1
|
Barthwal R, Negi A, Kathuria D, Singh N. Ozonation: Post-harvest processing of different fruits and vegetables enhancing and preserving the quality. Food Chem 2024; 463:141489. [PMID: 39413726 DOI: 10.1016/j.foodchem.2024.141489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
Daily ingestion of fresh produce has increased tremendously due to a rise in awareness of its nutritional benefits that contribute to reducing health risks and disease. However, these commodities are highly perishable and prone to significant post-harvest losses. Conventional methods have been scrutinized in the production of undesirable by-products. Ozone technology has emerged as an efficient sterilization technique. Additionally, it stimulated the synthesis of bioactive and antioxidant compounds by activating secondary metabolic pathways. However, there are conflicting findings in the literature related to their impact on the quality and physiological processes of fruits and vegetables (F&V). This scientific literature review focuses on key studies examining the effects of ozonation on the growth of microorganisms and the quality preservation of different F&V. This review also enlarges our understanding of eco-friendly technologies which not only extend the shelf life of F&V but also uphold their quality without introducing harmful chemicals.
Collapse
Affiliation(s)
- Riya Barthwal
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Akanksha Negi
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
2
|
Ren J, Li X, Dong C, Zheng P, Zhang N, Ji H, Yu J, Lu X, Li M, Chen C, Liang L. Effect of ozone treatment on phenylpropanoid metabolism in harvested cantaloupes. J Food Sci 2024; 89:4914-4925. [PMID: 38980985 DOI: 10.1111/1750-3841.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.
Collapse
Affiliation(s)
- Jie Ren
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Xiaohui Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
3
|
The Antifungal Effect of Gaseous Ozone on Lasiodiplodia theobromae Causing Stem-End Rot in 'Keitt' Mangoes. Foods 2023; 12:foods12010195. [PMID: 36613410 PMCID: PMC9818411 DOI: 10.3390/foods12010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
This study evaluated the antifungal activity of ozone (O3) against stem-end rot of mango fruit (cv. Keitt). Mango fruit were exposed to gaseous ozone (0.25 mg/L) for 24 or 36 h during cold storage, and control fruit were untreated. Experimental fruit were stored at 90% relative humidity and 10 ± 0.5 °C for three weeks and ripened at ambient temperature for one week. Ozone treatment (24 h) inhibited the mycelial growth of Lasiodiplodia theobromae by 60.35%. At day twenty-eight of storage, fruit treated with O3 for 36 h had low mass loss (%) and high firmness compared to the untreated control fruit. Treating mango fruit with O3 (36 h) maintained the color and concentration of total flavonoids throughout the storage time. At the end of storage, peroxidase activity under the O3 24 h treatment was significantly higher (0.91 U min-1 g-1 DM) compared to O3 (36 h) and control, which, respectively, had 0.80 U min-1 g-1 DM and 0.78 U min-1 g-1 DM. Gaseous ozone for 24 h is recommended as a cost-effective treatment for controlling stem-end rot. These findings suggest that gaseous ozone effectively controlled stem-end rot and enhanced the postharvest quality of mango fruit.
Collapse
|
4
|
Pu Y, Wang C, Jiang Y, Wang X, Ai Y, Zhuang W. Metabolic profiling and transcriptome analysis provide insights into the accumulation of flavonoids in chayote fruit during storage. Front Nutr 2023; 10:1029745. [PMID: 36937343 PMCID: PMC10019507 DOI: 10.3389/fnut.2023.1029745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Chayote (Sechium edulel) fruits are rich in flavonoids, folate, and low-calorie food. However, studies about the flavonoids and the corresponding regulatory mechanism of flavonoid synthesis in chayote fruits was still unclear. In present study, an integrated transcriptome and metabolite analysis of chayote fruits at three different storage stages were conducted to explore the flavonoid compositions and gene expression associated with flavonoid synthesis. Through the UPLC-MS/MS analysis, a total of 57 flavonoid compounds were detected. Of these, 42 flavonoid glycosides were significantly differential accumulation in chayote fruits at three different storage stages. Many genes associated with flavonoid synthesis were differentially expressed in chayote fruits at three different storage stages through RNA-seq analysis, including structural genes and some TFs. There was a high correlation between RNA-seq analysis and metabolite profiling, and the expression level of candidate genes in the flavonoid synthesis pathway were consistent with the dynamic changes of flavonoids. In addition, one R2R3-MYB transcription factor, FSG0057100, was defined as the critical regulatory gene of flavonoid synthesis. Furthermore, exogenous application of phenylalanine increased the total content of flavonoids and promoted some flavonoid biosynthesis-related gene expression in chayote fruits. The above results not only make us better understand the molecular mechanism of flavonoid synthesis in chayote fruits, but also contribute to the promotion and application of chayote products.
Collapse
Affiliation(s)
- YuTing Pu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - YongWen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - XiaoJing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: XiaoJing Wang,
| | - YuJie Ai
- Tea Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
- YuJie Ai,
| | - WeiBing Zhuang
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Memorial Sun Yat-sen, Institute of Botany, Nanjing, China
- WeiBing Zhuang,
| |
Collapse
|
5
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Anjali KU, Reshma C, Sruthi NU, Pandiselvam R, Kothakota A, Kumar M, Siliveru K, Marszałek K, Mousavi Khaneghah A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Crit Rev Food Sci Nutr 2022; 64:3687-3701. [PMID: 36268992 DOI: 10.1080/10408398.2022.2134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.
Collapse
Affiliation(s)
- K U Anjali
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - C Reshma
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - N U Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, Kansas, USA
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
7
|
Joffe R, Berthe A, Jolivet Y, Gandin A. The response of mesophyll conductance to ozone-induced oxidative stress is genotype-dependent in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4850-4866. [PMID: 35429268 DOI: 10.1093/jxb/erac154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The CO2 diffusion conductance within the leaf mesophyll (gm) is considered a major limiting factor of photosynthesis. However, the effects of the major secondary air pollutant ozone (O3) on gm have been poorly investigated. Eight genotypes of the economically important tree species Populus × canadensis Moench were exposed to 120 ppb O3 for 21 d. gm showed a genotype-dependent response to O3-induced oxidative stress and was a major limiting factor of net assimilation rate (Anet), ahead of stomatal conductance to CO2 (gsc) and of the maximum carboxylation capacity of the Rubisco enzyme (Vcmax) in half of the tested genotypes. Increased leaf dry mass per area (LMA) and decreased chlorophyll content were linked to the observed gm decrease, but this relationship did not entirely explain the different genotypic gm responses. Moreover, the oxidative stress defence metabolites ascorbate and glutathione were not related to O3 tolerance of gm. However, malondialdehyde probably mitigated the observed gm decrease in some genotypes due to its oxidative stress signalling function. The large variation of gm suggests different regulation mechanisms amongst poplar genotypes under oxidative stress.
Collapse
Affiliation(s)
- Ricardo Joffe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Audrey Berthe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| |
Collapse
|
8
|
Shorbagi M, Fayek NM, Shao P, Farag MA. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Zhang J, Wang Y, Mao Z, Liu W, Ding L, Zhang X, Yang Y, Wu S, Chen X, Wang Y. Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113274. [PMID: 35124421 DOI: 10.1016/j.ecoenv.2022.113274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In plants, anthocyanins and proanthocyanidins (PAs) play important roles in plant resistance to abiotic stress. In this study, ozone (O3) treatments caused the up-regulation of Malus crabapple structural genes McANS, McCHI, McANR and McF3H, which promoted anthocyanin and PA accumulation. We identified the WRKY transcription factor (TF) McWRKY71 by screening differentially expressed genes (DEGs) that were highly expressed in response to O3 stress from an RNA sequencing (RNA-seq) analysis. Overexpressing McWRKY71 increased the resistance of 'Orin' apple calli to O3 stress and promoted the accumulation of anthocyanins and PAs, which facilitated reactive oxygen species scavenging to further enhance O3 tolerance. Biochemical and molecular analyses showed that McWRKY71 interacted with McMYB12 and directly bound the McANR promoter to participate in the regulation of PA biosynthesis. These findings provide new insights into the WRKY TFs mechanisms that regulate the biosynthesis of secondary metabolites, which respond to O3 stress, in Malus crabapple.
Collapse
Affiliation(s)
- Junkang Zhang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zuolin Mao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Weina Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Licheng Ding
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Xiaonan Zhang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Yuwei Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Shuqing Wu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China.
| |
Collapse
|
10
|
Piechowiak T, Skóra B, Sowa P. Changes in the activity of flavanone 3β-hydroxylase in blueberry fruit during storage in ozone-enriched atmosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1300-1304. [PMID: 34312868 DOI: 10.1002/jsfa.11444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/04/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The present study aimed to determine whether the ozonation process affects the flavonoid biosynthesis in highbush blueberry (Vaccinum corymbosum L.) fruit. Flavanone 3β-hydroxylase (F3H) was used as a marker of the flavonoid biosynthesis pathway. The activity of F3H, the expression of gene encoding F3H and the antioxidant status in blueberries treated with ozone at a concentration of 15 ppm for 30 min, every 12 h of storage, and maintained at 4 °C for 4 weeks were investigated. RESULTS The results showed that ozonation process increases the expression of the F3H gene after 1 week of storage, which translates into a higher catalytic capacity of protein, as well as a higher content of flavonoids and total antioxidant potential of ozonated blueberries compared to non-ozonated fruits. CONCLUSION The present study provides experimental evidence indicating that ozone treatment in proposed process conditions positively affects flavonoid metabolism in highbush blueberry fruit leading to the maintainance of the high quality of the fruit during storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1A, Rzeszow, 35-601, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, Rzeszow, 35-225, Poland
| | - Patrycja Sowa
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Zelwerowicza 4, Rzeszow, 35-601, Poland
| |
Collapse
|
11
|
Effectiveness of Ozonated Water for Preserving Quality and Extending Storability of Star Ruby Grapefruit. Processes (Basel) 2022. [DOI: 10.3390/pr10020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to explore the impact of aqueous ozone technology on maintaining grapefruit flavor and freshness by minimizing the occurrence of postharvest deterioration. During the 2018 and 2019 seasons, Star Ruby grapefruit fruits were treated with 0.3 and 0.6 ppm aqueous ozone for 5 and 10 min after harvest at water temperatures of 5 °C and 15 °C, respectively. The fruits were stored for 40 days at 8 ± 1 °C with 85–90% relative humidity. The results revealed that all the ozonated water treatments reduced physiological weight loss, disease infection, and decay, as well as providing long-term protection to the fruits throughout storage. The best treatment for preserving the postharvest quality was 0.6 ppm ozonated water at 5 °C for 5 min, which successfully delayed ripening while concurrently preserving the TSS/acid ratios, total phenolics, and antioxidant activity. Overall, aqueous ozone treatment is a promising example of a treatment that is beginning to be utilized on a commercial scale. In accordance with the findings of this study, it can be deduced that aqueous ozone can be used to maintain fruit quality, reduce postharvest diseases, and extend storage life.
Collapse
|
12
|
Cho EJ, Lee YG, Chang J, Bae HJ. A High-Yield Process for Production of Biosugars and Hesperidin from Mandarin Peel Wastes. Molecules 2020; 25:E4286. [PMID: 32962056 PMCID: PMC7571014 DOI: 10.3390/molecules25184286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Jihye Chang
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| |
Collapse
|
13
|
Serna-Escolano V, Martínez-Romero D, Giménez MJ, Serrano M, García-Martínez S, Valero D, Valverde JM, Zapata PJ. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem 2020; 338:128044. [PMID: 32932092 DOI: 10.1016/j.foodchem.2020.128044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023]
Abstract
The effects of preharvest treatments with 0.1 mM methyl jasmonate (MeJA) and 0.5 mM salicylic acid (SA) on quality parameters of lemon fruit and their relationship with antioxidant systems, gene expression and bioactive compounds at harvest and during cold storage were evaluated. Results showed that total antioxidant activity, total phenolic content and the major individual phenolics (hesperidin and eriocitrin) were always higher in treated fruit than in controls. The activity of the antioxidant enzymes catalase, peroxidase and ascorbate peroxidase was also increased at harvest by SA and MeJA treatments, especially the last enzyme, for which the expression of its codifying gene was also enhanced. In addition, treated fruit had lower weight and firmness losses, respiration rate and production of ethylene than controls. Moreover, sugars and organic acids were maintained at higher concentration in flavedo and juice as a consequence of preharvest SA and MeJA treatments, showing an effect on maintaining fruit quality properties.
Collapse
Affiliation(s)
- Vicente Serna-Escolano
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Domingo Martínez-Romero
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - María J Giménez
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Santiago García-Martínez
- Department of Applied Biology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Daniel Valero
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Juan M Valverde
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Pedro J Zapata
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain.
| |
Collapse
|
14
|
Cai N, Chen C, Wan C, Chen J. Effects of pre-harvest gibberellic acid spray on endogenous hormones and fruit quality of kumquat (Citrus japonica) fruits. NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE 2020. [DOI: 10.1080/01140671.2020.1806084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, People’s Republic of China
| |
Collapse
|
15
|
Paenibacillus brasilensis YS-1: A Potential Biocontrol Agent to Retard Xinyu Tangerine Senescence. AGRICULTURE 2020. [DOI: 10.3390/agriculture10080330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Xinyu tangerine (Citrus reticulata Blanco) is a non-climacteric fruit that is widely cultivated and consumed in China but highly susceptible to fungal infections. Antagonistic microorganisms can control postharvest diseases and extend the storage life of citrus fruits. However, little work has been done to investigate the effects of applying Paenibacillus brasilensis YS-1 by immersion to enhance the cold storability of Xinyu tangerines. Fruits were soaked with P. brasilensis YS-1 fermented filtrates for 10 min and in sterile water as the control. The decay incidence, weight loss, nutrient content, respiration rate, malondialdehyde (MDA) content, and defensive enzymes activities in citrus fruit were measured during cold storage at 5 ± 0.5 °C. The results showed that P. brasilensis YS-1 treatment significantly reduced postharvest decay and effectively maintained the nutritional quality compared to the control under cold storage. The weight loss, respiration rate, and MDA content were lower in P. brasilensis YS-1-treated fruits than the control fruits, indicating that P. brasilensis YS-1 treatment increased the activities of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalnine ammonia-lyase (PAL). According to the results, a postharvest application of P. brasilensis YS-1 can control the postharvest decay and maintain fruit quality, as well as increase the defensive enzyme activity, so as to achieve the purpose of retarding postharvest senescence in citrus fruit.
Collapse
|
16
|
Sachadyn-Król M, Agriopoulou S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products-A Review. Molecules 2020; 25:E2416. [PMID: 32455899 PMCID: PMC7288181 DOI: 10.3390/molecules25102416] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
In this review, the primary objective was to systematize knowledge about the possibility of improving the health-promoting properties of raw plant products, defined as an increase in the content of bioactive compounds, by using ozone. The greatest attention has been paid to the postharvest treatment of plant raw materials with ozone because of its widespread use. The effect of this treatment on the health-promoting properties depends on the following different factors: type and variety of the fruit or vegetable, form and method of ozone treatment, and dosage of ozone. It seems that ozone applied in the form of ozonated water works more gently than in gaseous form. Relatively high concentration and long contact time used simultaneously might result in increased oxidative stress which leads to the degradation of quality. The majority of the literature demonstrates the degradation of vitamin C and deterioration of color after treatment with ozone. Unfortunately, it is not clear if ozone can be used as an elicitor to improve the quality of the raw material. Most sources prove that the best results in increasing the content of bioactive components can be obtained by applying ozone at a relatively low concentration for a short time immediately after harvest.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| |
Collapse
|