1
|
Shen W, Sun X. Construction of a nomogram for early diagnosis of refractory Mycoplasma pneumoniae pneumonia in children. Transl Pediatr 2024; 13:1119-1129. [PMID: 39144443 PMCID: PMC11320014 DOI: 10.21037/tp-24-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Background Refractory Mycoplasma pneumoniae pneumonia (RMPP) has a serious, rapid progression that can easily cause a variety of extra-pulmonary complications. Therefore, the early identification of RMPP is crucial. This study aimed to construct and validate a risk prediction model based on clinical manifestations, laboratory blood indicators, and radiological findings to help clinicians identify patients who are at high risk of RMPP. Methods We retrospectively analyzed the medical records of 369 children with Mycoplasma pneumoniae pneumonia (MPP) admitted to Xi'an Children's Hospital, China. The demographics, clinical features, laboratory data, and radiological findings between the RMPP group and the general Mycoplasma pneumoniae pneumonia (GMPP) group were compared and subjected to univariate and multivariate logistic regression analyses. Results The fever peak and duration of the children in the RMPP group (n=86) were higher and longer compared with those in the GMPP group (n=283) (P<0.05). There was a significant difference in the incidence of lobar pneumonia and pleural effusion in pulmonary imaging between the two groups (P<0.05). Laboratory tests showed that the children with RMPP had lower serum uric acid (SUA) and albumin (ALB) as compared with the GMPP group (P<0.05). White blood cells (WBCs), neutrophil count (NEP), erythrocyte sedimentation rate (ESR), procalcitonin (PCT), C-reactive protein (CRP), and neutrophil-to-lymphocyte ratio (NLR) were higher in the RMPP group (P<0.05). Binary logistic regression analysis showed that the fever duration, pleural effusion, WBC, NEP, lactate dehydrogenase (LDH), CRP, NLR, and SUA levels were independent predictors of RMPP (P<0.05). The receiver operator characteristic (ROC) curve results showed fever duration, WBC, NEP, CRP, LDH, SUA, and NLR had good predictive value. The areas under the curve (AUCs) were 0.861, 0.730, 0.758, 0.837, 0.868, 0.744, and 0.713 and the best cutoff values were 10.50, 10.13, 6.43, 29.45, 370.50, 170.50, and 3.47, respectively. Finally, fever duration of more than 10.5 days, pleural effusion, WBC >10.13×109/L, NEP >6.43×109/L, CRP >29.45 mg/L, LDH >370.50 U/L, NLR >3.47, and SUA <170.5 µmol/mL constructed a prediction model of RMPP. According to internal validation, the mean AUC of the nomogram based on the development dataset was 0.956 [95% confidence interval (CI): 0.937-0.974] with good discrimination ability for predicting RMPP patients. The calibration plot and Hosmer-Lemeshow test (P=0.70) of the prediction model showed good consistency between the predicted probability and actual probability. Decision curve analysis (DCA) showed that the nomogram is clinically useful. Conclusions The simple and easy-to-use nomogram can help clinicians, especially primary doctors, to make early diagnoses of RMPP.
Collapse
Affiliation(s)
- Wenna Shen
- The 1st Department of Respiratory Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Xinrong Sun
- The 1st Department of Respiratory Medicine, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
2
|
Yang S, Liu H, Fang XM, Yan F, Zhang Y. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions. Int Immunopharmacol 2024; 132:111932. [PMID: 38560961 DOI: 10.1016/j.intimp.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1β to bioactive IL-1β. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Issue 12(th) of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi‑Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China.
| |
Collapse
|
3
|
Wen S, Arakawa H, Tamai I. Uric acid in health and disease: From physiological functions to pathogenic mechanisms. Pharmacol Ther 2024; 256:108615. [PMID: 38382882 DOI: 10.1016/j.pharmthera.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Quinlivan R, Murphy E, Pula S, Pain A, Brain H, Scopes G, Gjika F, Ahmadouk N, Manole A, Houlden H. Raised CK and acute kidney injury following intense exercise in three patients with a history of exercise intolerance due to homozygous mutations in SLC2A9. Neuromuscul Disord 2024; 34:49-53. [PMID: 38150892 DOI: 10.1016/j.nmd.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Acute rhabdomyolysis (AR) leading to acute kidney injury has many underlying etiologies, however, when the primary trigger is exercise, the most usual underlying cause is either a genetic muscle disorder or unaccustomed intense exercise in a healthy individual. Three adult men presented with a history of exercise intolerance and episodes of acute renal impairment following intense exercise, thought to be due to AR in the case of two, and dehydration in one. The baseline serum CK was mildly raised between attacks in all three patients and acutely raised during attacks in two of the three patients. Following referral to a specialized neuromuscular centre, further investigation identified very low serum urate (<12 umol/L). In all three men, genetic studies confirmed homozygous mutations in SLC2A9, which encodes for facilitated glucose transporter member 9 (GLUT9), a major regulator of urate homeostasis. Hereditary hypouricaemia should be considered in people presenting with acute kidney injury related to intense exercise. Serum urate evaluation is a useful screening test best undertaken after recovery.
Collapse
Affiliation(s)
- Ros Quinlivan
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square London, UK
| | - Shpresa Pula
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexandra Pain
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Henrietta Brain
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Grace Scopes
- University of Buckingham, Stoke Mandeville, Aylesbury, UK
| | - Frenki Gjika
- University of Buckingham, Stoke Mandeville, Aylesbury, UK
| | - Naim Ahmadouk
- Department of Acute and General Medicine, Stoke Mandeville Hospital, Mandeville Road, Aylesbury UK
| | - Andreea Manole
- Department of neurogenetics, UCL Institute of Neurology, National hospital for Neurology and Neurosurgery, UK
| | - Henry Houlden
- Department of neurogenetics, UCL Institute of Neurology, National hospital for Neurology and Neurosurgery, UK
| |
Collapse
|
5
|
Zhu C, Niu H, Bian M, Zhang X, Zhang X, Zhou Z. Study on the mechanism of Orthosiphon aristatus (Blume) Miq. in the treatment of hyperuricemia by microbiome combined with metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116805. [PMID: 37355082 DOI: 10.1016/j.jep.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Growing evidence indicates that hyperuricemia is closely associated with gut microbiota dysbiosis. Orthosiphon aristatus (Blume) Miq. (O. aristatus), as a traditional Chinese medicine, has been widely used to treat hyperuricemia in China. However, the mechanism by which O. aristatus treats hyperuricemia has not been clarified. AIM OF THE STUDY In this study, we investigated whether the molecular mechanism underlying the anti-hyperuricemia effect of O. aristatus is related to the regulation of gut microbiota by 16S rDNA gene sequencing combined with widely targeted metabolomics. MATERIALS AND METHODS Hyperuricemia was induced in rats by administration of 10% fructose and 20% yeast, and the uricosuric effect was assessed by measuring the uric acid (UA) levels in serum and cecal contents. Intestinal morphology was observed by hematoxylin and eosin (HE) staining. To explore the effects of O. aristatus on the gut microbiota and its metabolites, we utilized 16S rDNA gene sequencing combined with widely targeted metabolomics. Furthermore, metabolic pathway enrichment analysis was performed on the screened differential metabolites. The real time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB) were used to detect the expression of relevant proteins in the key pathway. RESULTS Our results indicated that O. aristatus intervention decreased serum UA levels and increased the UA levels in cecal contents in hyperuricemic rats. Additionally, O. aristatus improved intestinal morphology and altered the composition of the gut microbiota and its metabolites. Specifically, 16S rDNA revealed that O. aristatus treatment significantly reduced the abundance of unidentified-Ruminococcaceae and Lachnospiraceae-NK4A136-group. Meanwhile, widely targeted metabolomics showed that 17 metabolites, including lactose, 4-oxopentanoate and butyrate, were elevated, while 55 metabolites, such as flavin adenine dinucleotide and xanthine, were reduced. Metabolic pathway enrichment analysis found that O. aristatus was mainly involved in purine metabolism. Moreover, RT-PCR and WB suggested that O. aristatus could significantly up-regulate the expression of UA excretion transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the intestine. CONCLUSION O. aristatus exerts UA-lowering effect by regulating the gut microbiota and ABCG2 expression, indicating that this herb holds great promise in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Meng Bian
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochuan Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Zheng Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Liu Q, Peng M, Yang T, Si G. Uric acid levels and risk of cognitive impairment: Dose-response meta-analysis of prospective cohort studies. PLoS One 2023; 18:e0293832. [PMID: 37917590 PMCID: PMC10621826 DOI: 10.1371/journal.pone.0293832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
PURPOSE Studying the effects of uric acid levels on cognitive function and quantifying the dose-response relationship. METHODS Based on PubMed and Embase search terms, we identified prospective cohort studies that included blood uric acid as a risk factor and cognitive impairment as a result up to September 2022. We extracted pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs). RESULTS Nine reports (including 488,915 participants and 5516 cognitive impairment cases) with median follow-up of 8.8-22 years were eligible for analyses. Compared with lowest category of blood uric acid concentration, the combined RR of cognitive impairment events in the highest classification was 0.81 (95% CI: 0.70-0.92, P < 0.001). Dose-response analysis of eight reports (including 484,297 participants and 5059 cognitive impairment cases) showed that there was no evidence of a curvilinear relationship between blood uric acid levels and cognitive impairment (P = 0.51 for nonlinear relationship). The summary RR of cognitive impairment for an increase of 1 mg/dL blood uric acid level was 0.98 (95% CI: 0.95-1.00; linear trend P = 0.07, I2 = 67.1%, heterogeneity P < 0.05). There was also a linear negative association between blood uric acid levels and cognitive impairment risk in the male subgroup analysis (RR = 0.97, 95% CI: 0.95-0.99, P < 0.05). CONCLUSION Levels of blood uric acid are not related to risk of cognitive impairment. A subgroup analysis shows that the rise in blood uric acid levels in the male population is related to a decreased risk of cognitive impairment. These results need to be confirmed by further studies.
Collapse
Affiliation(s)
- Qianqian Liu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Chinese and Western Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Peng
- Department of Chinese and Western Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tiantian Yang
- Department of Chinese and Western Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guomin Si
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Chinese and Western Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Perdomo-Ramírez A, Ramos-Trujillo E, Claverie-Martín F. New SLC22A12 (URAT1) Variant Associated with Renal Hypouricemia Identified by Whole-Exome Sequencing Analysis and Bioinformatics Predictions. Genes (Basel) 2023; 14:1823. [PMID: 37761963 PMCID: PMC10530539 DOI: 10.3390/genes14091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.
Collapse
Affiliation(s)
- Ana Perdomo-Ramírez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (E.R.-T.)
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (E.R.-T.)
- Departamento de Medicina Física y Farmacología, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (E.R.-T.)
| |
Collapse
|
8
|
Sun L, Liu Q, Zhang Y, Xue M, Yan H, Qiu X, Tian Y, Zhang H, Liang H. Fucoidan from Saccharina japonica Alleviates Hyperuricemia-Induced Renal Fibrosis through Inhibiting the JAK2/STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11454-11465. [PMID: 37481747 DOI: 10.1021/acs.jafc.3c01349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fucoidan is a native sulfated polysaccharide mainly isolated from brown seaweed, with diverse pharmacological activities, such as anti-inflammatory and antifibrosis. Hyperuricemia (HUA) is a common metabolic disease worldwide and mainly causes hyperuricemic nephropathy, including chronic kidney disease and end-stage renal fibrosis. The present study investigated the protective function of fucoidan in renal fibrosis and its pharmacological mechanism. The renal fibrotic model was established with the administration of potassium oxonate for 10 weeks. The protein levels of related factors were assessed in HUA mice by an enzyme-linked immunosorbent assay (ELISA) and western blotting. The results showed that fucoidan significantly reduced the levels of serum uric acid, blood urea nitrogen (BUN), α-smooth muscle actin (α-SMA), and collagen I, and improved kidney pathological changes. Furthermore, renal fibrosis had been remarkably elevated through the inhibition of the epithelial-to-mesenchymal transition (EMT) progression after fucoidan intervention, suppressing the Janus kinase 2 (JAK2) signal transducer and activator of transcription protein 3 (STAT3) signaling pathway activation. Together, this study provides experimental evidence that fucoidan may protect against hyperuricemia-induced renal fibrosis via downregulation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Qing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Yabin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Meilan Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hongxue Yan
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Xia Qiu
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Yingjie Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
9
|
Makinouchi R, Koyama T, Machida S, Imai N. Hypouricemia in the emergency department: A retrospective, single-center study. Health Sci Rep 2023; 6:e1467. [PMID: 37575203 PMCID: PMC10412855 DOI: 10.1002/hsr2.1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Backgrounds Few studies have reported the prevalence and characteristics of hypouricemia in the emergency department (ED). We investigated the prevalence and characteristics of hypouricemia in the ED of a university-affiliated hospital in Japan. Methods This is a retrospective cross-sectional single-center study. All adult patients (18 years old or older) who had their serum uric acid (SUA) measured at the ED between 2011 and 2021 were included. Information collected included age, sex, SUA, and serum creatinine. Hypouricemia was defined as an SUA level ≦2.0 mg/dL. Results A total of 10,551 patients were included in the study. Fifty-one percent were male. The median SUA levels were significantly higher in men than in women (6.0 [4.8-7.4] vs. 4.7 [3.7-6.1], p < 0.001). The prevalence of hypouricemia was higher in women than in men (2.0% vs. 0.9%, p < 0.001). A possible cause of hypouricemia was identified in 88 patients. Malignancy and diabetes were the major possible cause of hypouricemia (p < 0.001). Conclusion The distribution of SUA levels and prevalence of hypouricemia differed significantly by sex and age in the ED. Malignancy was the leading cause of hypouricemia in the ED.
Collapse
Affiliation(s)
- Ryuichiro Makinouchi
- Department of Internal MedicineDivision of Nephrology and Hypertension, St. Marianna University Yokohama Seibu HospitalYokohamaJapan
| | - Teppei Koyama
- Department of Internal MedicineDivision of Nephrology and Hypertension, St. Marianna University Yokohama Seibu HospitalYokohamaJapan
| | - Shinji Machida
- Department of Internal MedicineDivision of Nephrology and Hypertension, St. Marianna University Yokohama Seibu HospitalYokohamaJapan
| | - Naohiko Imai
- Department of Internal MedicineDivision of Nephrology and Hypertension, St. Marianna University Yokohama Seibu HospitalYokohamaJapan
| |
Collapse
|
10
|
Zhang Y, Li Y, Li C, Zhao Y, Xu L, Ma S, Lin F, Xie Y, An J, Wang S. Paeonia × suffruticosa Andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154957. [PMID: 37478683 DOI: 10.1016/j.phymed.2023.154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chang Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yani Zhao
- Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Lu Xu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shanbo Ma
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fen Lin
- Research and Development Department, Shaanxi Fengdan Zhengyuan Biotechnology Limited Company, Xi'an, Shaanxi 710076, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junming An
- Department of Acupuncture, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
11
|
Otani N, Hoshiyama E, Ouchi M, Takekawa H, Suzuki K. Uric acid and neurological disease: a narrative review. Front Neurol 2023; 14:1164756. [PMID: 37333005 PMCID: PMC10268604 DOI: 10.3389/fneur.2023.1164756] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Hyperuricemia often accompanies hypertension, diabetes, dyslipidemia, metabolic syndrome, and chronic renal disease; it is also closely related to cardiovascular disease. Moreover, several epidemiological studies have linked hyperuricemia and ischemic stroke. However, uric acid may also have neuroprotective effects because of its antioxidant properties. An association between low uric acid levels and neurodegenerative diseases has been suggested, which may be attributed to diminished neuroprotective effects as a result of reduced uric acid. This review will focus on the relationship between uric acid and various neurological diseases including stroke, neuroimmune diseases, and neurodegenerative diseases. When considering both the risk and pathogenesis of neurological diseases, it is important to consider the conflicting dual nature of uric acid as both a vascular risk factor and a neuroprotective factor. This dual nature of uric acid is important because it may help to elucidate the biological role of uric acid in various neurological diseases and provide new insights into the etiology and treatment of these diseases.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, Mibu, Japan
| | - Eisei Hoshiyama
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Hidehiro Takekawa
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
- Stroke Center, Dokkyo Medical University, Mibu, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
12
|
Li K, Li K, Yao Q, Shui X, Zheng J, He Y, Lei W. The potential relationship of coronary artery disease and hyperuricemia: A cardiometabolic risk factor. Heliyon 2023; 9:e16097. [PMID: 37215840 PMCID: PMC10199191 DOI: 10.1016/j.heliyon.2023.e16097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Coronary arterial disease (CAD) is the leading cause of mortality in the world. Hyperuricemia has recently emerged as a novel independent risk factor of CAD, in addition to the traditional risk factors such as hyperlipidemia, smoking, and obesity. Several clinical studies have shown that hyperuricemia is strongly associated with the risk, progression and poor prognosis of CAD, as well as verifying an association with traditional CAD risk factors. Uric acid or enzymes in the uric acid production pathway are associated with inflammation, oxidative stress, regulation of multiple signaling pathways and the renin-angiotensin-aldosterone system (RAAS), and these pathophysiological alterations are currently the main mechanisms of coronary atherosclerosis formation. The risk of death from CAD can be effectively reduced by the uric acid-lowering therapy, but the interventional treatment of uric acid levels in patients with CAD remains controversial due to the diversity of co-morbidities and the complexity of causative factors. In this review, we analyze the association between hyperuricemia and CAD, elucidate the possible mechanisms by which uric acid induces or exacerbates CAD, and discuss the benefits and drawbacks of uric acid-lowering therapy. This review could provide theoretical references for the prevention and management of hyperuricemia-associated CAD.
Collapse
Affiliation(s)
- Kaiyue Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kongwei Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
13
|
Otani N, Ouchi M, Mizuta E, Morita A, Fujita T, Anzai N, Hisatome I. Dysuricemia-A New Concept Encompassing Hyperuricemia and Hypouricemia. Biomedicines 2023; 11:biomedicines11051255. [PMID: 37238926 DOI: 10.3390/biomedicines11051255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The importance of uric acid, the final metabolite of purines excreted by the kidneys and intestines, was not previously recognized, except for its role in forming crystals in the joints and causing gout. However, recent evidence implies that uric acid is not a biologically inactive substance and may exert a wide range of effects, including antioxidant, neurostimulatory, proinflammatory, and innate immune activities. Notably, uric acid has two contradictory properties: antioxidant and oxidative ones. In this review, we present the concept of "dysuricemia", a condition in which deviation from the appropriate range of uric acid in the living body results in disease. This concept encompasses both hyperuricemia and hypouricemia. This review draws comparisons between the biologically biphasic positive and negative effects of uric acid and discusses the impact of such effects on various diseases.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, Nikko 321-1298, Tochigi, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Einosuke Mizuta
- Department of Cardiology, Sanin Rosai Hospital, Yonago 683-8605, Tottori, Japan
| | - Asuka Morita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan
| | - Ichiro Hisatome
- Yonago Medical Center, National Hospital Organization, Yonago 683-0006, Tottori, Japan
| |
Collapse
|
14
|
Toyoda Y, Cho SK, Tasic V, Pavelcová K, Bohatá J, Suzuki H, David VA, Yoon J, Pallaiova A, Šaligová J, Nousome D, Cachau R, Winkler CA, Takada T, Stibůrková B. Identification of a dysfunctional exon-skipping splice variant in GLUT9/ SLC2A9 causal for renal hypouricemia type 2. Front Genet 2023; 13:1048330. [PMID: 36733941 PMCID: PMC9887137 DOI: 10.3389/fgene.2022.1048330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, URAT1 and GLUT9, respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. Via clinico-genetic analyses including whole exome sequencing and in vitro functional assays, we identified an intronic GLUT9 variant, c.1419+1G>A, as the causal mutation that could lead the expression of p.Gly431GlufsTer28, a functionally-null variant resulting from exon 11 skipping. The causal relationship was also confirmed in another unrelated Macedonian family with mild hypouricemia. Accordingly, non-coding regions should be also kept in mind during genetic diagnosis for hypouricemia. Our findings provide a better pathogenic understanding of RHUC and pathophysiological importance of GLUT9.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Sung Kweon Cho
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States,Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | | | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Victor A. David
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | | - Jana Šaligová
- Metabolic Clinic, Children’s Faculty Hospital, Košice, Slovakia
| | - Darryl Nousome
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergies and Infectious Diseases, Bethesda, MD, United States
| | - Cheryl A. Winkler
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stibůrková
- Institute of Rheumatology, Prague, Czechia,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia,Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,*Correspondence: Blanka Stibůrková,
| |
Collapse
|
15
|
Zhang J, Dong Y, Gao S, Zhang X, Liao H, Shi X, Zhang Z, Zhao T, Liang R, Qi D, Wu T, Pang J, Liu X, Zhan P. Design, synthesis and activity evaluation of novel lesinurad analogues containing thienopyrimidinone or pyridine substructure as human urate transporter 1 inhibitors. Eur J Med Chem 2022; 244:114816. [PMID: 36219903 DOI: 10.1016/j.ejmech.2022.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
Urate Transporter 1 (URAT1) plays a crucial role in uric acid transport, making it an attractive target for the treatment of gout and hyperuricemia. As a representative URAT1 inhibitor, Lesinurad treat gout by promoting the uric acid excretion. However, its lower in vitro and in vivo activity should be highly attracted attention. Herein, the bioisosterism, molecular hybridization and scaffold hopping strategies were exploited to modify all the structural components of Lesinurad and finally thirty novel compounds bearing thienopyrimidinone or pyridine core were obtained. Most of the compounds displayed certain URAT1 inhibitory activity in vitro. Among them, thienopyrimidinones 6 (IC50 = 7.68 μM), 10 (IC50 = 7.56 μM), 14 (IC50 = 7.31 μM) and 15 (IC50 = 7.90 μM) showed slightly better potency than positive control Lesinurad (IC50 = 9.38 μM). Notably, 10 also displayed inhibitory activity (IC50 = 55.96 μM) against GLUT9. Additionally, in vivo serum uric acid (SUA)-lowering experiments were performed on some representative compounds and it was revealed that all the selected compounds could decrease the SUA level in mice, of which the decrease rate of SUA was 73.29% for the most promising compound 10, significantly greater than that of Lesinurad (26.89%). Meanwhile, the preliminary SARs based on the URAT1 inhibitory activity were discussed in detail, which pointed out the direction for further structural optimization. Overall, the thienopyrimidinone and pyridine are prospective skeletons for the developing novel URAT1 inhibitors with considerable potential for optimization.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yue Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Hui Liao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Danhui Qi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ting Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 North Guangzhou Ave, 510515, Guangzhou, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
16
|
Hyperuricemia and Endothelial Function: Is It a Simple Association or Do Gender Differences Play a Role in This Binomial? Biomedicines 2022; 10:biomedicines10123067. [PMID: 36551823 PMCID: PMC9775568 DOI: 10.3390/biomedicines10123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The endothelium plays a fundamental role in the biological processes that ensure physiological vessel integrity, synthesizing numerous substances that are capable of modulating the tone of vessels, inflammation and the immune system, and platelet function. Endothelial dysfunction refers to an anomaly that develops at the level of the tunica that lines the internal surface of arterial and venous vessels, or, more precisely, an alteration to normal endothelial function, which involves the loss of some structural and/or functional characteristics. Studies on sex differences in endothelial function are conflicting, with some showing an earlier decline in endothelial function in men compared to women, while others show a similar age of onset between the sexes. Since increased cardiovascular risk coincides with menopause, female hormones, particularly estrogen, are generally believed to be cardioprotective. Furthermore, it is often proposed that androgens are harmful. In truth, these relationships are more complex than one might think and are not just dependent on fluctuations in circulating hormones. An increase in serum uric acid is widely regarded as a possible risk factor for cardiovascular disease; however, its role in the occurrence of endothelial dysfunction has not yet been elucidated. Several studies in the literature have evaluated sex-related differences in the association between elevated uric acid levels and cardiovascular events, with conflicting results. The association between uric acid and cardiovascular disease is still controversial, and it is not yet clear how gender differences affect the serum concentration of these substances. This review was primarily aimed at clarifying the effects of uric acid at the level of the vascular endothelium and describing how it could theoretically cause damage to endothelial integrity. The second aim was to determine if there are gender differences in uric acid metabolism and how these differences interact with the vascular endothelium.
Collapse
|
17
|
Kim GH, Jun JB. Altered Serum Uric Acid Levels in Kidney Disorders. Life (Basel) 2022; 12:1891. [PMID: 36431026 PMCID: PMC9692609 DOI: 10.3390/life12111891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Serum uric acid levels are altered by kidney disorders because the kidneys play a dominant role in uric acid excretion. Here, major kidney disorders which accompany hyperuricemia or hypouricemia, including their pathophysiology, are discussed. Chronic kidney disease (CKD) and hyperuricemia are frequently associated, but recent clinical trials have not supported the pathogenic roles of hyperuricemia in CKD incidence and progression. Diabetes mellitus (DM) is often associated with hyperuricemia, and hyperuricemia may be associated with an increased risk of diabetic kidney disease in patients with type 2 DM. Sodium-glucose cotransporter 2 inhibitors have a uricosuric effect and can relieve hyperuricemia in DM. Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an important hereditary kidney disease, mainly caused by mutations of uromodulin (UMOD) or mucin-1 (MUC-1). Hyperuricemia and gout are the major clinical manifestations of ADTKD-UMOD and ADTKD-MUC1. Renal hypouricemia is caused by URAT1 or GLUT9 loss-of-function mutations and renders patients susceptible to exercise-induced acute kidney injury, probably because of excessive urinary uric acid excretion. Hypouricemia derived from renal uric acid wasting is a component of Fanconi syndrome, which can be hereditary or acquired. During treatment for human immunodeficiency virus, hepatitis B or cytomegalovirus, tenofovir, adefovir, and cidofovir may cause drug-induced renal Fanconi syndrome. In coronavirus disease 2019, hypouricemia due to proximal tubular injury is related to disease severity, including respiratory failure. Finally, serum uric acid and the fractional excretion of uric acid are indicative of plasma volume status; hyperuricemia caused by the enhanced uric acid reabsorption can be induced by volume depletion, and hypouricemia caused by an increased fractional excretion of uric acid is the characteristic finding in syndromes of inappropriate anti-diuresis, cerebral/renal salt wasting, and thiazide-induced hyponatremia. Molecular mechanisms by which uric acid transport is dysregulated in volume or water balance disorders need to be investigated.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| |
Collapse
|