such as mice and Drosophila. Accurate quantification of cholesterol levels in the chosen models is a critical point of these studies. In the present work, we compare two common methods, gas chromatography coupled to flame-ionization detection (GC/FID) and a cholesterol oxidase-based fluorometric assay to measure cholesterol in mouse brains and Drosophila heads. Cholesterol levels measured by the two methods were similar for the mouse brain, which presents a huge majority of cholesterol in its sterol profile. On the contrary, depending on the method, measured cholesterol levels were very different for Drosophila heads, which present a complex sterol profile with a minority of cholesterol. We showed that the enzyme-based assay is not specific for cholesterol and detects other sterols as well. This method is therefore not suited for cholesterol measurement in models such as Drosophila. Alternatively, chromatographic methods, such as GC/FID, offer the required specificity for cholesterol quantification. Understanding the limitations of the quantification techniques is essential for reliable interpretation of the results in cholesterol-related research.
Collapse
Affiliation(s)
- Jeanne Serrano
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France; Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Lucy Martine
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Yaël Grosjean
- Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Georges Alves
- Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Elodie A Y Masson
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| |
Collapse
|
8
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
9
|
Arendowski A. Matrix- and Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Methods for Urological Cancer Biomarker Discovery-Metabolomics and Lipidomics Approaches. Metabolites 2024; 14:173. [PMID: 38535333 PMCID: PMC10972240 DOI: 10.3390/metabo14030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 11/12/2024] Open
Abstract
Urinary tract cancers, including those of the bladder, the kidneys, and the prostate, represent over 12% of all cancers, with significant global incidence and mortality rates. The continuous challenge that these cancers present necessitates the development of innovative diagnostic and prognostic methods, such as identifying specific biomarkers indicative of cancer. Biomarkers, which can be genes, proteins, metabolites, or lipids, are vital for various clinical purposes including early detection and prognosis. Mass spectrometry (MS), particularly soft ionization techniques such as electrospray ionization (ESI) and laser desorption/ionization (LDI), has emerged as a key tool in metabolic profiling for biomarker discovery, due to its high resolution, sensitivity, and ability to analyze complex biological samples. Among the LDI techniques, matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) should be mentioned. While MALDI methodology, which uses organic compounds as matrices, is effective for larger molecules, SALDI, based on the various types of nanoparticles and nanostructures, is preferred for smaller metabolites and lipids due to its reduced spectral interference. This study highlights the application of LDI techniques, along with mass spectrometry imaging (MSI), in identifying potential metabolic and lipid biomarkers for urological cancers, focusing on the most common bladder, kidney, and prostate cancers.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
10
|
Calvo I, Montilla A, Huergo C, Martín-Saiz L, Martín-Allende J, Tepavcevic V, Domercq M, Fernández JA. Combining imaging mass spectrometry and immunohistochemistry to analyse the lipidome of spinal cord inflammation. Anal Bioanal Chem 2024; 416:1923-1933. [PMID: 38326664 PMCID: PMC10902057 DOI: 10.1007/s00216-024-05190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Inflammation is a complex process that accompanies many pathologies. Actually, dysregulation of the inflammatory process is behind many autoimmune diseases. Thus, treatment of such pathologies may benefit from in-depth knowledge of the metabolic changes associated with inflammation. Here, we developed a strategy to characterize the lipid fingerprint of inflammation in a mouse model of spinal cord injury. Using lipid imaging mass spectrometry (LIMS), we scanned spinal cord sections from nine animals injected with lysophosphatidylcholine, a chemical model of demyelination. The lesions were demonstrated to be highly heterogeneous, and therefore, comparison with immunofluorescence experiments carried out in the same section scanned by LIMS was required to accurately identify the morphology of the lesion. Following this protocol, three main areas were defined: the lesion core, the peri-lesion, which is the front of the lesion and is rich in infiltrating cells, and the uninvolved tissue. Segmentation of the LIMS experiments allowed us to isolate the lipid fingerprint of each area in a precise way, as demonstrated by the analysis using classification models. A clear difference in lipid signature was observed between the lesion front and the epicentre, where the damage was maximized. This study is a first step to unravel the changes in the lipidome associated with inflammation in the context of diverse pathologies, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ibai Calvo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Javier Martín-Allende
- Department of Languages and Computer Systems, School of Engineering, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno "Pitxitxi", n. 2/3, 48013, Bilbao, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain.
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
11
|
Williams JD, Pu F, Sawicki JW, Elsen NL. Ultra-high-throughput mass spectrometry in drug discovery: fundamentals and recent advances. Expert Opin Drug Discov 2024; 19:291-301. [PMID: 38111363 DOI: 10.1080/17460441.2023.2293153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins. AREAS COVERED This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis. EXPERT OPINION The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.
Collapse
Affiliation(s)
| | - Fan Pu
- Abbvie Discovery Research, North Chicago, IL, USA
| | | | | |
Collapse
|
12
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
13
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Lau WCD, Donnellan L, Briggs M, Rupasinghe T, Harris JC, Hayes JE, Hoffmann P. Sodium doping and trapped ion mobility spectrometry improve lipid detection for novel MALDI-MSI analysis of oats. Food Chem 2024; 433:137275. [PMID: 37660601 DOI: 10.1016/j.foodchem.2023.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Oat (Avena sativa L.) is an important cereal grain with a unique nutritional profile including a high proportion of lipids. Understanding lipid composition and distribution in oats is valuable for plant, food and nutritional research, and can be achieved using MALDI mass spectrometry imaging (MALDI-MSI). However, this approach presents several challenges for sample preparation (hardness of grains) and analysis (isobaric and isomeric properties of lipids). Here, oat sections were successfully mounted onto gelatin-coated indium tin oxide slides with minimal tearing. Poor detection of triacylglycerols was resolved by applying sodium chloride during mounting, increasing signal intensity. In combination with trapped ion mobility spectrometry (TIMS), lipid identification significantly improved, and we report the separation of several isobaric and isomeric lipids with visualisation of their "true" spatial distributions. This study describes a novel MALDI-TIMS-MSI analytical technique for oat lipids, which may be used to improve the discovery of biomarkers for grain quality.
Collapse
Affiliation(s)
- Wai C D Lau
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Leigh Donnellan
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Briggs
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - John C Harris
- South Australian Research and Development Institute, Department of Primary Industries and Regions, Adelaide, South Australia 5000, Australia; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Julie E Hayes
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Peter Hoffmann
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
15
|
Liang Q, Mondal P, Li Q, Maqbool T, Zhao C, Jiang D, Szulczewski GJ, Wijeratne GB. Nitro Indole Derivatives as Novel Dual-Polarity Matrices for MALDI Mass Spectrometry and Imaging with Broad Applications. Anal Chem 2024; 96:1668-1677. [PMID: 38226847 DOI: 10.1021/acs.analchem.3c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A new matrix framework is presented in this study for the improved ionization efficiency of complex mixtures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry/imaging. Five nitro indole (NI) derivatives [3-methyl-4-nitro-1H-indole (3,4-MNI), 3-methyl-6-nitro-1H-indole (3,6-MNI), 2,3-dimethyl-4-nitro-1H-indole (2,3,4-DMNI), 2,3-dimethyl-6-nitro-1H-indole (2,3,6-DMNI), and 4-nitro-1H-indole (4-NI)] were synthesized and shown to produce both positive and negative ions with a broad class of analytes as MALDI matrices. NI matrices were compared to several common matrices, such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxylcinnamic acid (CHCA), sinapinic acid (SA), 1,5-diaminonaphthelene (1,5-DAN), and 9-aminoacridine (9-AA), for the analysis of lipid, peptide, protein, glycan, and perfluorooctanesulfonic acid (PFOS) compounds. 3,4-MNI demonstrated the best performance among the NI matrices. This matrix resulted in reduced ion suppression and better detection sensitivity for complex mixtures, for example, egg lipids/milk proteins/PFOS in tap water, while 2,3,6-DMNI was the best matrix for blueberry tissue imaging. Several important aspects of this work are reported: (1) dual-polarity ion production with NI matrices and complex mixtures; (2) quantitative analysis of PFOS with a LOQ of 0.5 ppb in tap water and 0.05 ppb in MQ water (without solid phase extraction enrichment), with accuracy and precision within 5%; (3) MALDI imaging with 2,3,6-DMNI as a matrix for plant metabolite/lipid identification with ionization enhancement in the negative ion mode m/z 600-900 region; and (4) development of a thin film deposition under/above tissue method for MALDI imaging with a vacuum sublimation matrix on a high-vacuum MALDI instrument.
Collapse
Affiliation(s)
- Qiaoli Liang
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Pritam Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daqian Jiang
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Greg J Szulczewski
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Gayan B Wijeratne
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
16
|
Arendowski A, Sibińska E, Miśta W, Fijałkowski P, Złoch M, Gabryś D, Pomastowski P. Study of sample preparation influence on bacterial lipids profile in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lipids 2024; 59:13-26. [PMID: 38062798 DOI: 10.1002/lipd.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Lipids are one of the cell components therefore it is important to be able to accurately assess them. One of the analytical techniques used to study lipid profiles is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The present study attempted to select optimal conditions for sample preparation and MALDI MS analysis of bacterial lipidome in both positive and negative ion modes using different extraction protocols-Folch, Matyash, and Bligh & Dyer, solvents used to apply samples, and matrices such as 9-aminoacridine (9-AA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT), and 2,4,6-trihydroxyacetophenone (THAP). The obtained results allowed concluding that DHB or CHCA matrices are suitable for lipid analysis in the positive mode, and in the negative mode THAP or 9-AA. The most appropriate protocol for extracting lipids from bacterial cells was the Bligh & Dyer method in both ionization modes. The use of the solvent TA30, which was a mixture of acetonitrile and 0.1% trifluoroacetic acid in water, provided on the spectra a significant number of signals from lipids in all groups analyzed, such as fatty acyls, glycerolipids, and glycerophospholipids.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Wioletta Miśta
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Piotr Fijałkowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
17
|
Yang E, Shen XE, West‐Foyle H, Hahm T, Siegler MA, Brown DR, Johnson CC, Kim JH, Roker LA, Tressler CM, Barman I, Kuo SC, Glunde K. FluoMALDI Microscopy: Matrix Co-Crystallization Simultaneously Enhances Fluorescence and MALDI Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304343. [PMID: 37908150 PMCID: PMC10724403 DOI: 10.1002/advs.202304343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Indexed: 11/02/2023]
Abstract
Here, the authors report that co-crystallization of fluorophores with matrix-assisted laser desorption/ionization (MALDI) imaging matrices significantly enhances fluorophore brightness up to 79-fold, enabling the amplification of innate tissue autofluorescence. This discovery facilitates FluoMALDI, the imaging of the same biological sample by both fluorescence microscopy and MALDI imaging. The approach combines the high spatial resolution and specific labeling capabilities of fluorescence microscopy with the inherently multiplexed, versatile imaging capabilities of MALDI imaging. This new paradigm simplifies registration by avoiding physical changes between fluorescence and MALDI imaging, allowing to image the exact same cells in tissues with both modalities. Matrix-fluorophore co-crystallization also facilitates applications with insufficient fluorescence brightness. The authors demonstrate feasibility of FluoMALDI imaging with endogenous and exogenous fluorophores and autofluorescence-based FluoMALDI of brain and kidney tissue sections. FluoMALDI will advance structural-functional microscopic imaging in cell biology, biomedicine, and pathology.
Collapse
Affiliation(s)
- Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Xinyi Elaine Shen
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Hoku West‐Foyle
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tae‐Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | | | - Dalton R. Brown
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Cole C. Johnson
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Jeong Hee Kim
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - LaToya Ann Roker
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Caitlin M. Tressler
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Ishan Barman
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Sidney Kimmel Comprehensive Cancer CancerJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Scot C. Kuo
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21218USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Sidney Kimmel Comprehensive Cancer CancerJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
18
|
Choe K, Sweedler JV. Workflow for High-throughput Screening of Enzyme Mutant Libraries Using Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Escherichia coli Colonies. Bio Protoc 2023; 13:e4862. [PMID: 37969752 PMCID: PMC10632168 DOI: 10.21769/bioprotoc.4862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
High-throughput molecular screening of microbial colonies and DNA libraries are critical procedures that enable applications such as directed evolution, functional genomics, microbial identification, and creation of engineered microbial strains to produce high-value molecules. A promising chemical screening approach is the measurement of products directly from microbial colonies via optically guided matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Measuring the compounds from microbial colonies bypasses liquid culture with a screen that takes approximately 5 s per sample. We describe a protocol combining a dedicated informatics pipeline and sample preparation method that can prepare up to 3,000 colonies in under 3 h. The screening protocol starts from colonies grown on Petri dishes and then transferred onto MALDI plates via imprinting. The target plate with the colonies is imaged by a flatbed scanner and the colonies are located via custom software. The target plate is coated with MALDI matrix, MALDI-MS analyzes the colony locations, and data analysis enables the determination of colonies with the desired biochemical properties. This workflow screens thousands of colonies per day without requiring additional automation. The wide chemical coverage and the high sensitivity of MALDI-MS enable diverse screening projects such as modifying enzymes and functional genomics surveys of gene activation/inhibition libraries. Key features • Mass spectrometry analyzes a range of compounds from E. coli colonies as a proxy for liquid culture testing enzyme mutant libraries. • Colonies are transferred to a MALDI target plate by a simple imprinting method. • The screen compares the ratio among several products or searches for the qualitative presence of specific compounds. • The protocol requires a MALDI mass spectrometer.
Collapse
Affiliation(s)
- Kisurb Choe
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
20
|
Cuello L, Alvarez Otero J, Greenwood-Quaintance KE, Chen L, Hanson B, Reyes J, Komarow L, Ge L, Lancaster ZD, Gordy GG, Schuetz AN, Patel R. Poor Sensitivity of the MALDI Biotyper ® MBT Subtyping Module for Detection of Klebsiella pneumoniae Carbapenemase (KPC) in Klebsiella Species. Antibiotics (Basel) 2023; 12:1465. [PMID: 37760762 PMCID: PMC10525285 DOI: 10.3390/antibiotics12091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect KPC simultaneously with organism identification by a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-ToF MS). Here, the subtyping module was evaluated using 795 clinical Klebsiella isolates, with whole genome sequences used to assess for blaKPC and p019. For the isolates identified as KPC positive by sequencing, the overall sensitivity of the MALDI-ToF MS subtyping module was 239/574 (42%) with 100% specificity. For the isolates harboring p019, the subtyping module showed a sensitivity of 97% (239/246) and a specificity of 100%. The subtyping module had poor sensitivity for the detection of blaKPC-positive Klebsiella isolates, albeit exhibiting excellent specificity. The poor sensitivity was a result of p019 being present in only 43% of the blaKPC-positive Klebsiella isolates.
Collapse
Affiliation(s)
- Luz Cuello
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Blake Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Lizhao Ge
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Zane D. Lancaster
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Garrett G. Gordy
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Audrey N. Schuetz
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Ollen-Bittle N, Lowry CA, Donovan KE, Andrew RD, Whitehead SN. Validating MALDI-IMS Feasibility in Ex Vivo Brain Slices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37471497 DOI: 10.1021/jasms.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 μm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Katherine E Donovan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R David Andrew
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
22
|
Holbrook JH, Sekera ER, Lopez A, Fries BD, Tobias F, Akkaya K, Mihaylova MM, Hummon AB. Enhancement of Lipid Signals in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Ammonium Fluoride as a Matrix Additive. Anal Chem 2023; 95:10603-10609. [PMID: 37418337 PMCID: PMC10655718 DOI: 10.1021/acs.analchem.3c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Lipids are essential macromolecules that play a crucial role in numerous biological events. Lipids are structurally diverse which allows them to fulfill multiple functional roles. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful tool to understand the spatial localization of lipids within biological systems. Herein, we report the use of ammonium fluoride (NH4F) as a comatrix additive to enhance lipid detection in biological samples, with a signal increase of up to 200%. Emphasis was placed on anionic lipid enhancement with negative polarity measurements, with some preliminary work on cationic lipids detailed. We observed lipid signal enhancement of [M-H]- ions with the addition of NH4F additive attributed to a proton transfer reaction in several different lipid classes. Overall, our study demonstrates that the use of the NH4F comatrix additive substantially improves sensitivity for lipid detection in a MALDI system and is capable of being applied to a variety of different applications.
Collapse
Affiliation(s)
- Joseph H. Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emily R. Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian D. Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fernando Tobias
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kubra Akkaya
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Maria M. Mihaylova
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Lesco KC, Rowland SM, Ratanathanawongs Williams SK, Laurens LML. Single-filament imaging mass spectrometry lipidomics in Arthrospira platensis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9525. [PMID: 37062938 DOI: 10.1002/rcm.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Elucidating intra-organismal biochemical and lipid organization in photosynthetic biological cell factories of filamentous cyanobacteria, such as Arthrospira platensis (Spirulina), is important for tracking physiological response mechanisms during growth. Little is known about the filaments' biochemical organization and cellular structure and no label-free imaging techniques exist that provide molecular mapping. METHODS We applied ultrahigh-resolution mass spectrometry (MS) with matrix-assisted laser desorption ionization (MALDI) imaging to immobilized Spirulina filaments to investigate the localization of lipids across distinct physiological regions. We optimized matrix selection and deposition methods with the goal of facilitating high spatial, and intra-filament, resolution using untargeted multivariate statistical spectral deconvolution across MS pixels. RESULTS Our results demonstrate an improved two-step matrix application with an optimized procedure for intra-organismal lipid profiling to improve analyte sensitivity and achieve higher spatial resolution. We evaluate several conventional matrices, namely 2,5-dihydroxybenzoic acid (DHB), superDHB (sDHB), 1,5-diaminonaphthalene (DAN), and a 50:50 mix of DHB and sDHB, and compare delineation and pixel-based elucidation of intra-filament lipidomics. We identified a total of 1626 features that could be putatively assigned a lipid-like formula based on database query and 46 unique features, with associated lipid assignments that were significantly distinct in their intra-filament location. CONCLUSIONS MALDI imaging MS with untargeted statistical spectral deconvolution was used to visualize intra-filament lipidomics organization in Spirulina filaments. Improvements in matrix deposition, including sequential sublimation and pneumatic spraying, increased signal abundance at high spatial resolution and allowed for identification of distinct lipid composition regions. This work outlines a methodology that may be used for micro-ecological untargeted molecular phenotyping.
Collapse
Affiliation(s)
- Kaitlin C Lesco
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Steven M Rowland
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
24
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
25
|
Gameiro-Ros I, Noble L, Tong M, Yalcin EB, de la Monte SM. Tissue Microarray Lipidomic Imaging Mass Spectrometry Method: Application to the Study of Alcohol-Related White Matter Neurodegeneration. APPLIED BIOSCIENCES 2023; 2:173-193. [PMID: 38384722 PMCID: PMC10880182 DOI: 10.3390/applbiosci2020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Central nervous system (CNS) white matter pathologies accompany many diseases across the lifespan, yet their biochemical bases, mechanisms, and consequences have remained poorly understood due to the complexity of myelin lipid-based research. However, recent advances in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) have minimized or eliminated many technical challenges that previously limited progress in CNS disease-based lipidomic research. MALDI-IMS can be used for lipid identification, semi-quantification, and the refined interpretation of histopathology. The present work illustrates the use of tissue micro-arrays (TMAs) for MALDI-IMS analysis of frontal lobe white matter biochemical lipidomic pathology in an experimental rat model of chronic ethanol feeding. The use of TMAs combines workload efficiency with the robustness and uniformity of data acquisition. The methods described for generating TMAs enable simultaneous comparisons of lipid profiles across multiple samples under identical conditions. With the methods described, we demonstrate significant reductions in phosphatidylinositol and increases in phosphatidylcholine in the frontal white matter of chronic ethanol-fed rats. Together with the use of a novel rapid peak alignment protocol, this approach facilitates reliable inter- and intra-group comparisons of MALDI-IMS data from experimental models and could be extended to human disease states, including using archival specimens.
Collapse
Affiliation(s)
- Isabel Gameiro-Ros
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Lelia Noble
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Departments of Neurology & Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
26
|
Ni Z, Arevalo R, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. ASTROBIOLOGY 2023; 23:657-669. [PMID: 37134219 DOI: 10.1089/ast.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.
Collapse
Affiliation(s)
- Ziqin Ni
- University of Maryland, College Park, Maryland, USA
| | | | - Anais Bardyn
- University of Maryland, College Park, Maryland, USA
| | | | - Soumya Ray
- University of Maryland, College Park, Maryland, USA
| | | | - Ryan Danell
- Danell Consulting, Winterville, North Carolina, USA
| | - Jacob Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | | | | | | | - Karen Junge
- University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Leopold J, Prabutzki P, Engel KM, Schiller J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules 2023; 13:biom13030546. [PMID: 36979481 PMCID: PMC10046246 DOI: 10.3390/biom13030546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Matrix-assisted laser desorption and ionization (MALDI) is a widely used soft-ionization technique of modern mass spectrometry (MS). MALDI enables the analysis of nearly all chemical compounds—including polar and apolar (phospho)lipids—with a minimum extent of fragmentation. MALDI has some particular advantages (such as the possibility to acquire spatially-resolved spectra) and is competitive with the simultaneously developed ESI (electrospray ionization) MS. Although there are still some methodological aspects that need to be elucidated in more detail, it is obvious that the careful selection of an appropriate matrix plays the most important role in (lipid) analysis. Some lipid classes can be detected exclusively if the optimum matrix is used, and the matrix determines the sensitivity by which a particular lipid is detected within a mixture. Since the matrix is, thus, crucial for optimum results, we provide here an update on the progress in the field since our original review in this journal in 2018. Thus, only the development during the last five years is considered, and lipids are sorted according to increasing complexity, starting with free fatty acids and ending with cardiolipins and phosphoinositides.
Collapse
|
29
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
30
|
Wamer N, Morse CN, Gadient JN, Dodson TA, Carlson EA, Prestwich EG. Comparison of Small Biomolecule Ionization and Fragmentation in Pseudomonas aeruginosa Using Common MALDI Matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:355-365. [PMID: 36696681 PMCID: PMC9983012 DOI: 10.1021/jasms.2c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Different bacterial cell surface associated biomolecules can be analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and coupled with collision induced dissociation (CID) for identification. Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium that causes acute or chronic biofilm infections. Cells of P. aeruginosa communicate through a system of signaling biomolecules known as quorum sensing (QS). The QS system can result in the production of biosurfactant rhamnolipids known to associate and alter the cellular membrane. MALDI-TOF utilizes a variety of matrices that can interact differently with biomolecules for selective ionization. We examined six common matrices to determine the optimal matrix specific to different molecule classes in P. aeruginosa associated with cell surfaces. Three major molecule classes (quinolones, rhamnolipids, and phospholipids) were observed to ionize selectively with the different matrices tested. Sodiated and protonated adducts differed between matrices utilized in our study. Isobaric ions were identified as different molecule classes depending on the matrix used. We highlight the role of matrix selection in MALDI-TOF identification of molecules within a complex biological mixture.
Collapse
Affiliation(s)
- Nathan
C. Wamer
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Chase N. Morse
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Jennifer N. Gadient
- The
College of Natural Sciences and Mathematics, NSM Instrumentation Center, University of Toledo, Toledo, Ohio 43606, United States
| | - Taylor A. Dodson
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Eric A. Carlson
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Erin G. Prestwich
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
31
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
32
|
Nakayama K, Li X, Shimizu K, Akamatsu S, Inoue T, Kobayashi T, Ogawa O, Goto T. qShot MALDI analysis: A rapid, simple, convenient, and reliable quantitative phospholipidomics approach using MALDI-TOF/MS. Talanta 2023; 254:124099. [PMID: 36502612 DOI: 10.1016/j.talanta.2022.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) has potential applications in the qualitative analysis of phospholipids (PLs). However, its capability for quantitative analysis is limited by the unavailability and/or high cost of isotope-labeled internal standards (interSTDs, e.g., 1-oleoyl (d7)-2-hydroxy-sn-glycero-3-phosphocholine, 1-pentadecanoyl-2-oleoyl (d7)-sn-glycero-3-phosphocholine). This study investigated and validated whether only two PL interSTDs could be used to normalize the entire PL species in a complex bio-lipid background (i.e., urinary lipid extracts). The normalized intensities of PL ionization standards (ionSTDs) were found to have better linear regressions (R2 > 0.984 for all PL subcategories) than those of traditional methods, such as total ion current and matrix-peak normalization methods. Furthermore, the intra-day precision of all the analyte concentrations after normalizing using our ionSTD method was superior to those of traditional methods. The inter-day precision of all the negatively charged analytes also differed statistically between our ionSTD and the two traditional methods. Meanwhile, a comparison of the three normalization methods revealed that the precision of all the positive analytes using the ionSTD method was comparable. Consequently, a cost-effective, fast, simple, convenient, and reliable quantitative method, defined as "qShot MALDI analysis," was developed to analyze PLs that could potentially be applied in clinical biomarker screening, especially in a negative mode.
Collapse
Affiliation(s)
- Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Analyses and Localization of Phosphatidylcholine and Phosphatidylserine in Murine Ocular Tissue Using Imaging Mass Spectrometry. Methods Mol Biol 2023; 2625:149-161. [PMID: 36653641 DOI: 10.1007/978-1-0716-2966-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Imaging mass spectrometry (IMS) allows for spatial visualization of proteins, lipids, and metabolite distributions in a tissue. Identifying these compounds through mass spectrometry, combined with mapping the compound distribution in the sample in a targeted or untargeted approach, renders IMS a powerful tool for lipidomics. IMS analysis for lipid species such as phosphatidylcholine and phosphatidylserine allows researchers to pinpoint areas of lipid deficiencies or accumulations associated with ocular disorders such as age-related macular degeneration and diabetic retinopathy. Here, we describe an end-to-end IMS approach from sample preparation to data analysis for phosphatidylcholine and phosphatidylserine analysis.
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Krishnan V, Meehan S, Hayter C, Bhattacharya SK. Analyses and Localization of Serotonin and L-DOPA in Ocular Tissues by Imaging Mass Spectrometry. Methods Mol Biol 2023; 2571:157-168. [PMID: 36152160 DOI: 10.1007/978-1-0716-2699-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Imaging mass spectrometry (IMS) allows for visualization of the spatial distribution of proteins, lipids, and other metabolites in a targeted or untargeted approach. The identification of compounds through mass spectrometry combined with the mapping of compound distribution in the sample establishes IMS as a powerful tool for metabolomics. IMS analysis for serotonin will allow researchers to pinpoint areas of deficiencies or accumulations associated with ocular disorders such as serotonin selective reuptake inhibitor optic neuropathy. Furthermore, L-DOPA has shown great promise as a therapeutic approach for disorders such as age-related macular degeneration, and IMS allows for localization, and relative magnitudes, of L-DOPA in the eye. We describe here an end-to-end approach of IMS from sample preparation to data analysis for serotonin and L-DOPA analysis.
Collapse
Affiliation(s)
- Varun Krishnan
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sean Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Colin Hayter
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Miami Integrative Metabolomics Research Center, Miami, FL, USA.
- University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
Fournelle F, Lauzon N, Yang E, Chaurand P. Metal-Assisted Laser Desorption Ionization Imaging Mass Spectrometry for Biological and Forensic Applications. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Zhao H, Cheng Y, Kalra A, Ma K, Zheng Y, Ziman B, Tressler C, Glunde K, Shin EJ, Ngamruengphong S, Khashab M, Singh V, Anders RA, Jit S, Wyhs N, Chen W, Li X, Lin DC, Meltzer SJ. Generation and multiomic profiling of a TP53/CDKN2A double-knockout gastroesophageal junction organoid model. Sci Transl Med 2022; 14:eabq6146. [PMID: 36449602 PMCID: PMC10026384 DOI: 10.1126/scitranslmed.abq6146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Inactivation of the tumor suppressor genes tumor protein p53 (TP53) and cyclin-dependent kinase inhibitor 2A (CDKN2A) occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model. CRISPR-Cas9-mediated TP53 and CDKN2A knockout (TP53/CDKN2AKO) in GEJ organoids induced morphologic dysplasia and proneoplastic features in vitro and tumor formation in vivo. Lipidomic profiling identified several platelet-activating factors (PTAFs) among the most up-regulated lipids in CRISPR-edited organoids. PTAF/PTAF receptor (PTAFR) abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) reduced proliferation and other proneoplastic features of TP53/CDKN2AKO GEJ organoids in vitro and tumor formation in vivo. In addition, murine xenografts of Eso26, an established human esophageal adenocarcinoma cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly forkhead box M1 (FOXM1). FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. Together, these studies established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and revealed a potential cancer therapeutic strategy. This work provides insights into proneoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia, which may facilitate early diagnosis and prevention of GEJ neoplasms.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, Shaanxi, China
| | - Yulan Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ke Ma
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Einstein Healthcare Network, Philadelphia, PA 19136, USA
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saowanee Ngamruengphong
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mouen Khashab
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vikesh Singh
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Simran Jit
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, Shaanxi, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
40
|
Thompson JE. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet World 2022; 15:2623-2657. [PMID: 36590115 PMCID: PMC9798047 DOI: 10.14202/vetworld.2022.2623-2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a valuable laboratory tool for rapid diagnostics, research, and exploration in veterinary medicine. While instrument acquisition costs are high for the technology, cost per sample is very low, the method requires minimal sample preparation, and analysis is easily conducted by end-users requiring minimal training. Matrix-assisted laser desorption ionization-time-of-flight MS has found widespread application for the rapid identification of microorganisms, diagnosis of dermatophytes and parasites, protein/lipid profiling, molecular diagnostics, and the technique demonstrates significant promise for 2D chemical mapping of tissue sections collected postmortem. In this review, an overview of the MALDI-TOF technique will be reported and manuscripts outlining current uses of the technology for veterinary science since 2019 will be summarized. The article concludes by discussing gaps in knowledge and areas of future growth.
Collapse
Affiliation(s)
- Jonathan E. Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas 79106, United States,Corresponding author: Jonathan E. Thompson, e-mail:
| |
Collapse
|
41
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
42
|
Maia M, McCann A, Malherbe C, Far J, Cunha J, Eiras-Dias J, Cordeiro C, Eppe G, Quinton L, Figueiredo A, De Pauw E, Sousa Silva M. Grapevine leaf MALDI-MS imaging reveals the localisation of a putatively identified sucrose metabolite associated to Plasmopara viticola development. FRONTIERS IN PLANT SCIENCE 2022; 13:1012636. [PMID: 36299787 PMCID: PMC9589281 DOI: 10.3389/fpls.2022.1012636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite well-established pathways and metabolites involved in grapevine-Plasmopara viticola interaction, information on the molecules involved in the first moments of pathogen contact with the leaf surface and their specific location is still missing. To understand and localise these molecules, we analysed grapevine leaf discs infected with P. viticola with MSI. Plant material preparation was optimised, and different matrices and solvents were tested. Our data shows that trichomes hamper matrix deposition and the ion signal. Results show that putatively identified sucrose presents a higher accumulation and a non-homogeneous distribution in the infected leaf discs in comparison with the controls. This accumulation was mainly on the veins, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola. Up to our knowledge this is the first time that the localisation of a putatively identified sucrose metabolite was shown to be associated to P. viticola infection sites.
Collapse
Affiliation(s)
- Marisa Maia
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Andréa McCann
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Jorge Cunha
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - José Eiras-Dias
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Gauthier Eppe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
43
|
Krutilin A, Epp SW, Alejo GML, Busse F, Gitaric D, Schikora H, Schwoerer H, Tellkamp F. Peptide Mass Spectra from Micrometer-Thick Ice Films Produced with Femtosecond Pulses. Anal Chem 2022; 94:13359-13367. [PMID: 36153751 PMCID: PMC9535622 DOI: 10.1021/acs.analchem.2c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset. Our findings show that substrate choice and irradiation wavelength have a minor impact on signal intensity once the preparation protocol is optimized. However, if the temperature is increased from -140 to 0 °C, which is accompanied by ice film thinning, a somehow complex picture of analyte desorption and ionization is recognizable, which has not been described in the literature yet. Under cryogenic conditions (-140 °C), obtaining a signal is only possible from isolated sweet spots across the film. If the thin ice film is between -100 and -70 °C of temperature, these sweet spots appear more frequently. Ice sublimation triggered by temperatures above -70 °C leads to an intense and robust signal onset that could be maintained for several hours. In addition to the above findings, we notice that a vibrant fragmentation pattern produced is strikingly similar with both wavelengths. Our findings suggest that while following an optimized protocol, femtosecond mass spectrometry has excellent potential to analyze small organic molecules and peptides with a mass range of up to 2.5 kDa in aqueous solution without any matrix, as employed in matrix-assisted laser desorption/ionization (MALDI) or any substrate surface modification, found in surface-assisted laser desorption/ionization (SALDI).
Collapse
Affiliation(s)
- Andrey Krutilin
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sascha W. Epp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Glaynel M. L. Alejo
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Frederik Busse
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Djordje Gitaric
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hendrik Schikora
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Heinrich Schwoerer
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Friedjof Tellkamp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
44
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
45
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
46
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
47
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
48
|
Challen B, Cramer R. Advances in ionisation techniques for mass spectrometry-based omics research. Proteomics 2022; 22:e2100394. [PMID: 35709387 DOI: 10.1002/pmic.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Omics analysis by mass spectrometry (MS) is a vast field, with proteomics, metabolomics and lipidomics dominating recent research by exploiting biological MS ionisation techniques. Traditional MS ionisation techniques such as electrospray ionisation have limitations in analyte-specific sensitivity, modes of sampling and throughput, leading to many researchers investigating new ionisation methods for omics research. In this review, we examine the current landscape of these new ionisation techniques, divided into the three groups of (electro)spray-based, laser-based and other miscellaneous ionisation techniques. Due to the wide range of new developments, this review can only provide a starting point for further reading on each ionisation technique, as each have unique benefits, often for specialised applications, which promise beneficial results for different areas in the omics world.
Collapse
Affiliation(s)
- Bob Challen
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| |
Collapse
|
49
|
Pytskii IS, Kuznetsova ES, Buryak AK. Mass Spectrometric Imaging of Surfaces: Effect of the Way of Applying a Marker Substance on the Quality of Obtained Data. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Angerer TB, Bour J, Biagi JL, Moskovets E, Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:760-771. [PMID: 35358390 PMCID: PMC9074099 DOI: 10.1021/jasms.1c00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mass spectrometry imaging is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an atmospheric pressure (AP-) matrix-assisted laser desorption ionization (MALDI) source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices CHCA, norharmane, DHB, DHAP, THAP, and DAN in combination with tissue washing and matrix additives to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive-ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative-ion mode, DAN showed the best lipid coverage and DHAP performed superiorly for gangliosides. DHB produced intense cholesterol signals in the white matter. One hundred fifty-five lipids were assigned in positive-ion mode (THAP) and 137 in negative-ion mode (DAN), and 76 peaks were identified using on-tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.
Collapse
Affiliation(s)
- Tina B. Angerer
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jerome Bour
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Luc Biagi
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | | | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|