1
|
Gierke AM, Hessling M. Sensitivity Analysis of C. auris, S. cerevisiae, and C. cladosporioides by Irradiation with Far-UVC, UVC, and UVB. Pathog Immun 2024; 9:135-151. [PMID: 39247685 PMCID: PMC11378758 DOI: 10.20411/pai.v9i2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Background The World Health Organization has published a list of pathogenic fungi with prior-itizing groups and calls for research and development of antifungal measures, with Candida auris belonging to the group with high priority. Methods The photosensitivity towards short wavelength ultraviolet irradiation (Far-UVC, UVC, and UVB) was investigated and compared to other yeasts (Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides). The observed 1-log reduction doses were compared to literature values of other representatives of the genus Candida, but also with S. cerevisiae, Aspergillus niger, and A. fumigatus. Results For the determined 1-log reduction doses, an increase with higher wavelengths was observed. A 1-log reduction dose of 4.3 mJ/cm2 was determined for C. auris when irradiated at 222 nm, a dose of 6.1 mJ/cm2 at 254 nm and a 1-log reduction dose of 51.3 mJ/cm2 was required when irradiated with UVB. Conclusions It was observed that S. cerevisiae is a possible surrogate for C. auris for irradiation with Far-UVC and UVB due to close 1-log reduction doses. No surrogate suitability was verified for C. cladosporioides in relation to A. niger and A. fumigatus for irradiation with a wavelength of 254 nm and for A. niger at 222 nm.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
2
|
de Oliveira JR, de Morais Oliveira-Tintino CD, Carneiro JNP, Dos Santos AG, de Lima AM, Soares AM, Morais-Braga MFB, Coutinho HDM, Nicolete R. Crotamine derived from Crotalus durissus terrificus venom combined with drugs increases in vitro antibacterial and antifungal activities. Arch Microbiol 2024; 206:368. [PMID: 39107625 DOI: 10.1007/s00203-024-04096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S. aureus and the inhibition of NorA, Tet(K) and MepA efflux pumps was also evaluated. CTA alone did not present clinically relevant direct antibacterial action, presenting MIC > 209.7 µM against strains S. aureus 1199B, IS-58, K2068. The standard efflux pump inhibitor CCCP showed significant effects in all negative relationships to assay reproducibility. Against the S. aureus 1199B strain, CTA (20.5 µM) associated with norfloxacin diluted 10 × (320.67 µM) showed a potentiating effect, in relation to the control. Against the S. aureus IS-58 strain, the CTA associated with tetracycline did not show a significant combinatorial effect, either with 2304 or 230.4 µM tetracycline. CTA at a concentration of 2.05 µM associated with ciprofloxacin at a concentration of 309.4 µM showed a significant potentiating effect. In association with EtBr, CTA at concentrations of 2.05 and 20.5 µM potentiated the effect in all strains tested, reducing the prevention of NorA, Tet(K) and MepA efflux pumps. In the C. albicans strain, a potentiating effect of fluconazole (334.3 µM) was observed when combined with CTA (2.05 µM). Against the C. tropicalis strain, a significant effect was also observed in the association of fluconazole 334.3 µM, where CTA 2.05 µM considerably reduced fungal growth and decreased the potentiation of fluconazole. Against the C. krusei strain, no significant potentiating effect of fluconazole was obtained by CTA. Our results indicate that CTA in pharmacological combination potentiates the effects of antibiotics and antifungal. This represents a new and promising antimicrobial strategy for treating a wide variety of infections.
Collapse
Affiliation(s)
- Juliana Ramos de Oliveira
- Rede Nordeste de Biotecnologia (Renorbio), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | | | | | | | - Anderson Maciel de Lima
- Laboratório de Biotecnologia e Educação Aplicadas à Saúde Única (LABIOPROT), Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratório de Biotecnologia e Educação Aplicadas à Saúde Única (LABIOPROT), Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas (São Lucas PVH), Porto Velho, RO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT EPiAmO), Porto Velho, RO, Brazil
- Rede de Pesquisa e CONhecimento de EXcelência na Amazônia Ocidental/Oriental (RED-Conexao), Manaus, AM, Brazil
| | | | | | - Roberto Nicolete
- Rede Nordeste de Biotecnologia (Renorbio), Fortaleza, CE, Brazil.
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil.
- Rede de Pesquisa e CONhecimento de EXcelência na Amazônia Ocidental/Oriental (RED-Conexao), Manaus, AM, Brazil.
| |
Collapse
|
3
|
Ganeshkumar A, Muthuselvam M, de Lima PMN, Rajaram R, Junqueira JC. Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris. J Fungi (Basel) 2024; 10:408. [PMID: 38921394 PMCID: PMC11205254 DOI: 10.3390/jof10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Chennai 602105, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| | - Rajendren Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| |
Collapse
|
4
|
de Oliveira AS, Muniz Seif EJ, da Silva Junior PI. In silico prospection of receptors associated with the biological activity of U1-SCTRX-lg1a: an antimicrobial peptide isolated from the venom of Loxosceles gaucho. In Silico Pharmacol 2024; 12:15. [PMID: 38476933 PMCID: PMC10925584 DOI: 10.1007/s40203-024-00190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 03/14/2024] Open
Abstract
The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 μM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to - 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (- 7.0 score) has greater affinity for the receptor than the N terminus (- 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of - 214,890.21 kJ/mol, whereas with rigid docking, this value was - 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00190-8.
Collapse
Affiliation(s)
- André Souza de Oliveira
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
| | - Elias Jorge Muniz Seif
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| | - Pedro Ismael da Silva Junior
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
5
|
Vishwakarma M, Haider T, Soni V. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiol Res 2024; 278:127517. [PMID: 37863019 DOI: 10.1016/j.micres.2023.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India; Amity Institute of Pharmacy, Amity University, Gwalior, M.P., India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India.
| |
Collapse
|
6
|
Malinovská Z, Čonková E, Váczi P. Biofilm Formation in Medically Important Candida Species. J Fungi (Basel) 2023; 9:955. [PMID: 37888211 PMCID: PMC10607155 DOI: 10.3390/jof9100955] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023] Open
Abstract
Worldwide, the number of infections caused by biofilm-forming fungal pathogens is very high. In human medicine, there is an increasing proportion of immunocompromised patients with prolonged hospitalization, and patients with long-term inserted drains, cannulas, catheters, tubes, or other artificial devices, that exhibit a predisposition for colonization by biofilm-forming yeasts. A high percentage of mortality is due to candidemia caused by medically important Candida species. Species of major clinical significance include C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, and C. auris. The association of these pathogenic species in the biofilm structure is a serious therapeutic problem. Candida cells growing in the form of a biofilm are able to resist persistent therapy thanks to a combination of their protective mechanisms and their ability to disseminate to other parts of the body, thus representing a threat from the perspective of a permanent source of infection. The elucidation of the key mechanisms of biofilm formation is essential to progress in the understanding and treatment of invasive Candida infections.
Collapse
Affiliation(s)
- Zuzana Malinovská
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (E.Č.); (P.V.)
| | | | | |
Collapse
|
7
|
Torres R, Barreto-Santamaría A, Arévalo-Pinzón G, Firacative C, Gómez BL, Escandón P, Patarroyo MA, Muñoz JE. In Vitro Antifungal Activity of Three Synthetic Peptides against Candida auris and Other Candida Species of Medical Importance. Antibiotics (Basel) 2023; 12:1234. [PMID: 37627654 PMCID: PMC10451292 DOI: 10.3390/antibiotics12081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Candidiasis is an opportunistic infection affecting immunosuppressed and hospitalized patients, with mortality rates approaching 40% in Colombia. The growing pharmacological resistance of Candida species and the emergence of multidrug-resistant Candida auris are major public health problems. Therefore, different antimicrobial peptides (AMPs) are being investigated as therapeutic alternatives to control candidiasis effectively and safely. This work aimed to evaluate the in vitro antifungal activity of three synthetic AMPs, PNR20, PNR20-1, and 35409, against ATCC reference strains of Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei, and Candida tropicalis, and clinical isolates of C. auris. Antifungal susceptibility testing, determined by broth microdilution, showed that the AMPs have antifungal activity against planktonic cells of all Candida species evaluated. In C. auris and C. albicans, the peptides had an effect on biofilm formation and cell viability, as determined by the XTT assay and flow cytometry, respectively. Also, morphological alterations in the membrane and at the intracellular level of these species were induced by the peptides, as observed by transmission electron microscopy. In vitro, the AMPs had no cytotoxicity against L929 murine fibroblasts. Our results showed that the evaluated AMPs are potential therapeutic alternatives against the most important Candida species in Colombia and the world.
Collapse
Affiliation(s)
- Richar Torres
- Faculty of Health Sciences, Universidad Colegio Mayor de Cundinamarca, Bogotá 110311, Colombia;
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá 111221, Colombia; (C.F.); (B.L.G.)
| | - Adriana Barreto-Santamaría
- Receptor-Ligand Department Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (A.B.-S.); (G.A.-P.)
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (A.B.-S.); (G.A.-P.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá 111221, Colombia; (C.F.); (B.L.G.)
| | - Beatriz L. Gómez
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá 111221, Colombia; (C.F.); (B.L.G.)
| | - Patricia Escandón
- Microbiology Group, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Julián E. Muñoz
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá 111221, Colombia; (C.F.); (B.L.G.)
- Public Health Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
8
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
9
|
Fungicidal activity of human antimicrobial peptides and their synergistic interaction with common antifungals against multidrug-resistant Candida auris. Int Microbiol 2022; 26:165-177. [PMID: 36329309 DOI: 10.1007/s10123-022-00290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Emergence of Candida auris, a multidrug-resistant yeast, demonstrates the urgent need for novel antifungal agents. Human antimicrobial peptides (AMPs) are naturally occurring molecules with wide spectrum antimicrobial activity, particularly against a variety of fungi. Therefore, this study examined the antifungal activity of seven different human AMPs against C. auris following the CLSI guidelines. The antifungal activity was further assessed using time kill curve and cell viability assays. For combination interaction, effectiveness of these peptides with three antifungals, fluconazole, amphotericin B, and caspofungin was done following standard protocols. To elucidate the antifungal mechanism, the effects of peptides on membrane permeability were investigated using propidium iodide staining method and confocal imaging. Antifungal susceptibility results showed that all the examined peptides possessed fungicidal effect against C. auris at different levels, with human β-defensin-3 being the most potent antifungal with MIC values ranging from 3.125 to 12.5 µg/ml. Time kill curves further confirmed the killing effect of all the tested peptides. Viability assay showed a significant decrease in the percentage of viable cells exposed to different inhibitory and fungicidal concentrations of each peptide (p < 0.01). Furthermore, peptides showed mostly synergistic interaction when combined with conventional antifungal drugs, with caspofungin showing 100% synergy when combined with different AMPs. As antifungal mechanism, peptides disrupted the membrane permeability at concentrations that correlated with the inhibition of growth. Overall, the findings of this study point towards the application of the tested peptides as a monotherapy or as a combination therapy with antifungal drugs to treat multidrug-resistant C. auris infections.
Collapse
|
10
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
El Chamy Maluf S, Hayashi MAF, Campeiro JD, Oliveira EB, Gazarini ML, Carmona AK. South American rattlesnake cationic polypeptide crotamine trafficking dynamic in Plasmodium falciparum-infected erythrocytes: Pharmacological inhibitors, parasite cycle and incubation time influences in uptake. Toxicon 2022; 208:47-52. [PMID: 35074306 DOI: 10.1016/j.toxicon.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Malaria is a parasitic infectious disease caused by Plasmodium sp, which was responsible for about 409 thousand deaths only in 2019. The clinical manifestations in patients with malaria, which may include fever and anemia and that can occasionally lead to the death of the host, are mainly associated to the asexual blood stage of parasite. The discovery of novel compounds active against stages of the intraerythrocytic cell cycle has been the focus of many researches seeking for alternatives to the control of malaria. The antimalarial effect of a native cationic polypeptide from the venom of a South American rattlesnake named crotamine, with ability of targeting and disrupting the acidic compartments of Plasmodium falciparum parasite, was previously described by us. Herein, we extended our previous studies by investigating the internalization and trafficking of crotamine in P. falciparum-infected erythrocytes at different blood-stages of parasites and periods of incubation. In addition, the effects of several pharmacological inhibitors in the uptake of this snake polypeptide with cell-penetrating properties were also assessed, showing that crotamine internalization was dependent on ATP generated via glycolytic pathway. We show here that crotamine uptake is blocked by the glycolysis inhibitor 2- deoxy-D-glucose, and the most efficient internalization is observed at trophozoite stage of parasite after at least 30 min of incubation. The present data provide important insights into biochemical pathway and cellular features determined by the parasite cycle, which may be underlying the internalization and effects of cationic antimalarials as crotamine.
Collapse
Affiliation(s)
- S El Chamy Maluf
- Departamento de Biofísica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - J D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - E B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - M L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - A K Carmona
- Departamento de Biofísica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
14
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
15
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
16
|
Kodeš Z, Vrublevskaya M, Kulišová M, Jaroš P, Paldrychová M, Pádrová K, Lokočová K, Palyzová A, Maťátková O, Kolouchová I. Composition and Biological Activity of Vitis vinifera Winter Cane Extract on Candida Biofilm. Microorganisms 2021; 9:microorganisms9112391. [PMID: 34835515 PMCID: PMC8622486 DOI: 10.3390/microorganisms9112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 01/30/2023] Open
Abstract
Vitis vinifera canes are waste material of grapevine pruning and thus represent cheap source of high-value polyphenols. In view of the fact that resistance of many pathogenic microorganisms to antibiotics is a growing problem, the antimicrobial activity of plant polyphenols is studied as one of the possible approaches. We have investigated the total phenolic content, composition, antioxidant activity, and antifungal activity against Candida biofilm of an extract from winter canes and a commercially available extract from blue grapes. Light microscopy and confocal microscopy imaging as well as crystal violet staining were used to quantify and visualize the biofilm. We found a decrease in cell adhesion to the surface depending on the concentration of resveratrol in the cane extract. The biofilm formation was observed as metabolic activity of Candida albicans, Candida parapsilosis and Candida krusei biofilm cells and the minimum biofilm inhibitory concentrations were determined. The highest inhibition of metabolic activity was observed in Candida albicans biofilm after treatment with the cane extract (30 mg/L) and blue grape extract (50 mg/L). The composition of cane extract was analyzed and found to be comparatively different from blue grape extract. In addition, the content of total phenolic groups in cane extract was three-times higher (12.75 gGA/L). The results showed that cane extract was more effective in preventing biofilm formation than blue grape extract and winter canes have proven to be a potential source of polyphenols for antimicrobial and antibiofilm treatment.
Collapse
Affiliation(s)
- Zdeněk Kodeš
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Maria Vrublevskaya
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Martina Paldrychová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Karolína Pádrová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Kristýna Lokočová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
- Correspondence:
| | - Andrea Palyzová
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| |
Collapse
|
17
|
Garcia-Bustos V, Cabanero-Navalon MD, Ruiz-Saurí A, Ruiz-Gaitán AC, Salavert M, Tormo MÁ, Pemán J. What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms 2021; 9:2177. [PMID: 34683498 PMCID: PMC8538163 DOI: 10.3390/microorganisms9102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Candida auris has unprecedently emerged as a multidrug resistant fungal pathogen, considered a serious global threat due to its potential to cause nosocomial outbreaks and deep-seated infections with staggering transmissibility and mortality, that has put health authorities and institutions worldwide in check for more than a decade now. Due to its unique features not observed in other yeasts, it has been categorised as an urgent threat by the Centers for Disease Control and Prevention and other international agencies. Moreover, epidemiological alerts have been released in view of the increase of healthcare-associated C. auris outbreaks in the context of the COVID-19 pandemic. This review summarises the current evidence on C. auris since its first description, from virulence to treatment and outbreak control, and highlights the knowledge gaps and future directions for research efforts.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Marta D. Cabanero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
| | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Alba C. Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - María Á. Tormo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
18
|
Moreira LA, Oliveira LP, Magalhães MR, Oliveira SAM, Oliveira-Neto JR, Carvalho PMG, Carvalho AAV, Fajemiroye JO, Cruz AC, Cunha LC. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1703-1711. [PMID: 34014349 DOI: 10.1007/s00210-021-02103-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Crotamine is a polypeptide toxin isolated from rattlesnake venom. Although several studies have been developed identifying many biological effects of isolated crotamine, none of them evaluated its acute toxicity, antinociceptive, and anti-inflammatory activities through oral administration. All in vivo experiments from this study were performed in mice. The up-and-down procedure and hippocratic screening were carried out to evaluate possible pharmacological and toxic effects. Antinociceptive and anti-inflammatory activities of this toxin were evaluated using acetic acid-induced abdominal writhing, formalin-induced pain assays, croton oil-induced ear edema, and carrageenan-induced pleurisy. Crotamine did not cause lethality or signs of intoxication up to the maximum dose tested (10.88 mg/kg). The number of contortions was reduced significantly by 34, 57, and 74% at the oral doses of 0.08, 0.16, and 0.32 mg/kg, respectively. At the dose of 0.16 mg/kg, crotamine decreases pain time-reactivity at neurogenic phase by 45% and at inflammatory phase by 60%. Also, crotamine elicited antiedematogenic activity through the attenuation of the croton oil-induced ear edema by 77%. In the carrageenan-induced pleurisy, the leukocyte, neutrophil, and mononuclear cell migration to the lesion site were reduced by 52%, 46%, and 59%, respectively. Altogether, crotamine demonstrated in vivo antinociceptive and anti-inflammatory effect through acute oral administration, generating an anti-migratory mechanism of action at non-toxic doses.
Collapse
Affiliation(s)
- Lorena A Moreira
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | - Lanussy P Oliveira
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | - Marta R Magalhães
- Departamento de Biologia, Centro de Estudos E Pesquisas Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| | - Sayonara A M Oliveira
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
- Departamento de Biologia, Centro de Estudos E Pesquisas Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| | - Jerônimo R Oliveira-Neto
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | | | | | - James O Fajemiroye
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alessandro C Cruz
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil.
| | - Luiz C Cunha
- Núcleo de Estudos E Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, Av. Universitária no. 1166 - Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| |
Collapse
|
19
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
21
|
Kovács R, Nagy F, Tóth Z, Forgács L, Tóth L, Váradi G, Tóth GK, Vadászi K, Borman AM, Majoros L, Galgóczy L. The Neosartorya fischeri Antifungal Protein 2 (NFAP2): A New Potential Weapon against Multidrug-Resistant Candida auris Biofilms. Int J Mol Sci 2021; 22:ijms22020771. [PMID: 33466640 PMCID: PMC7828714 DOI: 10.3390/ijms22020771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to persist on indwelling devices as a biofilm, which serve as a source of catheter-associated infections. Neosartorya fischeri antifungal protein 2 (NFAP2) is a cysteine-rich, cationic protein with potent anti-Candida activity. We studied the in vitro activity of NFAP2 alone and in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against C. auris biofilms. The nature of interactions was assessed utilizing the fractional inhibitory concentration index (FICI), a Bliss independence model, and LIVE/DEAD viability assay. NFAP2 exerted synergy with all tested antifungals with FICIs ranging between 0.312-0.5, 0.155-0.5, 0.037-0.375, 0.064-0.375, and 0.064-0.375 for fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. These results were confirmed using a Bliss model, where NFAP2 produced 17.54 μM2%, 2.16 μM2%, 33.31 μM2%, 10.72 μM2%, and 111.19 μM2% cumulative synergy log volume in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. In addition, biofilms exposed to echinocandins (32 mg/L) showed significant cell death in the presence of NFAP2 (128 mg/L). Our study shows that NFAP2 displays strong potential as a novel antifungal compound in alternative therapies to combat C. auris biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-255-425
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Karina Vadászi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK;
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
22
|
Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics (Basel) 2020; 9:antibiotics9090568. [PMID: 32887362 PMCID: PMC7558570 DOI: 10.3390/antibiotics9090568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.
Collapse
|
23
|
Kuna E, Bocian A, Hus KK, Petrilla V, Petrillova M, Legath J, Lewinska A, Wnuk M. Evaluation of Antifungal Activity of Naja pallida and Naja mossambica Venoms against Three Candida Species. Toxins (Basel) 2020; 12:toxins12080500. [PMID: 32759763 PMCID: PMC7472363 DOI: 10.3390/toxins12080500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.
Collapse
Affiliation(s)
- Ewelina Kuna
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Vladimir Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
- Zoological Department, Zoological Garden Kosice, 040 06 Kosice, Slovak Republic
| | - Monika Petrillova
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
| | - Jaroslav Legath
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| |
Collapse
|
24
|
Porta LC, Campeiro JD, Papa GB, Oliveira EB, Godinho RO, Rodrigues T, Hayashi MAF. In vivo effects of the association of the psychoactive phenotiazine thioridazine on antitumor activity and hind limb paralysis induced by the native polypeptide crotamine. Toxicon 2020; 185:64-71. [PMID: 32621838 DOI: 10.1016/j.toxicon.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Collapse
Affiliation(s)
- Lucas C Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Giovanna B Papa
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Rosely O Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | | | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
25
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
26
|
Bastos RW, Rossato L, Valero C, Lagrou K, Colombo AL, Goldman GH. Potential of Gallium as an Antifungal Agent. Front Cell Infect Microbiol 2019; 9:414. [PMID: 31921699 PMCID: PMC6917619 DOI: 10.3389/fcimb.2019.00414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
There are only few drugs available to treat fungal infections, and the lack of new antifungals, along with the emergence of drug-resistant strains, results in millions of deaths/year. An unconventional approach to fight microbial infection is to exploit nutritional vulnerabilities of microorganism metabolism. The metal gallium can disrupt iron metabolism in bacteria and cancer cells, but it has not been tested against fungal pathogens such as Aspergillus and Candida. Here, we investigate in vitro activity of gallium nitrate III [Ga(NO3)3] against these human pathogens, to reveal the gallium mechanism of action and understand the interaction between gallium and clinical antifungal drugs. Ga(NO3)3 presented a fungistatic effect against azole-sensitive and -resistant A. fumigatus strains (MIC50/90 = 32.0 mg/L) and also had a synergistic effect with caspofungin, but not with azoles and amphotericin B. Its antifungal activity seems to be reliant on iron-limiting conditions, as the presence of iron increases its MIC value and because we observed a synergistic interaction between gallium and iron chelators against A. fumigatus. We also show that an A. fumigatus mutant (ΔhapX) unable to grow in the absence of iron is more susceptible to gallium, reinforcing that gallium could act by disrupting iron homeostasis. Furthermore, we demonstrate that gallium has a fungistatic effect against different species of Candida ranging from 16.0 to 256.0 mg/L, including multidrug-resistant Candida auris, C. haemulonii, C. duobushaemulonii, and C. glabrata. Our findings indicate that gallium can inhibit fungal pathogens in vitro under iron-limiting conditions, showing that Ga(NO3)3 could be a potential therapy not only against bacteria but also as an antifungal drug.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luana Rossato
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|