1
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Abou-Elnour FS, El-Habashy SE, Essawy MM, Abdallah OY. Alendronate/lactoferrin-dual decorated lipid nanocarriers for bone-homing and active targeting of ivermectin and methyl dihydrojasmonate for leukemia. BIOMATERIALS ADVANCES 2024; 162:213924. [PMID: 38875802 DOI: 10.1016/j.bioadv.2024.213924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.
Collapse
Affiliation(s)
- Fatma S Abou-Elnour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Di Vito A, Chiarella E, Sovereto J, Bria J, Perrotta ID, Salatino A, Baudi F, Sacco A, Antonelli A, Biamonte F, Barni T, Giudice A. Novel insights into the pharmacological modulation of human periodontal ligament stem cells by the amino-bisphosphonate Alendronate. Eur J Cell Biol 2023; 102:151354. [PMID: 37604089 DOI: 10.1016/j.ejcb.2023.151354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Alendronate (ALN) is a second-generation bisphosphonate widely used for osteoporosis and cancer-induced bone lesions. Many studies have confirmed a strong relationship between osteonecrosis of the jaws (ONJ) development and oral bisphosphonates, especially ALN, although the molecular mechanisms underlying this pathology have not yet been elucidated. The reduction in bone turnover and vascularization usually observed in ONJ are the result of ALN action on different cell types harboured in oral microenvironment, such as osteoclasts, endothelial cells, and periodontal ligament stem cells (PDLSCs). In this perspective, the present study aims to investigate the effects of different ALN concentrations (2 μM, 5 μM, 10 μM, 25 μM, 50 μM) on the phenotype and functional properties of human PDLSCs (hPDLSCs). hPDLSCs showed a decrease in cell viability (MTT assay) only when treated with ALN concentration of 10 μM or larger for 48 h and 72 h. Cell cycle analysis revealed a moderate increase in proportion of S-phase cells after exposure to low ALN concentration (2-5 μM), an effect that was reverted after exposure to 10-50 μM ALN. Conversely, cell death was evidenced via Annexin V/PI assay at very high concentration of ALN (50 μM) after 4 days of treatment. In addition, we explored whether the effects of ALN on hPDLSCs growth and survival can be mediated by its ability to modulate oxidative stress. To this, we quantified the intracellular ROS amount and lipid peroxidation by using DCF probe and Bodipy staining, respectively. Flow cytometry analysis showed that ALN induced a dose-dependent reduction of intracellular oxidative stress and lipid peroxidation upon treatment with low concentrations at both 48 h and 72 h. Increased levels of oxidative stress was reported at 50 μM ALN and was also confirmed via TEM analysis. Despite the stability of the cellular immunophenotype, hPDLSCs showed impaired mobility after ALN exposure. Chronic exposure (7-14 days) to ALN in the range of 2-10 μM significantly decreased the expression of the differentiation-related factors ALP, RUNX2, COLI, and OPN as well as the osteogenic ability of hPDLSCs compared with untreated cells. Conversely, higher doses were found to be neutral. Our findings indicated that the effects of ALN on hPDLSCs behavior are dose-dependent and suggest a role for oxidative stress in ALN-induced cell death that may lead to novel therapeutic approaches for ONJ.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy.
| | - Emanuela Chiarella
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Jessica Sovereto
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | | | - Francesco Baudi
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Alessandro Sacco
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | | | - Flavia Biamonte
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Tullio Barni
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Graecia of Catanzaro, Italy
| |
Collapse
|
4
|
Nisticò C, Chiarella E. An Overview on Lipid Droplets Accumulation as Novel Target for Acute Myeloid Leukemia Therapy. Biomedicines 2023; 11:3186. [PMID: 38137407 PMCID: PMC10741140 DOI: 10.3390/biomedicines11123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic reprogramming is a key alteration in tumorigenesis. In cancer cells, changes in metabolic fluxes are required to cope with large demands on ATP, NADPH, and NADH, as well as carbon skeletons. In particular, dysregulation in lipid metabolism ensures a great energy source for the cells and sustains cell membrane biogenesis and signaling molecules, which are necessary for tumor progression. Increased lipid uptake and synthesis results in intracellular lipid accumulation as lipid droplets (LDs), which in recent years have been considered hallmarks of malignancies. Here, we review current evidence implicating the biogenesis, composition, and functions of lipid droplets in acute myeloid leukemia (AML). This is an aggressive hematological neoplasm originating from the abnormal expansion of myeloid progenitor cells in bone marrow and blood and can be fatal within a few months without treatment. LD accumulation positively correlates with a poor prognosis in AML since it involves the activation of oncogenic signaling pathways and cross-talk between the tumor microenvironment and leukemic cells. Targeting altered LD production could represent a potential therapeutic strategy in AML. From this perspective, we discuss the main inhibitors tested in in vitro AML cell models to block LD formation, which is often associated with leukemia aggressiveness and which may find clinical application in the future.
Collapse
Affiliation(s)
- Clelia Nisticò
- Candiolo Cancer Institute, FPO-IRCCS, Department of Oncology, University of Torino, 10124 Candiolo, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Peng Y, Liu QZ, Xu D, Fu JY, Zhang LX, Qiu L, Lin JG. M 4IDP stimulates ROS elevation through inhibition of mevalonate pathway and pentose phosphate pathway to inhibit colon cancer cells. Biochem Pharmacol 2023; 217:115856. [PMID: 37838274 DOI: 10.1016/j.bcp.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Maintaining redox homeostasis is an essential feature of cancer cells, and disrupting this homeostasis to cause oxidative stress and induce cell death is an important strategy in cancer therapy. M4IDP, a zoledronic acid derivative, can cause the death of human colorectal cancer cells by increasing the level of intracellular reactive oxygen species (ROS). However, its potential molecular mechanism is unclear. Our in vitro studies showed that treatment with M4IDP promoted oxidative stress in HCT116 cells, as measured by the decreased ratios of GSH/GSSG and NADPH/NADP+ and increased level of MDA. M4IDP could cause the decrease of GSH content, the increase of GSSG content, the decrease of NADPH content and pentose phosphate pathway flux, the downregulation of G6PD expression, the upregulation of unprenylated Rap1A and total expression of RhoA and CDC42. The increase of ROS and cytotoxicity induced by M4IDP could be reversed by the supplementation of NADPH, the overexpression of G6PD and the supplementation of GGOH. In vivo studies showed that M4IDP inhibited tumor growth in the human colorectal cancer xenograft mouse model, which was accompanied with a decreased [18F]FDG uptake. Collectively, these results provide evidence that M4IDP can promote oxidation in colon cancer cells by inhibiting mevalonate pathway and pentose phosphate pathway and produce therapeutic effect. This study revealed for the first time a possible mechanism of bisphosphonate-induced increase of ROS in malignant tumor cells. This is helpful for the development of new molecular therapeutic targets and can provide new ideas for the combined therapy of bisphosphonates in tumors.
Collapse
Affiliation(s)
- Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing-Zhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia-Yu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Xia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Guo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
6
|
Beton-Mysur K, Brożek-Płuska B. A new modality for cholesterol impact tracking in colon cancer development - Raman imaging, fluorescence and AFM studies combined with chemometric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5199-5217. [PMID: 37781815 DOI: 10.1039/d3ay01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Obesity, alcohol consumption, smoking, high consumption of red or processed meat and a diet with low fibre, fruit, and vegetable intake increase CRC risk. Despite advances in surgery (the basic treatment for recovery), chemotherapy, and radiotherapy, CRC remains the second leading cause of cancer-related deaths in the world. Therefore the social importance of this problem stimulates research aimed at developing new tools for rapid CRC diagnosis and analysis of CRC risk factors. Considering the association between the cholesterol level and CRC, we hypothesize that cholesterol spectroscopic and AFM (atomic force microscopy) studies combined with chemometric analysis can be new, powerful tools used to visualize the cholesterol distribution, estimate cholesterol content and determine its influence on the biochemical and nanomechanical properties of colon cells. Our paper presents the analysis of human colon tissues: normal and cancer and human colon single cells normal CCD18-Co and cancer CaCo-2 in the physiological state and CaCo-2 upon mevastatin supplementation. Based on vibrational features we have shown that Raman spectroscopy and imaging allow cholesterol content in human colon tissues and human colon single cells of both types to be tracked and allow the effectiveness of mevastatin in the mevalonate pathway modulation and disruption of the cholesterol level to be proven. All observations have been confirmed by chemometric analysis including principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA). The positive impact of statins on cholesterol content has also been studied by using fluorescence microscopy and atomic force microscopy (AFM). A significant increase in Young modulus as a mechanomarker for CaCo-2 human cancer colon cells upon mevastatin supplementation compared to CCD18-Co human normal colon cells was observed. This paper is one of the first reports about the use of Raman spectroscopic techniques in cholesterol investigations and the first one about cholesterol investigation using Raman spectroscopy (RS) on human cells ex vivo in the context of colon cancer development.
Collapse
Affiliation(s)
- K Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - B Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
7
|
Lange SA, Schliemann C, Engelbertz C, Feld J, Makowski L, Gerß J, Dröge P, Ruhnke T, Günster C, Reinecke H, Köppe J. Survival of Patients with Acute Coronary Syndrome and Hematologic Malignancies-A Real-World Analysis. Cancers (Basel) 2023; 15:4966. [PMID: 37894332 PMCID: PMC10605274 DOI: 10.3390/cancers15204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The impact of the encounter between coronary heart disease (CHD) and cancer, and in particular hematologic malignancies (HM), remains poorly understood. OBJECTIVE The aim of this analysis was to clarify how HM affects the prognosis of acute coronary syndrome (ACS). We analyzed German health insurance data from 11 regional Ortskrankenkassen (AOK) of patients hospitalized for ACS between January 2010 and December 2018, matched by age, sex and all comorbidities for short- and long-term survival and major adverse cardiac events (MACE). RESULTS Of 439,716 patients with ACS, 2104 (0.5%) also had an HM. Myelodysplastic/myeloproliferative disorders (27.7%), lymphocytic leukemias (24.8%), and multiple myeloma (22.4%) predominated. These patients were about 6 years older (78 vs. 72 years *). They had an ST-segment elevation myocardial infarction (STEMI, 18.2 vs. 34.9% *) less often and more often had a non-STEMI (NSTEMI, 81.8 vs. 65.1% *). With the exception of dyslipidemia, these patients had more concomitant and previous cardiovascular disease and a worse NYHA stage. They were less likely to undergo coronary angiography (65.3 vs. 71.6% *) and percutaneous coronary intervention (PCI, 44.3 vs. 52.0% *), although the number of bleeding events was not relevantly increased (p = 0.22). After adjustment for the patients' risk profile, the HM was associated with reduced long-term survival. However, this was not true for short-term survival. Here, there was no difference in the STEMI patients, * p < 0.001. CONCLUSION Survival in ACS and HM is significantly lower, possibly due to the avoidance of PCI because of a perceived increased risk of bleeding.
Collapse
Affiliation(s)
- Stefan A. Lange
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Christoph Schliemann
- Department of Medicine A, University Hospital Muenster, D-48149 Muenster, Germany;
| | - Christiane Engelbertz
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Jannik Feld
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| | - Lena Makowski
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| | - Patrik Dröge
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Thomas Ruhnke
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Christian Günster
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Holger Reinecke
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Jeanette Köppe
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| |
Collapse
|
8
|
Alrosan AZ, Heilat GB, Al Subeh ZY, Alrosan K, Alrousan AF, Abu-Safieh AK, Alabdallat NS. The effects of statin therapy on brain tumors, particularly glioma: a review. Anticancer Drugs 2023; 34:985-994. [PMID: 37466094 PMCID: PMC10501357 DOI: 10.1097/cad.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Brain tumors account for less than 2% of all malignancies. However, they are associated with the highest morbidity and mortality rates among all solid tumors. The most common malignant primary brain tumors are glioma or glioblastoma (GBM), which have a median survival time of about 14 months, often suffer from recurrence after a few months following treatment, and pose a therapeutic challenge. Despite recent therapeutic advances, the prognosis for glioma patients is poor when treated with modern therapies, including chemotherapy, surgery, radiation, or a combination of these. Therefore, discovering a new target to treat brain tumors, particularly glioma, might be advantageous in raising progression-free survival and overall survival (OS) rates. Statins, also known as competitive HMG-CoA reductase inhibitors, are effective medications for reducing cholesterol and cardiovascular risk. The use of statins prior to and during other cancer treatments appears to enhance patient outcomes according to preclinical studies. After surgical resection followed by concurrent radiation and treatment, OS for patients with GBM is only about a year. Statins have recently emerged as potential adjuvant medications for treating GBM due to their ability to inhibit cell growth, survival, migration, metastasis, inflammation, angiogenesis, and increase apoptosis in-vitro and in-vivo studies. Whether statins enhance clinical outcomes, such as patient survival in GBM, is still debatable. This study aimed to explore the effects of statin therapy in the context of cancer treatment, with a particular focus on GBM.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology
| | - Zeinab Y. Al Subeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, The Jordan University of Science and Technology
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Alaa F. Alrousan
- Doctor of Pharmacy, Faculty of Pharmacy, The Jordan University of Science and Technology, Irbid
| | - Amro K. Abu-Safieh
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
9
|
Mesuraca M, Nisticò C, Chiarella E. Editorial to the Special Issue "Recent Advances in Biochemical Mechanisms of Acute Myeloid Leukemia". Biomedicines 2023; 11:biomedicines11051339. [PMID: 37239010 DOI: 10.3390/biomedicines11051339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal malignant disorder of myeloid progenitor cells characterized by uncontrolled proliferation, dysregulation in the differentiation program, and inhibition of apoptosis mechanisms [...].
Collapse
Affiliation(s)
- Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Clelia Nisticò
- Candiolo Cancer Institute, FPO-IRCCS and Department of Oncology, University of Torino, Strada Provinciale 142, km 3.95, Candiolo, 10060 Torino, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Di Vito A, Bria J, Antonelli A, Mesuraca M, Barni T, Giudice A, Chiarella E. A Review of Novel Strategies for Human Periodontal Ligament Stem Cell Ex Vivo Expansion: Are They an Evidence-Based Promise for Regenerative Periodontal Therapy? Int J Mol Sci 2023; 24:ijms24097798. [PMID: 37175504 PMCID: PMC10178011 DOI: 10.3390/ijms24097798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontitis is a gingiva disease sustained by microbially associated and host-mediated inflammation that results in the loss of the connective periodontal tissues, including periodontal ligament and alveolar bone. Symptoms include swollen gingiva, tooth loss and, ultimately, ineffective mastication. Clinicians utilize regenerative techniques to rebuild and recover damaged periodontal tissues, especially in advanced periodontitis. Human periodontal ligament stem cells (hPDLSCs) are considered an appealing source of stem cells for regenerative therapy in periodontium. hPDLSCs manifest the main properties of mesenchymal stem cells, including the ability to self-renew and to differentiate in mesodermal cells. Significant progress has been made for clinical application of hPDLSCs; nevertheless, some problems remain, including the small number of cells isolated from each sample. In recent decades, hPDLSC ex vivo expansion and differentiation have been improved by modifying cell culture conditions, especially with the supplementation of cytokines' or growth factors' mix, chemicals, and natural compounds, or by using the decellularized extracellular matrix. Here, we analyzed the changes in stemness properties and differentiation potential of hPDLSCs when culturing in alternative media. In addition, we focused on the possibility of replacing FBS with human emoderivates to minimize the risks of xenoimmunization or zoonotic transmission when cells are expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Bria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|