1
|
Kaya Kartal Y, Ozalp Unal D, Ozkan HI, Hismiogullari AA, Sel T. Antioxidant, Phenolic, Flavonoid, and Mineral Content of L. officinalis and Its Cytotoxic Effect on Human Embryonic Kidney (Hek-293) Cells. Food Sci Nutr 2025; 13:e4608. [PMID: 40109276 PMCID: PMC11921010 DOI: 10.1002/fsn3.4608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/22/2025] Open
Abstract
Cherry laurel (L. officinalis) is a well known natural product and folk medicine in the Black Sea region of Turkey. The aim of this study was to investigate the antioxidant effect, polyphenolic, and mineral content of cherry laurel and the cytotoxic effect of its methanolic extraction on human embryonic kidney cells. The total phenolic content of L. officinalis was found to be 1.28 mg GAE/g, while the flavonoid content was 1.26 mg RE/g. The DPPH scavenging activity was 118.76 μg/g. Total antioxidant capacity was found to be 3.54 mM/100 g and in HPLC analysis only chlorogenic acid (101 μg/g) could be detected, but cyanidin-3-glucoside chloride, resveratrol, vanillic acid, (+)-catechin, and (-)-epicatechin could not. The highest mineral content was found in magnesium levels (46.10 ± 0.57 μg/g), but also contained selenium (9.90 ± 0.78 μg/g), silver (4.46 ± 0.27 μg/g), lead (1.34 ± 0.08 μg/g), zinc (1.31 ± 0.11 μg/g), and copper (0.66 ± 0.05 μg/g). Trace amounts of manganese (0.17 ± 0.02 μg/g) and mercury (0.08 ± 0.01 μg/g) were found in aqueous extraction of L. officinalis but in ethanolic and methanolic extractions these elements could not be detected. In all elements there was a statistically significant increase in water extraction of L. officinalis. Cobalt could not be detected in any of the extractions. The IC50 concentration of L. officinalis on Hek-293 cells was found to be 370 mg/mL. As a conclusion, L. officinalis is rich in chlorogenic acid and is a good antioxidant fruit. The high antioxidant activity, phenolic and flavonoid content, and mineral content are mostly used to decrease oxidative stress; however, it should not be forgotten that antioxidants may also have pro-oxidant effects and should be investigated more on healthy and unhealthy cells.
Collapse
Affiliation(s)
- Yeliz Kaya Kartal
- Ankara University Faculty of Veterinary Medicine Department of Biochemistry Ankara Turkey
| | - Derya Ozalp Unal
- Field Crops Central Research Institute Directorate Ankara Turkey
| | - Halil Ibrahim Ozkan
- Atatürk University Faculty of Medicine Department of Medical Biochemistry Erzurum Turkey
| | | | - Tevhide Sel
- Ankara University Faculty of Veterinary Medicine Department of Biochemistry Ankara Turkey
| |
Collapse
|
2
|
Fidan O, Karipcin AD, Köse AH, Anaz A, Demirsoy BN, Arslansoy N, Sun L, Mujwar S. Discovery of a C-S lyase inhibitor for the prevention of human body malodor formation: tannic acid inhibits the thioalcohol production in Staphylococcus hominis. Int Microbiol 2025; 28:411-422. [PMID: 38913231 DOI: 10.1007/s10123-024-00551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Human body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Bioengineering, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey.
| | - Ayse Doga Karipcin
- Department of Molecular Biology and Genetic, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Ayse Hamide Köse
- Department of Molecular Biology and Genetic, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Ayse Anaz
- Department of Molecular Biology and Genetic, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Beyza Nur Demirsoy
- Department of Molecular Biology and Genetic, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Nuriye Arslansoy
- Department of Bioengineering, Faculty of Natural and Life Sciences, Abdullah Gül University, 38080, Kayseri, Turkey
| | - Lei Sun
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211200, China
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
3
|
Bisso BN, Jahan H, Dzoyem JP, Choudhary MI. Quinic acid enhances kanamycin efficacy against methicillin-resistant Staphylococcus aureus biofilms. Microb Pathog 2025; 198:107145. [PMID: 39579946 DOI: 10.1016/j.micpath.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) form biofilms that contribute to increased antimicrobial resistance, leading to treatment failure and/or relapse. It is, therefore, necessary to develop new antibiofilm strategies to eradicate MRSA biofilms related infections. This study was aimed to evaluate the effect of the combination of quinic acid and kanamycin against the preformed biofilms of methicillin-resistant Staphylococcus aureus. METHODS Broth microdilution method was deployed to evaluate the antibacterial activity. Whereas antibiofilm activity was evaluated by crystal violet staining, 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium-bromide (MTT) assay, and scanning electron microscopy (SEM). The checkerboard method was adopted to assess the combination effects. Quantification of exopolysaccharides was determined by the phenol-sulfuric acid method. The eDNA was quantified by fluorescence spectrophotometry. Cytotoxicity activity was evaluated by the MTT assay on the human embryonic kidney (HEK 293) cell line. RESULTS Quinic acid, combined with kanamycin, effectively eradicated the methicillin-resistant S. aureus biofilms by effecting biofilm biomass and cell viability. Scanning electron microscopy demonstrated a less adherence of S. aureus cells, - after treatment with quinic acid combined with kanamycin, as compared to each drug alone. The combination of quinic acid and kanamycin thus demonstrated the ability to destroy the exopolysaccharides and eDNA of biofilm matrix without any toxic effect on HEK 293 cells. CONCLUSION Our results demonstrated the potential of using quinic acid in combination therapy, with an antibiotic, against infections caused by MRSA strains.
Collapse
Affiliation(s)
- Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang 1499, Cameroon
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang 1499, Cameroon.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
4
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
5
|
Palladino S, Copes F, Chevallier P, Candiani G, Mantovani D. Enabling 3D bioprinting of cell-laden pure collagen scaffolds via tannic acid supporting bath. Front Bioeng Biotechnol 2024; 12:1434435. [PMID: 39295849 PMCID: PMC11408190 DOI: 10.3389/fbioe.2024.1434435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
The fabrication of cell-laden biomimetic scaffolds represents a pillar of tissue engineering and regenerative medicine (TERM) strategies, and collagen is the gold standard matrix for cells to be. In the recent years, extrusion 3D bioprinting introduced new possibilities to increase collagen scaffold performances thanks to the precision, reproducibility, and spatial control. However, the design of pure collagen bioinks represents a challenge, due to the low storage modulus and the long gelation time, which strongly impede the extrusion of a collagen filament and the retention of the desired shape post-printing. In this study, the tannic acid-mediated crosslinking of the outer layer of collagen is proposed as strategy to enable collagen filament extrusion. For this purpose, a tannic acid solution has been used as supporting bath to act exclusively as external crosslinker during the printing process, while allowing the pH- and temperature-driven formation of collagen fibers within the core. Collagen hydrogels (concentration 2-6 mg/mL) were extruded in tannic acid solutions (concentration 5-20 mg/mL). Results proved that external interaction of collagen with tannic acid during 3D printing enables filament extrusion without affecting the bulk properties of the scaffold. The temporary collagen-tannic acid interaction resulted in the formation of a membrane-like external layer that protected the core, where collagen could freely arrange in fibers. The precision of the printed shapes was affected by both tannic acid concentration and needle diameter and can thus be tuned. Altogether, results shown in this study proved that tannic acid bath enables collagen bioprinting, preserves collagen morphology, and allows the manufacture of a cell-laden pure collagen scaffold.
Collapse
Affiliation(s)
- Sara Palladino
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
- GenT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| | - Gabriele Candiani
- GenT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| |
Collapse
|
6
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
7
|
Shahabi Nejad F, Karami H, Darvish M. Triggering of Endoplasmic Reticulum Stress by Tannic Acid Inhibits the Proliferation and Migration of Colorectal Cancer Cells. Asian Pac J Cancer Prev 2023; 24:2705-2711. [PMID: 37642057 PMCID: PMC10685243 DOI: 10.31557/apjcp.2023.24.8.2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Due to the pivotal role of endoplasmic reticulum (ER) stress in cancers, interfering with its function can cause the accumulation of unfolded proteins, which ultimately leads to the activation of the unfolded protein response (UPR) signaling pathway and apoptosis. Therefore, the use of plant compounds such as tannic acid with UPR-inducing properties can be proposed as a possible treatment method for cancer. In this study, we investigated the effect of tannic acid on cell migration, colony formation, growth, and UPR-induced apoptosis in the SW48 colorectal cancer cell line. METHODS The MTT assay was performed to investigate the cytotoxic effect of tannic acid. We performed the qPCR method to elucidate the effect of tannic acid on the expression of Bim, MMP-9, Bcl-xL, cyclin D1, CHOP, and ATF4 genes. We also used the colony formation and migration experiments to investigate the effect of this compound on the colony formation and migration ability of tumor cells. Finally, we used Hoechst staining to measure cell apoptosis. RESULTS Tannic acid inhibited the cell survival, clonogenic, and migration of colon cancer cells. This compound increased the expression of ER stress-mediated UPR genes, ATF4 and CHOP. Moreover; tannic acid increased the expression of pro-apoptotic proteins like Bim, while at the same time causing a sharp decline in the expression of anti-apoptotic protein Bcl-xL. A decline in MMP-9 expression confirmed the anti-metastatic role of this compound. CONCLUSION Taken together, tannic acid can induce apoptosis via ER stress-mediated UPR pathway, and has a suppressive effect on cell viability, growth, migration, colony formation, and metastasis, suggesting it may be a potential drug in colorectal cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Shahabi Nejad
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Traditional and Complementary Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Maryam Darvish
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
8
|
Byun H, Jang GN, Hong MH, Yeo J, Shin H, Kim WJ, Shin H. Biomimetic anti-inflammatory and osteogenic nanoparticles self-assembled with mineral ions and tannic acid for tissue engineering. NANO CONVERGENCE 2022; 9:47. [PMID: 36214916 PMCID: PMC9551158 DOI: 10.1186/s40580-022-00338-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone healing involves complex processes including inflammation, induction, and remodeling. In this context, anti-inflammatory and osteoconductive multi-functional nanoparticles have attracted considerable attention for application in improved bone tissue regeneration. In particular, nanoparticles that promote suppression of inflammatory response after injury and direction of desirable tissue regeneration events are of immense interest to researchers. We herein report a one-step method to prepare multi-functional nanoparticles using tannic acid (TA) and simulated body fluid (SBF) containing multiple mineral ions. Mineral-tannic acid nanoparticles (mTNs) were rapidly fabricated in 10 min, and their size (around 250-350 nm) and chemical composition were controlled through the TA concentration. In vitro analysis using human adipose derived stem cells (hADSCs) showed that mTNs effectively scavenged reactive oxygen species (ROS) and enhanced osteogenesis of hADSCs by inducing secretion of alkaline phosphatase. mTNs also increased osteogenic marker gene expression even in the presence of ROS, which can generally arrest osteogenesis (OPN: 1.74, RUNX2: 1.90, OCN: 1.47-fold changes relative to cells not treated with mTNs). In vivo analysis using a mouse peritonitis model revealed that mTNs showed anti-inflammatory effects by decreasing levels of pro-inflammatory cytokines in blood (IL-6: 73 ± 4, TNF-α: 42 ± 2%) and peritoneal fluid (IL-6: 78 ± 2, TNF-α: 21 ± 6%). We believe that this one-step method for fabrication of multi-functional nanoparticles has considerable potential in tissue engineering approaches that require control of complex microenvironments, as required for tissue regeneration.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Gyu Nam Jang
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Min-Ho Hong
- Department of Dental Biomaterials and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Jiwon Yeo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Sarker P, Nalband DM, Freytes DO, Rojas OJ, Khan SA. High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels. Biomacromolecules 2022; 23:4696-4708. [PMID: 36198084 DOI: 10.1021/acs.biomac.2c00916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable collagen-based hydrogels offer great promise for tissue engineering and regeneration, but their use is limited by poor mechanical strength. Herein, we incorporate tannic acid (TA) to tailor the rheology of the corresponding hydrogels while simultaneously adding the therapeutic benefits inherent to this polyphenolic component. TA in the solution form and needle-shaped TA microparticles are combined with collagen and the respective systems studied for their time-dependent sol-gel transitions (from storage to body temperatures, 4-37 °C) as a function of TA concentration. Compared to systems incorporating TA microparticles, those with dissolved TA, applied at a similar concentration, generate a less significant enhancement of the elastic modulus. Premature gelation at a low temperature and associated colloidal arrest of the system are proposed as a main factor explaining this limited performance. A higher yield stress (elastic stress method) is determined for systems loaded with TA microparticles compared to the system with dissolved TA. These results are interpreted in terms of the underlying interactions of TA with collagen, as probed by spectroscopy and isothermal titration calorimetry. Importantly, hydrogels containing TA microparticles show high cell viability (human dermal fibroblasts) and comparative cellular activity relative to the collagen-only hydrogel. Overall, composite hydrogels incorporating TA microparticles demonstrate a new, simple, and better-performance alternative to cell culturing and difficult implantation scenarios.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Hatami E, B Nagesh PK, Sikander M, Dhasmana A, Chauhan SC, Jaggi M, Yallapu MM. Tannic Acid Exhibits Antiangiogenesis Activity in Nonsmall-Cell Lung Cancer Cells. ACS OMEGA 2022; 7:23939-23949. [PMID: 35847334 PMCID: PMC9281317 DOI: 10.1021/acsomega.2c02727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonsmall-cell lung cancer (NSCLC) is the most common type of lung cancer, with a dismal prognosis. NSCLC is a highly vascularized tumor, and chemotherapy is often hampered by the development of angiogenesis. Therefore, suppression of angiogenesis is considered a potential treatment approach. Tannic acid (TA), a natural polyphenol, has been demonstrated to have anticancer properties in a variety of cancers; however, its angiogenic properties have yet to be studied. Hence, in the current study, we investigated the antiproliferative and antiangiogenic effects of TA on NSCLC cells. The (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay revealed that TA induced a dose- and time-dependent decrease in the proliferation of A549 and H1299 cells. However, TA had no significant toxicity effects on human bronchial epithelial cells. Clonogenicity assay revealed that TA suppressed colony formation ability in NSCLC cells in a dose-dependent manner. The anti-invasiveness and antimigratory potential of TA were confirmed by Matrigel and Boyden chamber studies, respectively. Importantly, TA also decreased the ability of human umbilical vein endothelial cells (HUVEC) to form tube-like networks, demonstrating its antiangiogenic properties. Extracellular vascular endothelial growth factor (VEGF) release was reduced in TA-treated cells compared to that in control cells, as measured by the enzyme-linked immunosorbent assay (ELISA). Overall, these results demonstrate that TA can induce antiproliferative and antiangiogenic effects against NSCLC.
Collapse
Affiliation(s)
- Elham Hatami
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K. B Nagesh
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory
of Signal Transduction, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Mohammed Sikander
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Anupam Dhasmana
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C. Chauhan
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M. Yallapu
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- . Tel: 956-296-1734
| |
Collapse
|
11
|
Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1015791. [PMID: 35419162 PMCID: PMC9001080 DOI: 10.1155/2022/1015791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.
Collapse
|
12
|
Basist P, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, Krishnan A, Shahid M, Ahmad S. Potential nephroprotective phytochemicals: Mechanism and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114743. [PMID: 34655670 DOI: 10.1016/j.jep.2021.114743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney disease (KD) is one of the serious health issues, which causes worrisome morbidity and economic burden. Therapeutic strategies are available however majority of them are associated with severe adverse effects and poor patient compliance and adherence. This explorative article was undertaken to provide a holistic review of known nephroprotective (NP) phytoconstituents along with their research-based evidences on mechanism, sources, and clinical trials that may play essential role in prevention and cure of KD. AIM OF THE STUDY The present systematic review aimed to provide in-depth and better evidences of the global burden of KD, phytoconstituents as NP with emphasis on mechanism of action both in vitro and in vivo, their wide biological sources as well as their clinical efficacy in management of kidney disease and its related disorders. MATERIAL AND METHODS Comprehensive information was searched systematically from electronic databases, namely, PubMed, Sciencedirect, Wiley, Scopus, Google scholar and Springer until February 2021 to find relevant data for publication on phytoconstituents with nephroprotective potential. RESULTS In total, 24,327 articles were screened in first search for "phytoconstituents and medicinal plants for nephroprotection and kidney disorder". On the basis of exclusion and inclusion criteria, 24,091 were excluded. Only 236 papers were spotted to have superlative quality data, which is appropriate under titles and sub-titles of the present review. The phytoconstituents having multiple research evidence along with wide number of medicinal plants sources and mechanism reported for nephroprotection have been selected and reviewed. CONCLUSION This review, based on pre-clinical and clinical data of NP phytoconstituents, provides scientific-basis for the rational discovery, development and utilization of these upcoming treatment practices. Further,-more clinical studies are warranted to improve the pharmacodynamic and pharmacokinetic understanding of phytoconstituents. Also, more specific evaluation for natural sources is needed.
Collapse
Affiliation(s)
- Parakh Basist
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav Gautam
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anuja Krishnan
- Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Shahid
- Department of Pharmaceutical Sciences, Chicago State University College of Pharmacy, Chicago, IL, 60423, USA
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Wu J, Li J, Liu Y, Liao X, Wu D, Chen Y, Liang Z, Yuan Z, Li R, Yi J, Wen L. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117557. [PMID: 34167001 DOI: 10.1016/j.envpol.2021.117557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium strains, that is widely present in crops, and endangers the reproductive system of animals. Tannic acid (TA) is a natural polyphenolic substance that is widespread in the roots, stems, and leaves of plants, and has special pharmacological activity. This study was designed to investigate the therapeutic effect of TA on ZEA-induced ovarian damage in mice and to explore the molecular mechanism involved. Ninety healthy Kunming female mice were divided into six equal groups. All the groups but the control group were administered daily with ZEA [10 mg/kg body weight (bw)] orally, for 7 days, to induce damage to the reproductive system. Some groups were also administered with TA (50, 100, and 200 mg/bw) for 7 days. Mice were euthanized 24 h later to allow for collection of serum and ovaries. TA can effectively alleviate the appearance of congestion and redness of the ovary, caused by ZEA, and increase the number of healthy growing follicles. Moreover, the estrogen content and the levels of MDA and ROS in the ovaries can be effectively reduced by TA. It can also reduce the apoptosis of ovarian cells, decreases the protein expression of the estrogen receptor, Fas, Fasl, caspase-3, caspase-8, caspase-9, and Bax, and increases the protein expression of Bcl-2. Our study indicates that TA reduces the strong estrogen and oxidative damage induced by ZEA, and these therapeutic effects may be partially mediated by the death receptor and mitochondrial apoptosis signaling pathway.
Collapse
Affiliation(s)
- Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanwei Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Liao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Dongyi Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, China.
| |
Collapse
|
14
|
Azadikhah F, Karimi AR, Yousefi GH, Hadizadeh M. Dual antioxidant-photosensitizing hydrogel system: Cross-linking of chitosan with tannic acid for enhanced photodynamic efficacy. Int J Biol Macromol 2021; 188:114-125. [PMID: 34358602 DOI: 10.1016/j.ijbiomac.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Herein, a new antioxidant-photosensitizing hydrogel based on chitosan has been developed to control photodynamic therapy (PDT) activity in cancer treatment. In PDT, photosensitizers generate reactive oxygen species (ROS) during photochemical reactions, leading oxidative damage to cancer cells. However, high ROS levels are lethal to non-target healthy cells and tissues such as endothelial cells and blood cells. To mediate these drawbacks, we improved PDT with a natural polyphenolic antioxidant, Tannic acid (TA), to control the ROS level and minimize side effects through singlet oxygen (1O2) scavenging. In this work, chitosan-based hydrogels were designed using tannic acid as an antioxidant cross-linker and loaded with water-soluble N, N'-di-(l-alanine)-3,4,9,10-perylene tetracarboxylic diimide (PDI-Ala) as a photosensitizer. Our results showed that the hydrogel formed a three-dimensional (3D) microstructure with good mechanical strength and significant singlet oxygen production and antioxidant activity. In addition, the behavior of human melanoma cell line A375 and dental pulp stem cells (as normal cells) was compared and studied during an in vitro photodynamic treatment. Normal cells had a higher viability than cancer cells, indicating that the PDT is more effective on cancer cells than on normal cells. The new hydrogels could be applied as an effective new drug to control PDT performance.
Collapse
Affiliation(s)
- Farnaz Azadikhah
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Ali Reza Karimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.
| | - Gholam Hossein Yousefi
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mahnaz Hadizadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran 3353136846, Iran
| |
Collapse
|
15
|
Xue YR, Wang Y, Chen G, Sun B, Li B, Wu L, Wu Y. A hybrid HPV capsid protein L1 with giant Mo-containing polyoxometalate improves the stability of virus-like particles and the anti-tumor effect of [Mo 154]. Biomater Sci 2021; 9:3875-3883. [PMID: 33890954 DOI: 10.1039/d1bm00138h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a bio-inorganic hybrid system, [Mo154]@VLPs, constructed from the virus-like particles (VLPs) of the HPV capsid protein L1 and a giant disc-shaped, molybdenum-containing polyoxometalate of [Mo154]. The hybrid was purified by CsCl gradient centrifugation and further validated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscopy (TEM). An assembly with [Mo154] improved the tolerance of VLPs to pH, temperature, and storage time, thereby defining an opportunity to reduce the cost of HPV vaccines. Moreover, the ability of [Mo154] to kill cancer cells was improved by 6% after being encapsulated inside the VLPs, which is mainly attributed to the enhanced biocompatibility of [Mo154]. The irradiation of both [Mo154] and [Mo154]@VLPs with an infrared light of 808 nm further enhanced their ability to destroy cancer cells by 3- and 2-fold, respectively, confirming that [Mo154] is an effective anti-tumor photo-thermal agent. Therefore, the successful hybrid of L1-p and [Mo154] improves the stability of VLPs and simultaneously paves the way to enhance the anti-tumor ability of [Mo154] and further extends its application prospects as a future anti-tumor drug.
Collapse
Affiliation(s)
- Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
A. Youness R, Kamel R, A. Elkasabgy N, Shao P, A. Farag M. Recent Advances in Tannic Acid (Gallotannin) Anticancer Activities and Drug Delivery Systems for Efficacy Improvement; A Comprehensive Review. Molecules 2021; 26:1486. [PMID: 33803294 PMCID: PMC7967207 DOI: 10.3390/molecules26051486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Tannic acid is a chief gallo-tannin belonging to the hydrolysable tannins extracted from gall nuts and other plant sources. A myriad of pharmaceutical and biological applications in the medical field has been well recognized to tannic acid. Among these effects, potential anticancer activities against several solid malignancies such as liver, breast, lung, pancreatic, colorectal and ovarian cancers have been reported. Tannic acid was found to play a maestro-role in tuning several oncological signaling pathways including JAK/STAT, RAS/RAF/mTOR, TGF-β1/TGF-β1R axis, VEGF/VEGFR and CXCL12/CXCR4 axes. The combinational beneficial effects of tannic acid with other conventional chemotherapeutic drugs have been clearly demonstrated in literature such as a synergistic anticancer effect and enhancement of the chemo-sensitivity in several resistant cases. Yet, clinical applications of tannic acid have been limited owing to its poor lipid solubility, low bioavailability, off-taste, and short half-life. To overcome such obstacles, novel drug delivery systems have been employed to deliver tannic acid with the aim of improving its applications and/or efficacy against cancer cells. Among these drug delivery systems are several types of organic and metallic nanoparticles. In this review, the authors focus on the molecular mechanisms of tannic acid in tuning several neoplastic diseases as well as novel drug delivery systems that can be used for its clinical applications with an attempt to provide a systemic reference to promote the development of tannic acid as a cheap drug and/or drug delivery system in cancer management.
Collapse
Affiliation(s)
- Rana A. Youness
- The Molecular Genetics Research Team, Department of Pharmaceutical Biology, Faculty of Pharmacy andBiotechnology, German University in Cairo, Cairo 12622, Egypt;
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
18
|
Yuan H, Zhang J, Yin X, Liu T, Yue X, Li C, Wang Y, Li D, Wang Q. The protective role of corilagin on renal calcium oxalate crystal-induced oxidative stress, inflammatory response, and apoptosis via PPAR-γ and PI3K/Akt pathway in rats. Biotechnol Appl Biochem 2020; 68:1323-1331. [PMID: 33080078 DOI: 10.1002/bab.2054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 11/07/2022]
Abstract
Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats' renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants' activities with upregulated inflammatory cytokines. In contrast, the RT-PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR-γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal-induced oxidative stress, inflammatory response, and apoptosis via PPAR-γ and PI3K/Akt-mediated pathway.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Jinghong Zhang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Xiaosong Yin
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Tongwei Liu
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Xiao Yue
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Chuangui Li
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Yuanyuan Wang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Ding Li
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Qiang Wang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| |
Collapse
|
19
|
Satyo L, Amoako DG, Somboro AM, Sosibo SC, Kumalo HM, Mhlongo NN, Khan RB. Molecular Insights Into Di(2-Picolyl) Amine-Induced Cytotoxicity and Apoptosis in Human Kidney (HEK293) Cells. Int J Toxicol 2020; 39:341-351. [PMID: 32351145 DOI: 10.1177/1091581820921180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Di(2-picolyl) amine (DPA) is a pyridine derivative known to chelate metal ions and thus has potential anticancer properties; however, its effect on normal cells remains unchartered necessitating further research. This study, therefore, investigated the mechanistic effects of DPA-induced cytotoxicity and apoptosis in the HEK293 cell line. Methods required that an half the maximum inhibition concentration (IC50) was derived using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Analyses aimed to assess oxidative stress, membrane damage, and DNA fragmentation by means of biochemical assays were performed. Luminometry analysis was carried out to understand the mechanism of apoptosis induction by determining the levels of adenosine triphosphate (ATP) and the activities of caspase-8, -9, and -3/7. Western blotting was used to ascertain the expression of apoptotic and stress-related proteins. An IC50 of 1,079 µM DPA was obtained. Antioxidant effect correlated with a minimum increase in reactive oxygen species induced lipid peroxidation. The increase in initiator caspase-8 and -9 and executioner caspase-3/7 activities by DPA-induced apoptosis albeit prompting a decline in the levels of ATP. Furthermore, DPA brought about the following consequences on HEK293 cells: markedly elevated tail lengths of the comets, poly (ADP-ribose) polymerase 1 cleavage, and apoptotic body formation observed in the late stages. The cytotoxic effects of DPA in HEK293 cells may be mediated by induction of apoptosis via the caspase-dependent mechanism.
Collapse
Affiliation(s)
- Lindelwa Satyo
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Howard Campus, Durban, South Africa
| | - Daniel G Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sphelele C Sosibo
- Department of Chemistry, School of Physical and Chemical Sciences, North West University, Mmabatho, South Africa
| | - Hezekiel M Kumalo
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Howard Campus, Durban, South Africa
| | - Ndumiso N Mhlongo
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Howard Campus, Durban, South Africa
| | - Rene B Khan
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Howard Campus, Durban, South Africa
| |
Collapse
|