1
|
Quadros de Azevedo D, Vinícius Viera Nóia J, Ribeiro YCM, Alves Dos Reis R, Ribeiro PHO, Almeida Moura G, Mendes P, Barbosa de Souza AB, Carpini Mermejo S, Serafim MSM, Fernandes THM, O'Donoghue AJ, Campos ACFA, Campos SVA, Gonçalves Maltarollo V, Oliveira Castilho R. Development of an Antiviral Medicinal Plant and Natural Product Database (avMpNp Database) from Biodiversity. Chem Biodivers 2024; 21:e202400285. [PMID: 39546588 DOI: 10.1002/cbdv.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
The construction of compound databases (DB) is a strategy for the rational search of bioactive compounds and drugs for new and old diseases. In order to bring greater impact to drug discovery, we propose the development of a DB of bioactive antiviral compounds. Several research groups have presented evidence of the antiviral activity of medicinal plants and compounds isolated from these plants. We believe that compiling these discoveries in a DB would benefit the scientific research community and increase the speed to discover new potential drugs and medicines. Thus, we present the Antiviral Medicinal Plant and Natural Product DB (avMpNp DB) as an important source for acquiring, organizing, and distributing knowledge related to natural products and antiviral drug discovery. The avMpNp DB contains a series of chemically diverse compounds with drug-like profiles. To test the potential of this DB, SARS-CoV-2 Mpro and PLpro enzymatic inhibition assays were performed for available compounds resulting in IC50 values ranging from 6.308±0.296 to 15.795±0.155 μM. As a perspective, artificial intelligence tools will be added to implement computational predictions, as well as other chemical functionalities that allow data validation.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - João Vinícius Viera Nóia
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yasmim Carla M Ribeiro
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Raphael Alves Dos Reis
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Henrique Otoni Ribeiro
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Almeida Moura
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pamela Mendes
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Beatriz Barbosa de Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Sofia Carpini Mermejo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thaís Helena Maciel Fernandes
- Departamento de Matéria Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, RS, Brazil
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), San Diego, CA, US
| | - Alessandra C Faria Aguiar Campos
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sérgio Vale Aguiar Campos
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG. 31270-901, Brazil
| |
Collapse
|
2
|
Chandrasekhar V, Rajan K, Kanakam SRS, Sharma N, Weißenborn V, Schaub J, Steinbeck C. COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural products database. Nucleic Acids Res 2024:gkae1063. [PMID: 39588778 DOI: 10.1093/nar/gkae1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
The COCONUT (COlleCtion of Open Natural prodUcTs) database was launched in 2021 as an aggregation of openly available natural product datasets and has been one of the biggest open natural product databases since. Apart from the chemical structures of natural products, COCONUT contains information about names and synonyms, species and organism parts in which the natural product has been found, geographic information about where the respective sample has been collected and literature references, where available. COCONUT is openly accessible at https://coconut.naturalproducts.net. Users can search textual information and perform structure, substructure, and similarity searches. The data in COCONUT are available for bulk download as SDF, CSV and a database dump. The web application for accessing the data is open-source. Here, we describe COCONUT 2.0, for which the web application has been completely rewritten, and the data have been newly assembled and extensively curated. New features include data submissions by users and community curation facilitated in various ways.
Collapse
Affiliation(s)
- Venkata Chandrasekhar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Sri Ram Sagar Kanakam
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Nisha Sharma
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Viktor Weißenborn
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Jonas Schaub
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| |
Collapse
|
3
|
Gómez-García A, Acuña Jiménez DA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, Bolzani VDS, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Valencia Sánchez HA, Cortés Hernández HF, Mosquera Martinez OM, Medina-Franco JL. Latin American Natural Product Database (LANaPDB): An Update. J Chem Inf Model 2024; 64:8495-8509. [PMID: 39503579 PMCID: PMC11600509 DOI: 10.1021/acs.jcim.4c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Natural product (NP) databases are crucial tools in computer-aided drug design (CADD). Over the past decade, there has been a worldwide effort to assemble information regarding natural products (NPs) isolated and characterized in certain geographical regions. In 2023, it was published LANaPDB, and to our knowledge, this is the first attempt to gather and standardize all the NP databases of Latin America. Herein, we present and analyze in detail the contents of an updated version of LANaPDB, which includes 619 newly added compounds from Colombia, Costa Rica, and Mexico. The present version of LANaPDB has a total of 13 578 compounds, coming from ten databases of seven Latin American countries. A chemoinformatic characterization of LANaPDB was carried out, which includes the structural classification of the compounds, calculation of six physicochemical properties of pharmaceutical interest, and visualization of the chemical space by employing and comparing two different fingerprints (MACCS keys (166-bit) and Morgan2 (2048-bit)). Furthermore, additional analyses were made, and valuable information not included in the first version of LANaPDB was added, which includes structural diversity, molecular complexity, synthetic feasibility, commercial availability, and reported and predicted biological activity. In addition, the LANaPDB compounds were cross-referenced to two of the largest public chemical compound databases annotated with biological activity: ChEMBL and PubChem.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Daniel A Acuña Jiménez
- CBio3
Laboratory, School of Chemistry, University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
| | - William J Zamora
- CBio3
Laboratory, School of Chemistry, University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Laboratory
of Computational Toxicology and Artificial Intelligence (LaToxCIA),
Biological Testing Laboratory (LEBi), University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Advanced
Computing Lab (CNCA), National High Technology
Center (CeNAT), Pavas, San José 1174-1200, Costa Rica
| | - Haruna L Barazorda-Ccahuana
- Computational
Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miguel Á. Chávez-Fumagalli
- Computational
Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Marilia Valli
- School of
Pharmaceutical Sciences of Ribeirao Preto (FCFRP), University of São Paulo (USP), Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirao Preto 14040-903, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory
of Medicinal and Computational Chemistry (LQMC), Centre for Research
and Innovation in Biodiversity and Drug Discovery (CIBFar), São
Carlos Institute of Physics (IFSC), University
of São Paulo (USP), Av. João Dagnone, 1100, São
Carlos 13563-120, SP, Brazil
| | - Vanderlan da S Bolzani
- Nuclei
of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE),
Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara 14800-900, SP, Brazil
| | - Dionisio A Olmedo
- Center
for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College
of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De
Fabrega, Panama City 3366, Panama
| | - Pablo N Solís
- Center
for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College
of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De
Fabrega, Panama City 3366, Panama
| | - Marvin J Núñez
- Natural
Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de
Julio, San Salvador 01101, El Salvador
| | - Johny R Rodríguez Pérez
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- GIEPRONAL
Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia
| | - Hoover A Valencia Sánchez
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Héctor F Cortés Hernández
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Oscar M Mosquera Martinez
- GBPN
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - José L Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2024:10.1038/s41401-024-01353-1. [PMID: 39095509 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Gómez-García A, Prinz AK, Jiménez DAA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, da S Bolzani V, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Sánchez HAV, Cortés Hernández HF, Mosquera Martinez OM, Koch O, Medina-Franco JL. Updating and profiling the natural product-likeness of Latin American compound libraries. Mol Inform 2024; 43:e202400052. [PMID: 38994633 DOI: 10.1002/minf.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 07/13/2024]
Abstract
Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product-likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product-likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small-molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510, Mexico
| | - Ann-Kathrin Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Daniel A Acuña Jiménez
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
| | - William J Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José, 1174-1200, Costa Rica
| | - Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa, 04000, Peru
| | - Miguel Á Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa, 04000, Peru
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Vanderlan da S Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Dionisio A Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City, 3366, Panama
| | - Pablo N Solís
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City, 3366, Panama
| | - Marvin J Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de Julio, San Salvador, 01101, El Salvador
| | - Johny R Rodríguez Pérez
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas, 661001, Colombia
| | - Hoover A Valencia Sánchez
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Héctor F Cortés Hernández
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Oscar M Mosquera Martinez
- GBPN Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Oliver Koch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510, Mexico
| |
Collapse
|
6
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Candia-Puma MA, Galdino AS, Machado-de-Avila RA, Giunchetti RC, Medina-Franco JL, Florin-Christensen M, Ferraz Coelho EA, Chávez-Fumagalli MA. Targeting Leishmania infantum Mannosyl-oligosaccharide glucosidase with natural products: potential pH-dependent inhibition explored through computer-aided drug design. Front Pharmacol 2024; 15:1403203. [PMID: 38873424 PMCID: PMC11169604 DOI: 10.3389/fphar.2024.1403203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | | | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia Clínica, Colégio Técnico da Universidade Federal de Minas Gerais (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| |
Collapse
|
7
|
de Azevedo DQ, Campioni BM, Pedroz Lima FA, Medina-Franco JL, Castilho RO, Maltarollo VG. A critical assessment of bioactive compounds databases. Future Med Chem 2024; 16:1029-1051. [PMID: 38910575 PMCID: PMC11221550 DOI: 10.1080/17568919.2024.2342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Beatriz Mattos Campioni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Felipe Augusto Pedroz Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| |
Collapse
|
8
|
Mungmunpuntipantip R, Wiwanitkit V. Bioinformatics approach for searching for natural products in vector-borne disease management. North Clin Istanb 2024; 11:171-176. [PMID: 38757105 PMCID: PMC11095338 DOI: 10.14744/nci.2023.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2024] Open
Abstract
Vector-borne disease is an important public health problem. This disease is common in tropical areas and affects millions of people. The control and management of disease is an important consideration. Effective treatment is important in management of patients infected with vector-borne disease. A common problem in therapeutic management of the patient is the lack of an effective drug. Therefore, it is necessary to find a new effective drug for managing vector-borne disease. To search for a new drug, new technologies are applicable. Bioinformatics technologies are useful in new drug search. Application of the bioinformatics technologies in new anti-vector-borne disease drug search is interesting. In this review, the author briefly discusses the use of bioinformatics technology in searching for natural products in vector-borne disease management. Concepts and examples of some important diseases are presented.
Collapse
Affiliation(s)
| | - Viroj Wiwanitkit
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
- University Centre for Research and Development Department of Pharmaceutical Sciences, Chandigarh University Gharuan, Mohali, Punjab, India
| |
Collapse
|
9
|
Dutra LL, Borges RJ, Maltarollo VG, Mendes TAO, Bressan GC, Leite JPV. In silico evaluation of pharmacokinetics properties of withanolides and simulation of their biological activities against Alzheimer's disease. J Biomol Struct Dyn 2024; 42:2616-2631. [PMID: 37166375 DOI: 10.1080/07391102.2023.2206909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
The withanolides are naturally occurring steroidal lactones found mainly in plants of the Solanaceae family. The subtribe Withaninae includes species like Withania sominifera, which are a source of many bioactive withanolides. In this work, we selected and evaluate the ADMET-related properties of 91 withanolides found in species of the subtribe Withaninae computationally, to predict the relationship between their structures and their pharmacokinetic profiles. We also evaluated the interaction of these withanolides with known targets of Alzheimer's disease (AD) through molecular docking and molecular dynamics. Withanolides presented favorable pharmacokinetic properties, like high gastrointestinal absorption, lipophilicity (logP ≤ 5), good distribution and excretion parameters, and a favorable toxicity profile. The specie Withania aristata stood out as an interesting source of the promising withanolides classified as 5-ene with 16-ene or 17-ene. These withanolides presented a favourable pharmacokinetic profile and were also highlighted as the best candidates for inhibition of AD-related targets. Our results also suggest that withanolides are likely to act as cholinesterase inhibitors by interacting with the catalytic pocket in an energy favorable and stable way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Luana L Dutra
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Rafael J Borges
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Vinícius G Maltarollo
- Pharmaceutical Products Department- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gustavo C Bressan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - João Paulo V Leite
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Delgado-Maldonado T, Gonzalez-Morales LD, Juarez-Saldivar A, Lara-Ramírez EE, Rojas-Verde G, Moreno-Rodriguez A, Bandyopadhyay D, Rivera G. Structure-based Virtual Screening from Natural Products as Inhibitors of SARS-CoV-2 Spike Protein and ACE2 Receptor Binding and their Biological Evaluation In vitro. Med Chem 2024; 20:546-553. [PMID: 38204279 DOI: 10.2174/0115734064279323231206091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND In the last years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 760 million infections and 6.9 million deaths. Currently, remains a public health problem with limited pharmacological treatments. Among the virus drug targets, the SARS-CoV-2 spike protein attracts the development of new anti-SARS-CoV-2 agents. OBJECTIVE The aim of this work was to identify new compounds derived from natural products (BIOFACQUIM and Selleckchem databases) as potential inhibitors of the spike receptor binding domain (RBD)-ACE2 binding complex. METHODS Molecular docking, molecular dynamics simulations, and ADME-Tox analysis were performed to screen and select the potential inhibitors. ELISA-based enzyme assay was done to confirm our predictive model. RESULTS Twenty compounds were identified as potential binders of RBD of the spike protein. In vitro assay showed compound B-8 caused 48% inhibition at 50 μM, and their binding pattern exhibited interactions via hydrogen bonds with the key amino acid residues present on the RBD. CONCLUSION Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Luis Donaldo Gonzalez-Morales
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Alfredo Juarez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Guadalupe Rojas-Verde
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León CP. 66451, México
| | - Adriana Moreno-Rodriguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, México
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences (SIBCS) and School of Earth, Environmental, and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States of America
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| |
Collapse
|
11
|
Díaz-Rojas M, González-Andrade M, Aguayo-Ortiz R, Rodríguez-Sotres R, Pérez-Vásquez A, Madariaga-Mazón A, Mata R. Discovery of inhibitors of protein tyrosine phosphatase 1B contained in a natural products library from Mexican medicinal plants and fungi using a combination of enzymatic and in silico methods*. Front Pharmacol 2023; 14:1281045. [PMID: 38027024 PMCID: PMC10644722 DOI: 10.3389/fphar.2023.1281045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
This work aimed to discover protein tyrosine phosphatase 1B (PTP1B) inhibitors from a small molecule library of natural products (NPs) derived from selected Mexican medicinal plants and fungi to find new hits for developing antidiabetic drugs. The products showing similar IC50 values to ursolic acid (UA) (positive control, IC50 = 26.5) were considered hits. These compounds were canophyllol (1), 5-O-(β-D-glucopyranosyl)-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin (2), 3,4-dimethoxy-2,5-phenanthrenediol (3), masticadienonic acid (4), 4',5,6-trihydroxy-3',7-dimethoxyflavone (5), E/Z vermelhotin (6), tajixanthone hydrate (7), quercetin-3-O-(6″-benzoyl)-β-D-galactoside (8), lichexanthone (9), melianodiol (10), and confusarin (11). According to the double-reciprocal plots, 1 was a non-competitive inhibitor, 3 a mixed-type, and 6 competitive. The chemical space analysis of the hits (IC50 < 100 μM) and compounds possessing activity (IC50 in the range of 100-1,000 μM) with the BIOFACQUIM library indicated that the active molecules are chemically diverse, covering most of the known Mexican NPs' chemical space. Finally, a structure-activity similarity (SAS) map was built using the Tanimoto similarity index and PTP1B absolute inhibitory activity, which allows the identification of seven scaffold hops, namely, compounds 3, 5, 6, 7, 8, 9, and 11. Canophyllol (1), on the other hand, is a true analog of UA since it is an SAR continuous zone of the SAS map.
Collapse
Affiliation(s)
- Miriam Díaz-Rojas
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
13
|
Gómez-García A, Jiménez DAA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, Bolzani VDS, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Valencia Sánchez HA, Cortés Hernández HF, Medina-Franco JL. Navigating the Chemical Space and Chemical Multiverse of a Unified Latin American Natural Product Database: LANaPDB. Pharmaceuticals (Basel) 2023; 16:1388. [PMID: 37895859 PMCID: PMC10609821 DOI: 10.3390/ph16101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region. The current version of LANaPDB unifies the information from six countries and contains 12,959 chemical structures. The structural classification showed that the most abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%). From the analysis of the distribution of properties of pharmaceutical interest, it was observed that many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties. The concept of the chemical multiverse was employed to generate multiple chemical spaces from two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each database, plus the addition of databases from other Latin American countries.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Daniel A. Acuña Jiménez
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
| | - William J. Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José 1174-1200, Costa Rica
| | - Haruna L. Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Miguel Á. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Vanderlan da S. Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara 14800-900, SP, Brazil;
| | - Dionisio A. Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Pablo N. Solís
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Marvin J. Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de Julio, San Salvador 01101, El Salvador;
| | - Johny R. Rodríguez Pérez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia
| | - Hoover A. Valencia Sánchez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - Héctor F. Cortés Hernández
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| |
Collapse
|
14
|
Gonzalez-Ponce K, Horta Andrade C, Hunter F, Kirchmair J, Martinez-Mayorga K, Medina-Franco JL, Rarey M, Tropsha A, Varnek A, Zdrazil B. School of cheminformatics in Latin America. J Cheminform 2023; 15:82. [PMID: 37726809 PMCID: PMC10507835 DOI: 10.1186/s13321-023-00758-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
We report the major highlights of the School of Cheminformatics in Latin America, Mexico City, November 24-25, 2022. Six lectures, one workshop, and one roundtable with four editors were presented during an online public event with speakers from academia, big pharma, and public research institutions. One thousand one hundred eighty-one students and academics from seventy-nine countries registered for the meeting. As part of the meeting, advances in enumeration and visualization of chemical space, applications in natural product-based drug discovery, drug discovery for neglected diseases, toxicity prediction, and general guidelines for data analysis were discussed. Experts from ChEMBL presented a workshop on how to use the resources of this major compounds database used in cheminformatics. The school also included a round table with editors of cheminformatics journals. The full program of the meeting and the recordings of the sessions are publicly available at https://www.youtube.com/@SchoolChemInfLA/featured .
Collapse
Affiliation(s)
- Karla Gonzalez-Ponce
- Institute of Chemistry, Campus Merida, National Autonomous University of Mexico, Merida‑Tetiz Highway, Km. 4.5, Ucu, Yucatan, Mexico
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias, Goiania, GO, Brazil
| | - Fiona Hunter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridgeshire, UK
| | - Johannes Kirchmair
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 2D 303, 1090, Vienna, Austria
| | - Karina Martinez-Mayorga
- Institute of Chemistry, Campus Merida, National Autonomous University of Mexico, Merida‑Tetiz Highway, Km. 4.5, Ucu, Yucatan, Mexico.
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico, Sierra Papacal, Merida, Yucatan, Mexico.
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| | - Matthias Rarey
- ZBH - Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany
| | - Alexander Tropsha
- Molecular Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandre Varnek
- Laboratoire d'Infochimie, UMR 7177 CNRS, Université de Strasbourg, 4, Rue B. Pascal, 67000, Strasbourg, France
| | - Barbara Zdrazil
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridgeshire, UK
| |
Collapse
|
15
|
López-Pérez K, López-López E, Medina-Franco JL, Miranda-Quintana RA. Sampling and Mapping Chemical Space with Extended Similarity Indices. Molecules 2023; 28:6333. [PMID: 37687162 PMCID: PMC10489020 DOI: 10.3390/molecules28176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Visualization of the chemical space is useful in many aspects of chemistry, including compound library design, diversity analysis, and exploring structure-property relationships, to name a few. Examples of notable research areas where the visualization of chemical space has strong applications are drug discovery and natural product research. However, the sheer volume of even comparatively small sub-sections of chemical space implies that we need to use approximations at the time of navigating through chemical space. ChemMaps is a visualization methodology that approximates the distribution of compounds in large datasets based on the selection of satellite compounds that yield a similar mapping of the whole dataset when principal component analysis on a similarity matrix is performed. Here, we show how the recently proposed extended similarity indices can help find regions that are relevant to sample satellites and reduce the amount of high-dimensional data needed to describe a library's chemical space.
Collapse
Affiliation(s)
- Kenneth López-Pérez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA;
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico;
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07000, Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | | |
Collapse
|
16
|
González-Morales LD, Moreno-Rodríguez A, Vázquez-Jiménez LK, Delgado-Maldonado T, Juárez-Saldivar A, Ortiz-Pérez E, Paz-Gonzalez AD, Lara-Ramírez EE, Yépez-Mulia L, Meza P, Rivera G. Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics 2023; 15:2046. [PMID: 37631260 PMCID: PMC10458937 DOI: 10.3390/pharmaceutics15082046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.
Collapse
Affiliation(s)
- Luis D. González-Morales
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma “Benito Juárez” de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico;
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Alma D. Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Lilian Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Patricia Meza
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| |
Collapse
|
17
|
Barazorda-Ccahuana HL, Ranilla LG, Candia-Puma MA, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Davila-Del-Carpio G, Medina-Franco JL, Chávez-Fumagalli MA. PeruNPDB: the Peruvian Natural Products Database for in silico drug screening. Sci Rep 2023; 13:7577. [PMID: 37165197 PMCID: PMC10170056 DOI: 10.1038/s41598-023-34729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023] Open
Abstract
Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to PeruNPDB is available for free ( https://perunpdb.com.pe/ ). The PeruNPDB's collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.
Collapse
Affiliation(s)
- Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru.
| |
Collapse
|
18
|
Kumari M, Subbarao N. Convolutional neural network-based quantitative structure-activity relationship and fingerprint analysis against inhibitors of anthrax lethal factor. Future Med Chem 2023; 15:853-866. [PMID: 37248697 DOI: 10.4155/fmc-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Aim: To develop a one-dimensional convolutional neural network-based quantitative structure-activity relationship (1D-CNN-QSAR) model to identify novel anthrax inhibitors and analyze chemical space. Methods: We developed a 1D-CNN-QSAR model to identify novel anthrax inhibitors. Results: The statistical results of the 1D-CNN-QSAR model showed a mean square error of 0.045 and a predicted correlation coefficient of 0.79 for the test set. Further, chemical space analysis showed more than 80% fragment pair similarity, with activity cliffs associated with carboxylic acid, 2-phenylfurans, N-phenyldihydropyrazole, N-phenylpyrrole, furan, 4-methylene-1H-pyrazol-5-one, phenylimidazole, phenylpyrrole and phenylpyrazolidine. Conclusion: These fragments may serve as the basis for developing potent novel drug candidates for anthrax. Finally, we concluded that our proposed 1D-CNN-QSAR model and fingerprint analysis might be used to discover potential anthrax drug candidates.
Collapse
Affiliation(s)
- Madhulata Kumari
- Amity Institute of Biotechnology, Amity University, Rajasthan, Jaipur, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
19
|
Palacios-Can FJ, Silva-Sánchez J, León-Rivera I, Tlahuext H, Pastor N, Razo-Hernández RS. Identification of a Family of Glycoside Derivatives Biologically Active against Acinetobacter baumannii and Other MDR Bacteria Using a QSPR Model. Pharmaceuticals (Basel) 2023; 16:250. [PMID: 37259397 PMCID: PMC9964118 DOI: 10.3390/ph16020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 01/08/2025] Open
Abstract
As the rate of discovery of new antibacterial compounds for multidrug-resistant bacteria is declining, there is an urge for the search for molecules that could revert this tendency. Acinetobacter baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired multiple resistance mechanisms against antibiotics and is considered of critical priority. In this work, we developed a quantitative structure-property relationship (QSPR) model with 592 compounds for the identification of structural parameters related to their property as antibacterial agents against A. baumannii. QSPR mathematical validation (R2 = 70.27, RN = -0.008, a(R2) = 0.014, and δK = 0.021) and its prediction ability (Q2LMO= 67.89, Q2EXT = 67.75, a(Q2) = -0.068, δQ = 0.0, rm2¯ = 0.229, and Δrm2 = 0.522) were obtained with different statistical parameters; additional validation was done using three sets of external molecules (R2 = 72.89, 71.64 and 71.56). We used the QSPR model to perform a virtual screening on the BIOFACQUIM natural product database. From this screening, our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants of the Ipomoea sp., are potential antibacterials against A. baumannii. Furthermore, biological assays showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinically isolated strains of A. baumannii, as well as other multidrug-resistant bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a potential lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our QSPR model can be used as a tool for the investigation and search for new antibacterial compounds against A. baumannii.
Collapse
Affiliation(s)
- Francisco José Palacios-Can
- Centro de Investigación en Dinámica Celular (CIDC), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
- Centro de Investigaciones Químicas (CIQ), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Av. Universidad 655, Col. Sta. Ma. Ahuacatitlan, Cuernavaca 62100, Morelos, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas (CIQ), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Hugo Tlahuext
- Centro de Investigaciones Químicas (CIQ), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular (CIDC), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular (CIDC), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
20
|
de Medeiros LS, de Araújo Júnior MB, Peres EG, da Silva JCI, Bassicheto MC, Di Gioia G, Veiga TAM, Koolen HHF. Discovering New Natural Products Using Metabolomics-Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:185-224. [PMID: 37843810 DOI: 10.1007/978-3-031-41741-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The incessant search for new natural molecules with biological activities has forced researchers in the field of chemistry of natural products to seek different approaches for their prospection studies. In particular, researchers around the world are turning to approaches in metabolomics to avoid high rates of re-isolation of certain compounds, something recurrent in this branch of science. Thanks to the development of new technologies in the analytical instrumentation of spectroscopic and spectrometric techniques, as well as the advance in the computational processing modes of the results, metabolomics has been gaining more and more space in studies that involve the prospection of natural products. Thus, this chapter summarizes the precepts and good practices in the metabolomics of microbial natural products using mass spectrometry and nuclear magnetic resonance spectroscopy, and also summarizes several examples where this approach has been applied in the discovery of bioactive molecules.
Collapse
Affiliation(s)
- Lívia Soman de Medeiros
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Milena Costa Bassicheto
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Giordanno Di Gioia
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | | |
Collapse
|
21
|
Han P, Li X, Wang X, Wang S, Gao C, Chen W. Exploring the effects of drug, disease, and protein dependencies on biomedical named entity recognition: A comparative analysis. Front Pharmacol 2022; 13:1020759. [PMID: 36618912 PMCID: PMC9812568 DOI: 10.3389/fphar.2022.1020759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Biomedical named entity recognition is one of the important tasks of biomedical literature mining. With the development of natural language processing technology, many deep learning models are used to extract valuable information from the biomedical literature, which promotes the development of effective BioNER models. However, for specialized domains with diverse and complex contexts and a richer set of semantically related entity types (e.g., drug molecules, targets, pathways, etc., in the biomedical domain), whether the dependencies of these drugs, diseases, and targets can be helpful still needs to be explored. Method: Providing additional dependency information beyond context, a method based on the graph attention network and BERT pre-training model named MKGAT is proposed to improve BioNER performance in the biomedical domain. To enhance BioNER by using external dependency knowledge, we integrate BERT-processed text embeddings and entity dependencies to construct better entity embedding representations for biomedical named entity recognition. Results: The proposed method obtains competitive accuracy and higher efficiency than the state-of-the-art method on three datasets, namely, NCBI-disease corpus, BC2GM, and BC5CDR-chem, with a precision of 90.71%, 88.19%, and 95.71%, recall of 92.52%, 88.05%, and 95.62%, and F1-scores of 91.61%, 88.12%, and 95.66%, respectively, which performs better than existing methods. Conclusion: Drug, disease, and protein dependencies can allow entities to be better represented in neural networks, thereby improving the performance of BioNER.
Collapse
|
22
|
Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study. J Mol Graph Model 2022; 117:108307. [PMID: 36096064 DOI: 10.1016/j.jmgm.2022.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
A Laplacian scoring algorithm for gene selection and the Gini coefficient to identify the genes whose expression varied least across a large set of samples were the state-of-the-art methods used here. These methods have not been trialed for their feasibility in cheminformatics. This was a maiden attempt to investigate a complete comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. This computational "proof-of-concept" study illustrated the combinatorial approach used to explain how the structure of the selected natural products (NPs) undergoes molecular diversity analysis. A virtual combinatorial library (1.6 M) based on 20 anthraquinones and 24 chalcones was enumerated. The resulting compounds were optimized to the near drug-likeness properties, and the physicochemical descriptors were calculated for all datasets including FDA, Non-FDA, and NPs from ZINC 15. UMAP and PCA were applied to compare and represent the chemical space coverage of each dataset. Subsequently, the Laplacian score and Gini coefficient were applied to delineate feature selection and selectivity among properties, respectively. Finally, we demonstrated the diversity between the datasets by employing Murcko's and the central scaffolds systems, calculating three fingerprint descriptors and analyzing their diversity by PCA and SOM. The optimized enumeration resulted in 1,610,268 compounds with NP-Likeness, and synthetic feasibility mean scores close to FDA, Non-FDA, and NPs datasets. The overlap between the chemical space of the 1.6 M database was more prominent than with the NPs dataset. A Laplacian score prioritized NP-likeness and hydrogen bond acceptor properties (1.0 and 0.923), respectively, while the Gini coefficient showed that all properties have selective effects on datasets (0.81-0.93). Scaffold and fingerprint diversity indicated that the descending order for the tested datasets was FDA, Non-FDA, NPs and 1.6 M. Virtual combinatorial libraries based on NPs can be considered as a source of the combinatorial compound with NP-likeness properties. Furthermore, measuring molecular diversity is supposed to be performed by different methods to allow for comparison and better judgment.
Collapse
|
23
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
24
|
Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Gaudry A, Graham JG, Stephan R, Page R, Vondrášek J, Steinbeck C, Pauli GF, Wolfender JL, Bisson J, Allard PM. The LOTUS initiative for open knowledge management in natural products research. eLife 2022; 11:e70780. [PMID: 35616633 PMCID: PMC9135406 DOI: 10.7554/elife.70780] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Contemporary bioinformatic and chemoinformatic capabilities hold promise to reshape knowledge management, analysis and interpretation of data in natural products research. Currently, reliance on a disparate set of non-standardized, insular, and specialized databases presents a series of challenges for data access, both within the discipline and for integration and interoperability between related fields. The fundamental elements of exchange are referenced structure-organism pairs that establish relationships between distinct molecular structures and the living organisms from which they were identified. Consolidating and sharing such information via an open platform has strong transformative potential for natural products research and beyond. This is the ultimate goal of the newly established LOTUS initiative, which has now completed the first steps toward the harmonization, curation, validation and open dissemination of 750,000+ referenced structure-organism pairs. LOTUS data is hosted on Wikidata and regularly mirrored on https://lotus.naturalproducts.net. Data sharing within the Wikidata framework broadens data access and interoperability, opening new possibilities for community curation and evolving publication models. Furthermore, embedding LOTUS data into the vast Wikidata knowledge graph will facilitate new biological and chemical insights. The LOTUS initiative represents an important advancement in the design and deployment of a comprehensive and collaborative natural products knowledge base.
Collapse
Affiliation(s)
- Adriano Rutz
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University JenaJenaGermany
| | - Jakub Galgonek
- Institute of Organic Chemistry and Biochemistry of the CASPragueCzech Republic
| | - Daniel Mietchen
- Ronin InstituteMontclairUnited States
- Leibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- School of Data Science, University of VirginiaCharlottesvilleUnited States
| | - Egon Willighagen
- Department of Bioinformatics-BiGCaT, Maastricht UniversityMaastrichtNetherlands
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
| | - James G Graham
- Center for Natural Product Technologies and WHO Collaborating Centre for Traditional Medicine (WHO CC/TRM), Pharmacognosy Institute; College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
| | - Ralf Stephan
- Ontario Institute for Cancer Research (OICR), University Ave SuiteTorontoCanada
| | | | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry of the CASPragueCzech Republic
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University JenaJenaGermany
| | - Guido F Pauli
- Center for Natural Product Technologies and WHO Collaborating Centre for Traditional Medicine (WHO CC/TRM), Pharmacognosy Institute; College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
| | - Jonathan Bisson
- Center for Natural Product Technologies and WHO Collaborating Centre for Traditional Medicine (WHO CC/TRM), Pharmacognosy Institute; College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicagoUnited States
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Department of Biology, University of FribourgFribourgSwitzerland
| |
Collapse
|
25
|
Medina-Franco JL, López-López E, Andrade E, Ruiz-Azuara L, Frei A, Guan D, Zuegg J, Blaskovich MA. Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov Today 2022; 27:1420-1430. [DOI: 10.1016/j.drudis.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
|
26
|
Onunkun AT, Iwaloye O, Elekofehinti OO. Identification of Novel Nrf2 Activator via Protein-ligand Interactions as
Remedy for Oxidative Stress in Diabetes Mellitus. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210413131108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative stress is a significant player in the pathogenesis of diabetes mellitus
and the Kelch-like ECH-associated protein1/nuclear factor erythroid 2-related factor 2/antioxidant response
element (Keap1/Nrf2/ARE) signaling pathway serves as the essential defense system to mitigate
oxidative stress. Nrf2 is responsible for the mitigation of oxidative stress while Keap1 represses Nrf2’s
activation upon binding. Identification of Nrf2 activators has started to pick up enthusiasm as they can be
used as therapeutic agents against diabetes mellitus. One of the ongoing mechanisms in the activation of
Nrf2 is to disrupt Keap1/Nrf2 protein-protein interaction. This study aimed at using computational analysis
to screen natural compounds capable of inhibiting Keap1/Nrf2 protein-protein interaction.
Methods:
A manual curated library of natural compounds was screened against crystal structure of Keap1
using glide docking algorithm. Binding free energy of the docked complexes, and adsorption, digestion,
metabolism and excretion (ADME) properties were further employed to identify the hit compounds. The
bioactivity of the identified hit against Keap1 was predicted using quantitative structure-activity relationship
(QSAR) model.
Results:
A total of 7 natural compounds (Compound 222, 230, 310, 208, 210, 229 and 205) identified
from different medicinal plants were found to be potent against Keap1 based on their binding affinity and
binding free energy. The internal validated model kpls_radial_30 with R2 of 0.9109, Q2 of 0.7287 was
used to predict the compounds’ bioactivities. Compound 205 was considered as the ideal drug candidate
because it showed moderation for ADME properties, had predicted pIC50 of 6.614 and obeyed Lipinski’s
rule of five.
Conclusion:
This study revealed that Compound 205, a compound isolated from Amphipterygium adstringens
is worth considering for further experimental analysis.
Collapse
Affiliation(s)
- Afolashade Toritseju Onunkun
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| |
Collapse
|
27
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|
28
|
Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 2021; 50:D1324-D1333. [PMID: 34664659 PMCID: PMC8728151 DOI: 10.1093/nar/gkab913] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023] Open
Abstract
Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xueni Sun
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Yan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Xie
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zimao Liang
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
29
|
Pinto GP, Hendrikse NM, Stourac J, Damborsky J, Bednar D. Virtual screening of potential anticancer drugs based on microbial products. Semin Cancer Biol 2021; 86:1207-1217. [PMID: 34298109 DOI: 10.1016/j.semcancer.2021.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/20/2023]
Abstract
The development of microbial products for cancer treatment has been in the spotlight in recent years. In order to accelerate the lengthy and expensive drug development process, in silico screening tools are systematically employed, especially during the initial discovery phase. Moreover, considering the steadily increasing number of molecules approved by authorities for commercial use, there is a demand for faster methods to repurpose such drugs. Here we present a review on virtual screening web tools, such as publicly available databases of molecular targets and libraries of ligands, with the aim to facilitate the discovery of potential anticancer drugs based on microbial products. We provide an entry-level step-by-step description of the workflow for virtual screening of microbial metabolites with known protein targets, as well as two practical examples using freely available web tools. The first case presents a virtual screening study of drugs developed from microbial products using Caver Web, a web tool that performs docking along a tunnel. The second case comprises a comparative analysis between a wild type isocitrate dehydrogenase 1 and a mutant that results in cancer, using the recently developed web tool PredictSNPOnco. In summary, this review provides the basic and essential background information necessary for virtual screening experiments, which may accelerate the discovery of novel anticancer drugs.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, Brno, 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Natalie M Hendrikse
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, Brno, 625 00, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, Brno, 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, Brno, 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, Brno, 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| |
Collapse
|
30
|
Diallo BN, Glenister M, Musyoka TM, Lobb K, Tastan Bishop Ö. SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform 2021; 13:37. [PMID: 33952332 PMCID: PMC8097257 DOI: 10.1186/s13321-021-00514-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/ ) is the sole and a fully referenced database of natural chemical compounds of South African biodiversity. It is freely available, and since its inception in 2015, the database has become an important resource to several studies. Its content has been: used as training data for machine learning models; incorporated to larger databases; and utilized in drug discovery studies for hit identifications. DESCRIPTION Here, we report the updated version of SANCDB. The new version includes 412 additional compounds that have been reported since 2015, giving a total of 1012 compounds in the database. Further, although natural products (NPs) are an important source of unique scaffolds, they have a major drawback due to their complex structure resulting in low synthetic feasibility in the laboratory. With this in mind, SANCDB is, now, updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort. To our knowledge, this feature is not available in other NP databases. Additionally, for easier access to information by users, the database and website interface were updated. The compounds are now downloadable in many different chemical formats. CONCLUSIONS The drug discovery process relies heavily on NPs due to their unique chemical organization. This has inspired the establishment of numerous NP chemical databases. With the emergence of newer chemoinformatic technologies, existing chemical databases require constant updates to facilitate information accessibility and integration by users. Besides increasing the NPs compound content, the updated SANCDB allows users to access the individual compounds (if available) or their analogs from commercial databases seamlessly.
Collapse
Affiliation(s)
- Bakary N'tji Diallo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Thommas M Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Kevin Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.,Department of Chemistry, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.
| |
Collapse
|
31
|
Santana K, do Nascimento LD, Lima e Lima A, Damasceno V, Nahum C, Braga RC, Lameira J. Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products. Front Chem 2021; 9:662688. [PMID: 33996755 PMCID: PMC8117418 DOI: 10.3389/fchem.2021.662688] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products are continually explored in the development of new bioactive compounds with industrial applications, attracting the attention of scientific research efforts due to their pharmacophore-like structures, pharmacokinetic properties, and unique chemical space. The systematic search for natural sources to obtain valuable molecules to develop products with commercial value and industrial purposes remains the most challenging task in bioprospecting. Virtual screening strategies have innovated the discovery of novel bioactive molecules assessing in silico large compound libraries, favoring the analysis of their chemical space, pharmacodynamics, and their pharmacokinetic properties, thus leading to the reduction of financial efforts, infrastructure, and time involved in the process of discovering new chemical entities. Herein, we discuss the computational approaches and methods developed to explore the chemo-structural diversity of natural products, focusing on the main paradigms involved in the discovery and screening of bioactive compounds from natural sources, placing particular emphasis on artificial intelligence, cheminformatics methods, and big data analyses.
Collapse
Affiliation(s)
- Kauê Santana
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Anderson Lima e Lima
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Vinícius Damasceno
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Claudio Nahum
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | | - Jerônimo Lameira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
32
|
Núñez MJ, Díaz-Eufracio BI, Medina-Franco JL, Olmedo DA. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2. RSC Adv 2021; 11:16051-16064. [PMID: 35481202 PMCID: PMC9030473 DOI: 10.1039/d1ra01507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In this study, we evaluated 3444 Latin American natural products using cheminformatic tools. We also characterized 196 compounds for the first time from the flora of El Salvador that were compared with the databases of secondary metabolites from Brazil, Mexico, and Panama, and 42 969 compounds (natural, semi-synthetic, synthetic) from different regions of the world. The overall analysis was performed using drug-likeness properties, molecular fingerprints of different designs, two parameters similarity, molecular scaffolds, and molecular complexity metrics. It was found that, in general, Salvadoran natural products have a large diversity based on fingerprints. Simultaneously, those belonging to Mexico and Panama present the greatest diversity of scaffolds compared to the other databases. This study provided evidence of the high structural complexity that Latin America's natural products have as a benchmark. The COVID-19 pandemic has had a negative effect on a global level. Thus, in the search for substances that may influence the coronavirus life cycle, the secondary metabolites from El Salvador and Panama were evaluated by docking against the endoribonuclease NSP-15, an enzyme involved in the SARS CoV-2 viral replication. We propose in this study three natural products as potential inhibitors of NSP-15.
Collapse
Affiliation(s)
- Marvin J Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador San Salvador El Salvador
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Dionisio A Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University de Panama Panama
- Sistema Nacional de Investigación (SNI), SENACYT Panamá
| |
Collapse
|
33
|
Cox EJ, Tian DD, Clarke JD, Rettie AE, Unadkat JD, Thummel KE, McCune JS, Paine MF. Modeling Pharmacokinetic Natural Product-Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacol Rev 2021; 73:847-859. [PMID: 33712517 PMCID: PMC7956993 DOI: 10.1124/pharmrev.120.000106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.
Collapse
Affiliation(s)
- Emily J Cox
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Dan-Dan Tian
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - John D Clarke
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Allan E Rettie
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
34
|
Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products. Biomolecules 2021; 11:biom11030467. [PMID: 33809876 PMCID: PMC8004226 DOI: 10.3390/biom11030467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases.
Collapse
|
35
|
Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of Open Natural Products database. J Cheminform 2021; 13:2. [PMID: 33423696 PMCID: PMC7798278 DOI: 10.1186/s13321-020-00478-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Natural products (NPs) are small molecules produced by living organisms with potential applications in pharmacology and other industries as many of them are bioactive. This potential raised great interest in NP research around the world and in different application fields, therefore, over the years a multiplication of generalistic and thematic NP databases has been observed. However, there is, at this moment, no online resource regrouping all known NPs in just one place, which would greatly simplify NPs research and allow computational screening and other in silico applications. In this manuscript we present the online version of the COlleCtion of Open Natural prodUcTs (COCONUT): an aggregated dataset of elucidated and predicted NPs collected from open sources and a web interface to browse, search and easily and quickly download NPs. COCONUT web is freely available at https://coconut.naturalproducts.net .
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Peter Merseburger
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Mehmet Aziz Yirik
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| |
Collapse
|
36
|
Zhang R, Li X, Zhang X, Qin H, Xiao W. Machine learning approaches for elucidating the biological effects of natural products. Nat Prod Rep 2021; 38:346-361. [PMID: 32869826 DOI: 10.1039/d0np00043d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Machine learning (ML) is an efficient tool for the prediction of bioactivity and the study of structure-activity relationships. Over the past decade, an emerging trend for combining these approaches with the study of natural products (NPs) has developed in order to manage the challenge of the discovery of bioactive NPs. In the present review, we will introduce the basic principles and protocols for using the ML approach to investigate the bioactivity of NPs, citing a series of practical examples regarding the study of anti-microbial, anti-cancer, and anti-inflammatory NPs, etc. ML algorithms manage a variety of classification and regression problems associated with bioactive NPs, from those that are linear to non-linear and from pure compounds to plant extracts. Inspired by cases reported in the literature and our own experience, a number of key points have been emphasized for reducing modeling errors, including dataset preparation and applicability domain analysis.
Collapse
Affiliation(s)
- Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 Rd Cuihubei, P. R. China.
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 Rd Cuihubei, P. R. China.
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 Rd Cuihubei, P. R. China.
| | - Huayan Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 Rd Cuihubei, P. R. China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 Rd Cuihubei, P. R. China.
| |
Collapse
|
37
|
López-López E, Bajorath J, Medina-Franco JL. Informatics for Chemistry, Biology, and Biomedical Sciences. J Chem Inf Model 2020; 61:26-35. [PMID: 33382611 DOI: 10.1021/acs.jcim.0c01301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Informatics is growing across disciplines, impacting several areas of chemistry, biology, and biomedical sciences. Besides the well-established bioinformatics discipline, other informatics-based interdisciplinary fields have been evolving over time, such as chemoinformatics and biomedical informatics. Other related research areas such as pharmacoinformatics, food informatics, epi-informatics, materials informatics, and neuroinformatics have emerged more recently and continue to develop as independent subdisciplines. The goals and impacts of each of these disciplines have typically been separately reviewed in the literature. Hence, it remains challenging to identify commonalities and key differences. Herein, we discuss in context three major informatics disciplines in the natural and life sciences including bioinformatics, chemoinformatics, and biomedical informatics and briefly comment on related subdisciplines. We focus the discussion on the definitions, historical background, actual impact, main similarities, and differences and evaluate the dissemination and teaching of bioinformatics, chemoinformatics, and biomedical informatics.
Collapse
Affiliation(s)
- Edgar López-López
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Av Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Endenicher Allee 19c, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Av Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
38
|
Przybyłek M. Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening. Molecules 2020; 25:E5942. [PMID: 33333961 PMCID: PMC7765417 DOI: 10.3390/molecules25245942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Beta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural Networks, SANN). In order to evaluate the models' accuracy and select the best classifiers among automatically generated SANNs, the Matthews correlation coefficient (MCC) was used. The application of the combination of maxHBint3 and SpMax8_Bhs descriptors leads to the highest predicting abilities of SANNs, as evidenced by the averaged test set prediction results (MCC = 0.748) calculated for ten different dataset splits. Additionally, the models were analyzed employing receiver operating characteristics (ROC) and cumulative gain charts. The thirteen final classifiers obtained as a result of the model development procedure were applied for a natural compounds collection available in the BIOFACQUIM database. As a result of this beta-glucosidase inhibitors screening, eight compounds were univocally classified as active by all SANNs.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| |
Collapse
|
39
|
Medina-Franco JL, Saldívar-González FI. Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules 2020; 10:E1566. [PMID: 33213003 PMCID: PMC7698493 DOI: 10.3390/biom10111566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Natural products have a significant role in drug discovery. Natural products have distinctive chemical structures that have contributed to identifying and developing drugs for different therapeutic areas. Moreover, natural products are significant sources of inspiration or starting points to develop new therapeutic agents. Natural products such as peptides and macrocycles, and other compounds with unique features represent attractive sources to address complex diseases. Computational approaches that use chemoinformatics and molecular modeling methods contribute to speed up natural product-based drug discovery. Several research groups have recently used computational methodologies to organize data, interpret results, generate and test hypotheses, filter large chemical databases before the experimental screening, and design experiments. This review discusses a broad range of chemoinformatics applications to support natural product-based drug discovery. We emphasize profiling natural product data sets in terms of diversity; complexity; acid/base; absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties; and fragment analysis. Novel techniques for the visual representation of the chemical space are also discussed.
Collapse
Affiliation(s)
- José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | | |
Collapse
|
40
|
Durán-Iturbide N, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS OMEGA 2020; 5:16076-16084. [PMID: 32656429 PMCID: PMC7346235 DOI: 10.1021/acsomega.0c01581] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 05/16/2023]
Abstract
Natural products continue to be major sources of bioactive compounds and drug candidates not only because of their unique chemical structures but also because of their overall favorable metabolism and pharmacokinetic properties. The number of publicly accessible natural product databases has increased significantly in the past few years. However, the systematic ADME/Tox profile has been reported on a limited basis. For instance, BIOFACQUIM was recently published as a public database of natural products from Mexico, a country with a rich source of biomolecules. However, its ADME/Tox profile has not been reported. Herein, we discuss the results of an in-depth in silico ADME/Tox profile of natural products in BIOFACQUIM and other large public collections of natural products. It was concluded that the absorption and distribution profiles of compounds in BIOFACQUIM are similar to those of approved drugs, while the metabolism profile is comparable to that in the other natural product databases. The excretion profile of compounds in BIOFACQUIM is different from that of the approved drugs, but their predicted toxicity profile is comparable. This work further contributes to the deeper characterization of natural product collections as major sources of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Noemi
Angeles Durán-Iturbide
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - Bárbara I. Díaz-Eufracio
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - José L. Medina-Franco
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| |
Collapse
|
41
|
L Medina-Franco J. Towards a unified Latin American Natural Products Database: LANaPD. Future Sci OA 2020; 6:FSO468. [PMID: 32983559 PMCID: PMC7491008 DOI: 10.2144/fsoa-2020-0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Around the world, the number of compound databases of natural products in the public domain is rising. This is in line with the increasing synergistic combination of natural product research and chemoinformatics. Toward this global endeavor, countries in Latin America are assembling, curating, and analyzing the contents and diversity of natural products available in their geographical regions. In this manuscript we collect and analyze the efforts that countries in Latin America have made so far to build natural product databases. We further encourage the scientific community in particular in Latin America, to continue their efforts to building quality natural product databases and, whenever possible, to make them publicly accessible. It is proposed that all compound collections could be assembled into a unified resource called LANaPD: Latin American Natural Products Database. Opportunities and challenges to build, distribute and maintain LANaPD are also discussed.
Collapse
Affiliation(s)
- José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
42
|
An enumeration of natural products from microbial, marine and terrestrial sources. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The discovery of a new drug is a multidisciplinary and very costly task. One of the major steps is the identification of a lead compound, i.e. a compound with a certain degree of potency and that can be chemically modified to improve its activity, metabolic properties, and pharmacokinetics profiles. Terrestrial sources (plants and fungi), microbes and marine organisms are abundant resources for the discovery of new structurally diverse and biologically active compounds. In this chapter, an attempt has been made to quantify the numbers of known published chemical structures (available in chemical databases) from natural sources. Emphasis has been laid on the number of unique compounds, the most abundant compound classes and the distribution of compounds in terrestrial and marine habitats. It was observed, from the recent investigations, that ~500,000 known natural products (NPs) exist in the literature. About 70 % of all NPs come from plants, terpenoids being the most represented compound class (except in bacteria, where amino acids, peptides, and polyketides are the most abundant compound classes). About 2,000 NPs have been co-crystallized in PDB structures.
Collapse
|
43
|
Zin PPK, Williams GJ, Ekins S. Cheminformatics Analysis and Modeling with MacrolactoneDB. Sci Rep 2020; 10:6284. [PMID: 32286395 PMCID: PMC7156526 DOI: 10.1038/s41598-020-63192-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Macrolactones, macrocyclic lactones with at least twelve atoms within the core ring, include diverse natural products such as macrolides with potent bioactivities (e.g. antibiotics) and useful drug-like characteristics. We have developed MacrolactoneDB, which integrates nearly 14,000 existing macrolactones and their bioactivity information from different public databases, and new molecular descriptors to better characterize macrolide structures. The chemical distribution of MacrolactoneDB was analyzed in terms of important molecular properties and we have utilized three targets of interest (Plasmodium falciparum, Hepatitis C virus and T-cells) to demonstrate the value of compiling this data. Regression machine learning models were generated to predict biological endpoints using seven molecular descriptor sets and eight machine learning algorithms. Our results show that merging descriptors yields the best predictive power with Random Forest models, often boosted by consensus or hybrid modeling approaches. Our study provides cheminformatics insights into this privileged, underexplored structural class of compounds with high therapeutic potential.
Collapse
Affiliation(s)
- Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Gavin J Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Sean Ekins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
44
|
Sorokina M, Steinbeck C. Review on natural products databases: where to find data in 2020. J Cheminform 2020; 12:20. [PMID: 33431011 PMCID: PMC7118820 DOI: 10.1186/s13321-020-00424-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Natural products (NPs) have been the centre of attention of the scientific community in the last decencies and the interest around them continues to grow incessantly. As a consequence, in the last 20 years, there was a rapid multiplication of various databases and collections as generalistic or thematic resources for NP information. In this review, we establish a complete overview of these resources, and the numbers are overwhelming: over 120 different NP databases and collections were published and re-used since 2000. 98 of them are still somehow accessible and only 50 are open access. The latter include not only databases but also big collections of NPs published as supplementary material in scientific publications and collections that were backed up in the ZINC database for commercially-available compounds. Some databases, even published relatively recently are already not accessible anymore, which leads to a dramatic loss of data on NPs. The data sources are presented in this manuscript, together with the comparison of the content of open ones. With this review, we also compiled the open-access natural compounds in one single dataset a COlleCtion of Open NatUral producTs (COCONUT), which is available on Zenodo and contains structures and sparse annotations for over 400,000 non-redundant NPs, which makes it the biggest open collection of NPs available to this date.
Collapse
Affiliation(s)
- Maria Sorokina
- University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | | |
Collapse
|
45
|
Nguyen-Vo TH, Nguyen L, Do N, Nguyen TN, Trinh K, Cao H, Le L. Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery. J Chem Inf Model 2020; 60:1101-1110. [PMID: 31873010 DOI: 10.1021/acs.jcim.9b00826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Traditional herbal medicine has been an inseparable part of the traditional medical science in many countries throughout history. Nowadays, the popularity of using herbal medicines in daily life, as well as clinical practices, has gradually expanded to numerous Western countries with positive impacts and acceptance. The continuous growth of the herbal consumption market has promoted standardization and modernization of herbal-derived products with present pharmacological criteria. To store and extensively share this knowledge with the community and serve scientific research, various herbal metabolite databases have been developed with diverse focuses under the support of modern advances. The advent of these databases has contributed to accelerating research on pharmaceuticals of natural origins. In the scope of this study, we critically review 30 herbal metabolite databases, discuss different related perspectives, and provide a comparative analysis of 18 accessible noncommercial ones. We hope to provide you with fundamental information and multidimensional perspectives from herbal medicines to modern drug discovery.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Loc Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Nguyet Do
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Thien-Ngan Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Khang Trinh
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Hung Cao
- The Henry Samueli School of Engineering, University of California at Irvine, Irvine, California 92697, United States
| | - Ly Le
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam.,Vingroup Big Data Institute, Ha Noi 100000, Vietnam
| |
Collapse
|
46
|
Sánchez-Cruz N, Pilón-Jiménez BA, Medina-Franco JL. Functional group and diversity analysis of BIOFACQUIM: A Mexican natural product database. F1000Res 2019; 8. [PMID: 32047598 PMCID: PMC6993822 DOI: 10.12688/f1000research.21540.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Natural product databases are important in drug discovery and other research areas. An analysis of its structural content, as well as functional group occurrence, provides a useful overview, as well as a means of comparison with related databases. BIOFACQUIM is an emerging database of natural products characterized and isolated in Mexico. Herein, we discuss the results of a first systematic functional group analysis and global diversity of an updated version of BIOFACQUIM. Methods: BIOFACQUIM was augmented through a literature search and data curation. A structural content analysis of the dataset was performed. This involved a functional group analysis with a novel algorithm to automatically identify all functional groups in a molecule and an assessment of the global diversity using consensus diversity plots. To this end, BIOFACQUIM was compared to two major and large databases: ChEMBL 25, and a herein assembled collection of natural products with 169,839 unique compounds. Results: The structural content analysis showed that 15.7% of compounds and 11.6% of scaffolds present in the current version of BIOFACQUIM have not been reported in the other large reference datasets. It also gave a diversity increase in terms of scaffolds and molecular fingerprints regarding the previous version of the dataset, as well as a higher similarity to the assembled collection of natural products than to ChEMBL 25, in terms of diversity and frequent functional groups. Conclusions: A total of 148 natural products were added to BIOFACQUIM, which meant a diversity increase in terms of scaffolds and fingerprints. Regardless of its relatively small size, there are a significant number of compounds and scaffolds that are not present in the reference datasets, showing that curated databases of natural products, such as BIOFACQUIM, can serve as a starting point to increase the biologically relevant chemical space.
Collapse
Affiliation(s)
- Norberto Sánchez-Cruz
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| | - B Angélica Pilón-Jiménez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| |
Collapse
|
47
|
Sánchez-Cruz N, Pilón-Jiménez BA, Medina-Franco JL. Functional group and diversity analysis of BIOFACQUIM: A Mexican natural product database. F1000Res 2019; 8:Chem Inf Sci-2071. [PMID: 32047598 PMCID: PMC6993822 DOI: 10.12688/f1000research.21540.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Natural product databases are important in drug discovery and other research areas. Their structural contents and functional group analysis are relevant to increase their knowledge in terms of chemical diversity and chemical space coverage. BIOFACQUIM is an emerging database of natural products characterized and isolated in Mexico. Herein, we discuss the results of a first systematic functional group analysis and global diversity of an updated version of BIOFACQUIM. Methods: BIOFACQUIM was augmented through a literature search and data curation. A structural content analysis of the dataset was done. This involved a functional group analysis with a novel algorithm to identify automatically all functional groups in a molecule and an assessment of the global diversity using consensus diversity plots. To this end, BIOFACQUIM was compared to two major and large databases: ChEMBL 25, and a herein assembled collection of natural products with 169,839 unique compounds. Results: The structural content analysis showed that 16.1% of compounds, 11.3% of scaffolds, and 6.3% of functional groups present in the current version of BIOFACQUIM have not been reported in the other large reference datasets. It also gave a diversity increase in terms of scaffolds and molecular fingerprints regarding the previous version of the dataset, as well as a higher similarity to the assembled collection of natural products than to ChEMBL 25, in terms of diversity and frequent functional groups. Conclusions: A total of 148 natural products were added to BIOFACQUIM, which meant a diversity increase in terms of scaffolds and fingerprints. Regardless of its relatively small size, there are a significant number of compounds, scaffolds, and functional groups that are not present in the reference datasets, showing that curated databases of natural products, such as BIOFACQUIM, can serve as a starting point to increase the biologically relevant chemical space.
Collapse
Affiliation(s)
- Norberto Sánchez-Cruz
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| | - B. Angélica Pilón-Jiménez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| | - José L. Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico City, 04510, Mexico
| |
Collapse
|
48
|
Cheminformatics Explorations of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:1-35. [PMID: 31621009 DOI: 10.1007/978-3-030-14632-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.
Collapse
|
49
|
Santibáñez-Morán MG, Medina-Franco JL. Analysis of the Acid/Base Profile of Natural Products from Different Sources. Mol Inform 2019; 39:e1900099. [PMID: 31556481 DOI: 10.1002/minf.201900099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/17/2019] [Indexed: 11/09/2022]
Abstract
For many years drug discovery and other areas in chemistry have successfully relied on natural products. Recent advances in computational methods have made possible to study the chemical space of natural products from different sources. Ionizable acidic and basic functional groups heavily influence physicochemical properties and thus a molecule's absorption, distribution, metabolism, excretion, and toxicity characteristics as well as their affinity for biological targets. This work reports the generation and critical comparison of the acid/base profiles of ten chemical databases including seven natural products sets from different origins, a set of semisynthetic compounds, a collection of approved drugs, and a compendium of food chemicals. Similarities were found in the proportion of the main charge state categories among the natural products databases with few differences in their pKa distributions. Clear differences were observed between natural products and the approved drugs and semi-synthetic natural products databases, whereas natural products share some trends with the food chemical database. We noted that the natural products collections comprise around 45 % of neutral compounds. The proportion of single acids was approximately twice that found for FDA drugs, and they demonstrated a similar distribution of pKa values. In contrast to drugs, only 5 % of compounds among the natural products sets had a single basic group. Likewise, simple ampholytes were less prevalent in the natural products databases relative to drugs.
Collapse
Affiliation(s)
- Marisa G Santibáñez-Morán
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, A, venida Universidad 3000, Mexico City, 04510, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, A, venida Universidad 3000, Mexico City, 04510, Mexico
| |
Collapse
|
50
|
Naveja JJ, Pilón-Jiménez BA, Bajorath J, Medina-Franco JL. A general approach for retrosynthetic molecular core analysis. J Cheminform 2019; 11:61. [PMID: 33430974 PMCID: PMC6760108 DOI: 10.1186/s13321-019-0380-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/04/2019] [Indexed: 11/13/2022] Open
Abstract
Scaffold analysis of compound data sets has reemerged as a chemically interpretable alternative to machine learning for chemical space and structure–activity relationships analysis. In this context, analog series-based scaffolds (ASBS) are synthetically relevant core structures that represent individual series of analogs. As an extension to ASBS, we herein introduce the development of a general conceptual framework that considers all putative cores of molecules in a compound data set, thus softening the often applied “single molecule–single scaffold” correspondence. A putative core is here defined as any substructure of a molecule complying with two basic rules: (a) the size of the core is a significant proportion of the whole molecule size and (b) the substructure can be reached from the original molecule through a succession of retrosynthesis rules. Thereafter, a bipartite network consisting of molecules and cores can be constructed for a database of chemical structures. Compounds linked to the same cores are considered analogs. We present case studies illustrating the potential of the general framework. The applications range from inter- and intra-core diversity analysis of compound data sets, structure–property relationships, and identification of analog series and ASBS. The molecule–core network herein presented is a general methodology with multiple applications in scaffold analysis. New statistical methods are envisioned that will be able to draw quantitative conclusions from these data. The code to use the method presented in this work is freely available as an additional file. Follow-up applications include analog searching and core structure–property relationships analyses.![]()
Collapse
Affiliation(s)
- J Jesús Naveja
- PECEM, School of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico. .,Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| | - B Angélica Pilón-Jiménez
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|