1
|
Souza DND, Mounteer AH, Arcanjo GS. Estrogenic compounds in drinking water: A systematic review and risk analysis. CHEMOSPHERE 2024; 360:142463. [PMID: 38821126 DOI: 10.1016/j.chemosphere.2024.142463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Estrogenic compounds are the endocrine disruptors that receive major attention because of their ability to imitate the natural female hormone, 17β-estradiol and cause adverse effects on the reproductive system of animals. The presence of estrogenic compounds in drinking water is a warning to assess the risks to which human beings are exposed. The present work has the objectives of carrying out a systematic review of studies that investigated estrogenic compounds in drinking water around the world and estimate the human health and estrogenic activity risks, based on the concentrations of each compound reported. The systematic review returned 505 scientific papers from the Web of Science®, SCOPUS® and PubMED® databases and after careful analysis, 45 papers were accepted. Sixteen estrogenic compounds were identified in drinking water, from the classes of hormones, pharmaceutical drugs and personal care products, plasticizers, corrosion inhibitors, pesticides and surfactants. Di-(2-ethylhexyl) phthalate (DEHP) was the compound found at the highest concentration, reaching a value of 1.43 mg/L. Non-carcinogenic human health risk was classified as high for 17α-ethynilestradiol and DEHP, medium for dibutyl phthalate, and low for bisphenol A. The estrogenic activity risks were negligible for all the compounds, except DEHP, with a low risk. None of the estrogenic compounds presented an unacceptable carcinogenic risk, due to estrogenic activity. However, the risk assessment did not evaluate the interactions between compounds, that occurs in drinking water and can increase the risks and adverse effects to human health. Nonetheless, this study demonstrates the need for improvement of drinking water treatment plants, with more efficient technologies for micropollutant removal.
Collapse
Affiliation(s)
- Deisi N de Souza
- Programa de Pós-Graduação em Meio Ambiente, Águas e Saneamento, Departamento de Engenharia Ambiental, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil
| | - Ann H Mounteer
- Programa de Pós-Graduação em Engenharia Civil, Departamento de Engenharia Civil, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Gemima S Arcanjo
- Programa de Pós-Graduação em Meio Ambiente, Águas e Saneamento, Departamento de Engenharia Ambiental, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil.
| |
Collapse
|
2
|
González-Parra E, Moreno-Gómez-Toledano R, Mas-Fontao S, Bosch RJ. Bisphenol A in renal insufficiency: how long will it be used? Is it time to avoid it? Nefrologia 2024; 44:313-316. [PMID: 38876887 DOI: 10.1016/j.nefroe.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 06/16/2024] Open
Affiliation(s)
- Emilio González-Parra
- Servicio de Nefrología, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Unidad de Fisiología, Departamento de Biología de Sistemas, Alcalá de Henares, Madrid, Spain; Unidad Mixta de Investigación, Universidad Francisco de Vitoria, Madrid, Spain; Servicio de Cardiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sebastián Mas-Fontao
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Unidad de Fisiología, Departamento de Biología de Sistemas, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Cambien G, Dupuis A, Belmouaz M, Bauwens M, Bacle A, Ragot S, Migeot V, Albouy M, Ayraud-Thevenot S. Bisphenol A and chlorinated derivatives of bisphenol A assessment in end stage renal disease patients: Impact of dialysis therapy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115880. [PMID: 38159342 DOI: 10.1016/j.ecoenv.2023.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Patients with end stage kidney disease treated by dialysis (ESKDD) process dialysis sessions to remove molecules usually excreted by kidneys. However, dialysis therapy could also contribute to endocrine disruptors (ED) burden. Indeed, materials like dialyzer filters, ultrapure dialysate and replacement fluid could exposed ESKDD patients to Bisphenol A (BPA) and chlorinated derivatives of BPA (ClxBPAs). Thus, our aim was to compare BPA and ClxBPAs exposure between ESKDD patients, patients with stage 5 chronic kidney disease (CKD5) not dialyzed and healthy volunteers. Then we describe the impact of a single dialysis session, according to dialysis modalities (hemodialysis therapy (HD) versus online hemodiafiltration therapy (HDF)) and materials used with pre-post BPA and ClxBPAs concentrations. The plasma levels of BPA and four ClxBPAs, were assessed for 64 ESKDD patients in pre and post dialysis samples (32 treated by HD and 32 treated by HDF) in 36 CKD5 patients and in 24 healthy volunteers. BPA plasma concentrations were 22.5 times higher for ESKDD patients in pre-dialysis samples versus healthy volunteers (2.208 ± 5.525 ng/mL versus 0.098 ± 0.169 ng/mL) (p < 0.001). BPA plasma concentrations were 16 times higher for CKD5 patients versus healthy volunteers, but it was not significant (1.606 ± 3.230 ng/mL versus 0.098 ± 0.169 ng/mL) (p > 0.05). BPA plasma concentrations for ESKDD patients in pre-dialysis samples were 1.4 times higher versus CKD5 patients (2.208 ± 5.525 ng/mL versus 1.606 ± 3.230 ng/mL) (p < 0.001). For healthy volunteers, ClxBPAs were never detected, or quantified while for CKD5 and ESKDD patients one ClxBPAs at least has been detected or quantified in 14 patients (38.8%) and 24 patients (37.5%), respectively. Dialysis therapy was inefficient to remove BPA either for HD (1.983 ± 6.042 ng/mL in pre-dialysis versus 3.675 ± 8.445 ng/mL in post-dialysis) or HDF (2.434 ± 5.042 ng/mL in pre-dialysis versus 7.462 ± 15.960 ng/mL in post dialysis) regarding pre-post BPA concentrations (p > 0.05). The same result was observed regarding ClxBPA analysis. Presence of polysulfone in dialyzer fibers overexposed ESKDD patients to BPA in pre-dialysis samples with 3.054 ± 6.770 for ESKDD patients treated with a polysulfone dialyzer versus 0.708 ± 0.638 (p = 0.040) for ESKDD patients treated without a polysulfone dialyzer and to BPA in post-dialysis samples with 6.629 ± 13.932 for ESKDD patients treated with a polysulfone dialyzer versus 3.982 ± 11.004 (p = 0.018) for ESKDD patients treated without a polysulfone dialyzer. This work is to our knowledge the first to investigate, the impact of a dialysis session and materials used on BPA and ClxBPAs plasma concentrations and to compare these concentrations to those found in CKD5 patients and in healthy volunteers.
Collapse
Affiliation(s)
- Guillaume Cambien
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Antoine Dupuis
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Mohamed Belmouaz
- CHU de Poitiers, Digestiv, Urology, Nephrology, Endocrinology Department, F-86000 Poitiers, France.
| | - Marc Bauwens
- CHU de Poitiers, Digestiv, Urology, Nephrology, Endocrinology Department, F-86000 Poitiers, France.
| | - Astrid Bacle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000, Rennes, France.
| | - Stéphanie Ragot
- Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe SCALE-EPI, Poitiers, France.
| | - Virginie Migeot
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; CHU Rennes, Epidemiology and Public Health Department, F-35000 Rennes, France.
| | - Marion Albouy
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Sarah Ayraud-Thevenot
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| |
Collapse
|
4
|
Cambien G, Dupuis A, Guihenneuc J, Bauwens M, Belmouaz M, Ayraud-Thevenot S. Endocrine disruptors in dialysis therapies: A literature review. ENVIRONMENT INTERNATIONAL 2023; 178:108100. [PMID: 37481953 DOI: 10.1016/j.envint.2023.108100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Endocrine disrupting chemicals (EDCs) were defined as "an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects". These compounds are mainly eliminated by the renal route. However, patients with end-stage kidney disease treated by dialysis (ESKDD) can no longer eliminate these EDCs efficiently. Furthermore, EDCs exposure could occur via leaching from medical devices used in dialysis therapy. As a result, ESKDD patients are overexposed to EDCs. The aims of this study were to summarize EDCs exposure of ESKDD patients and to evaluate the factors at the origin of this exposure. To handle these objectives, we performed a literature review. An electronic search on PubMed, Embase and Web of science databases was performed. Twenty-six studies were finally included. The EDCs reported in these studies were Bisphenol A (BPA), Bisphenol S (BPS), Bisphenol B (BPB), Nonylphenol, Di(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Butylbenzyl phthalate (BBP). Regarding the environment of dialysis patients, BPA, BPB, BPS, DEHP, DBP and nonylphenol have been found. Environmental exposure affects EDCs blood levels in ESKDD patients who are overexposed to BPA, BPS, BPB and DEHP. For ESKDD patients, dialyzers with housing in polycarbonate and fibers in polysulfone seem to overexpose them to BPA. Regarding dialysis therapy, peritoneal dialysis seems to decrease patient exposure vs hemodialysis therapy, and hemodiafiltration therapy seems to reduce this exposure vs hemodialysis therapy. Regarding DEHP, levels tend to increase during dialysis and when DEHP plasticizer is used in PVC devices. Finally, in the European Union a regulation on medical devices was adopted on 5 April 2017 and has been applied recently. This regulation will regulate EDCs in medical devices and thereby contribute to reconsideration of their conceptions and, finally, to reduction of ESKDD patients' exposure.
Collapse
Affiliation(s)
- Guillaume Cambien
- Université de Poitiers, CNRS, EBI, F-86000, Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation clinique CIC1402, Axe Santé environnementale, Poitiers, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073 Poitiers Cedex, France.
| | - Antoine Dupuis
- Université de Poitiers, CNRS, EBI, F-86000, Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation clinique CIC1402, Axe Santé environnementale, Poitiers, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073 Poitiers Cedex, France.
| | - Jérémy Guihenneuc
- Université de Poitiers, CNRS, EBI, F-86000, Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation clinique CIC1402, Axe Santé environnementale, Poitiers, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073 Poitiers Cedex, France.
| | - Marc Bauwens
- Digestiv, Urology, Nephrology, Endocrinology Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France.
| | - Mohamed Belmouaz
- Digestiv, Urology, Nephrology, Endocrinology Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France.
| | - Sarah Ayraud-Thevenot
- Université de Poitiers, CNRS, EBI, F-86000, Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation clinique CIC1402, Axe Santé environnementale, Poitiers, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de La Miletrie, 86021 Poitiers CEDEX, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073 Poitiers Cedex, France.
| |
Collapse
|
5
|
Drouault M, Rouge M, Hanoux V, Séguin V, Garon D, Bouraïma-Lelong H, Delalande C. Ex vivo effects of bisphenol A or zearalenone on the prepubertal rat testis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104203. [PMID: 37394082 DOI: 10.1016/j.etap.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Bisphenol A (BPA) and zearalenone (ZEA) are two widespread xenoestrogens involved in male reproductive disorders. Few studies investigated the effects of these compounds on the prepubertal testis, which is highly sensitive to endocrine disruptors such as xenoestrogens. An ex vivo approach was performed to evaluate the effects of BPA or ZEA (10-11, 10-9, 10-6 M) on the testes of 20 and 25 dpp rats. To investigate the involvement of classical nuclear ER-mediated estrogen signaling in these effects, pre-incubation with an antagonist (ICI 182.780 10-6M) was performed. BPA and ZEA have similar effects on spermatogenesis- and steroidogenesis-related endpoints in the immature testis, but our study highlights different age-dependent patterns of sensitivity to each compound during the prepubertal period. Moreover, our results indicate that the effects of BPA are likely to be induced by nuclear ER, whereas those of ZEA appear to involve other mechanisms.
Collapse
Affiliation(s)
- M Drouault
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France
| | - M Rouge
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Hanoux
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Séguin
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - D Garon
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - H Bouraïma-Lelong
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - C Delalande
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France.
| |
Collapse
|
6
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
7
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenol A-A Dangerous Pollutant Distorting the Biological Properties of Soil. Int J Mol Sci 2021; 22:ijms222312753. [PMID: 34884560 PMCID: PMC8657726 DOI: 10.3390/ijms222312753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA–microorganism–plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon–Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg−1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and β-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Improvement in hemodialysis treatment and membrane technology are focused on two aims: the first one is to achieve a better control of circulating uremic solutes by enhancing removal capacity and by broadening molecular weight spectrum of solutes cleared; the second one is to prevent inflammation by improving hemocompatibility of the global dialysis system. RECENT FINDINGS Despite impressive progresses in polymers chemistry few hazards are still remaining associated with leaching or sensitization to polymer additives. Research has focused on developing more stable polymers by means of additives or processes aiming to minimize such risks. Membrane engineering manufacturing with support of nanocontrolled spinning technology has opened up membrane to middle and large molecular weight substances, while preserving albumin losses. Combination of diffusive and enhanced convective fluxes in the same hemodialyzer module, namely hemodiafiltration, provides today the highest solute removal capacity over a broad spectrum of solutes. SUMMARY Dialysis membrane is a crucial component of the hemodialysis system to optimize solute removal efficacy and to minimize blood membrane biological reactions. Hemodialyzer is much more than a membrane. Dialysis membrane and hemodialyzer choice are parts of a treatment chain that should be operated in optimized conditions and adjusted to patient needs and tolerance, to improve patient outcomes.
Collapse
Affiliation(s)
- Bernard Canaud
- Global Medical Office, FMC Deutschland, Bad Homburg, Germany
- University of Montpellier, UFR of Medicine, Montpellier, France
| |
Collapse
|
9
|
Plattard N, Dupuis A, Migeot V, Haddad S, Venisse N. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (Cl xBPA). ENVIRONMENT INTERNATIONAL 2021; 153:106547. [PMID: 33831741 DOI: 10.1016/j.envint.2021.106547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Bisphenol A (BPA) is a ubiquitous contaminant with endocrine-disrupting effects in mammals. During chlorination treatment of drinking water, aqueous BPA can react with chlorine to form chlorinated derivatives of BPA (mono, di, tri and tetra-chlorinated derivatives) or ClxBPA. OBJECTIVE The aim of this study is to summarize and present the state of knowledge on human toxicological risk assessment of ClxBPA. MATERIALS AND METHODS A search on ClxBPA in the PubMed database was performed based on studies published between 2002 and 2021. Forty-nine studies on chlorinated derivatives of BPA were found. Available information on their sources and levels of exposure, their effects, their possible mechanisms of action and their toxicokinetics data was extracted and presented. RESULTS ClxBPA have been essentially detected in environmental aqueous media. There is evidence in toxicological and epidemiological studies that ClxBPA also have endocrine-disrupting capabilities. These emerging pollutants have been found in human urine, serum, breast milk, adipose and placental tissue and can constitute a risk to human health. However, in vitro and in vivo toxicokinetic data on ClxBPA are scarce and do not allow characterization of the disposition kinetics of these compounds. CONCLUSION More research to assess their health risks, specifically in vulnerable populations, is needed. Some water chlorination processes are particularly hazardous, and it is important to evaluate their chlorination by-products from a public health perspective.
Collapse
Affiliation(s)
- N Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada; INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - A Dupuis
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France
| | - V Migeot
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - S Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - N Venisse
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France.
| |
Collapse
|
10
|
Badding MA, Vargas JR, Fortney J, Cheng QJ, Ho CH. Toxicological risk assessment of bisphenol a released from dialyzers under simulated-use and exaggerated extraction conditions. Regul Toxicol Pharmacol 2020; 118:104787. [PMID: 33011233 DOI: 10.1016/j.yrtph.2020.104787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023]
Abstract
Bisphenol A (BPA) belongs to a group of chemicals used in the production of polycarbonate, polysulfone, and polyethersulfone which are used, among other applications, in the manufacture of dialyzers. While exposure to BPA is widespread in the general population, dialysis patients represent a population with potentially chronic parenteral BPA exposures. To assess the potential risk of BPA exposure to dialysis patients through dialyzer use, exposure estimates were calculated based on BPA levels measured by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry following extractions from dialyzers manufactured by Fresenius Medical Care. Extraction conditions included both simulated-use leaching and exaggerated extractions to evaluate possible leachable and extractable BPA, respectively, from the devices. The mean BPA concentrations were 3.6 and 108.9 ppb from simulated-use and exaggerated extractions, respectively, from polycarbonate-containing dialyzers. No BPA was detected from polypropylene-containing dialyzers. Margins of Safety (MOS) were calculated to evaluate the level of risk to patients from estimated BPA exposure from the dialyzers, and the resulting MOS were 229 and 45 for simulated-use and exaggerated extractions, respectively. The findings suggest that there is an acceptable level of toxicological risk to dialysis patients exposed to BPA from use of the dialyzers tested in the current study.
Collapse
Affiliation(s)
| | - Jessica R Vargas
- Exponent, Inc, 149 Commonwealth Drive, Menlo Park, CA, 94025, USA
| | - Julian Fortney
- Exponent, Inc, 149 Commonwealth Drive, Menlo Park, CA, 94025, USA
| | - Qiuqiong J Cheng
- Fresenius Medical Care, Ltd, 475, West 13th Street, Ogden, UT, 84404, USA
| | - Chih-Hu Ho
- Fresenius Medical Care, Ltd, 475, West 13th Street, Ogden, UT, 84404, USA
| |
Collapse
|