1
|
Tran TT, Eltzschig HK, Yuan X. Therapeutic targeting of hypoxia inducible factor in acute respiratory distress syndrome. J Physiol 2024; 602:5745-5756. [PMID: 38031820 PMCID: PMC11136894 DOI: 10.1113/jp284599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by bilateral chest infiltration and acute hypoxic respiratory failure. ARDS carries significant morbidity and mortality despite advancements in medical management, calling for the development of novel therapeutic targets. Hypoxia-inducible factor (HIF) is a heterodimeric protein involved in various essential pathways, including metabolic reprogramming, immune modulation, angiogenesis and cell cycle regulation. HIF is routinely degraded in homeostasis conditions via the prolyl hydroxylase domain/von Hippel-Lindau protein pathway. However, HIF is stabilized in ARDS via various mechanisms (oxygen-dependent and independent) as an endogenous protective pathway and plays multifaceted roles in different cell populations. This review focuses on the functional role of HIF and its target genes during ARDS, as well as how HIF has evolved as a therapeutic target in current medical management.
Collapse
Affiliation(s)
- Thu T Tran
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Kosanam S, Pasupula R. Cardioprotective effects of cinnamoyl imidazole on apoptosis and oxidative stress in hypoxia/reoxygenation-induced H9C2 cell lines. Life Sci 2024; 359:123189. [PMID: 39481831 DOI: 10.1016/j.lfs.2024.123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND This study explored the effects of cinnamoyl imidazole on alleviating oxidative stress and apoptosis in hypoxia/reoxygenation (H/R)-induced H9C2 cells, using computational analysis with in-vitro validation. METHODS Computational techniques, including SwissADME and Swiss Target Prediction, were employed to predict the ADME properties and to identify targets of cinnamoyl imidazole. Differential gene expression (DEG) analysis was conducted on myocardial infarction (MI) datasets obtained from the Gene Expression Omnibus. Gene enrichment and molecular simulation studies were done to focus on apoptotic pathways. The computational findings were validated through In vitro experiments on H9C2 cardiomyocytes subjected to 8 h of hypoxia followed by 24 h of reoxygenation. Antioxidant enzyme levels (catalase, GST, GSH-Px, and SOD), mitochondrial membrane potential (ΔΨm), caspase-3 activity, and the expression of CASP3, MAPK8, JAK2, and BCL2L1 were assessed. RESULTS Cinnamoyl imidazole has demonstrated favourable pharmacokinetic properties, characterized by high gastrointestinal absorption and low toxicity with negative toxicity for organ endpoints. Molecular docking studies revealed the strong binding affinities for CASP3, MAPK8, and JAK2. In vitro results showed a significant increase in cell viability (94.7 % at 10 μM, p < 0.001) and antioxidant enzyme activity, along with a 64.3 % reduction in caspase-3 activity at 1000 μM (p < 0.01). Cinnamoyl imidazole treatment preserved mitochondrial membrane potential, downregulated pro-apoptotic genes CASP3 and MAPK8, and upregulated the anti-apoptotic gene BCL2L1. CONCLUSION Cinnamoyl imidazole effectively mitigates oxidative stress and apoptosis in H/R-induced H9C2 cells, enhancing cell viability and antioxidant defenses while maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
3
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Ma X, Gao L, Ge R, Yuan T, Lin B, Zhen L. CDC-like kinase 3 deficiency aggravates hypoxia-induced cardiomyocyte apoptosis through AKT signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:333-342. [PMID: 38438604 DOI: 10.1007/s11626-024-00886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is one major pathological change of acute myocardial infarction (AMI), but the underlying mechanism remains unexplored. CDC-like kinase 3 (CLK3) plays crucial roles in cell proliferation, migration and invasion, and nucleotide metabolism, however, the role of CLK3 in AMI, especially hypoxia-induced apoptosis, is largely unknown. The expression of CLK3 was elevated in mouse myocardial infarction (MI) models and neonatal rat ventricular myocytes (NRVMs) under hypoxia. Furthermore, CLK3 knockdown significantly promoted apoptosis and inhibited NRVM survival, while CLK3 overexpression promoted NRVM survival and inhibited apoptosis under hypoxic conditions. Mechanistically, CLK3 regulated the phosphorylation status of AKT, a key player in the regulation of apoptosis. Furthermore, overexpression of AKT rescued hypoxia-induced apoptosis in NRVMs caused by CLK3 deficiency. Taken together, CLK3 deficiency promotes hypoxia-induced cardiomyocyte apoptosis through AKT signaling pathway.
Collapse
Affiliation(s)
- Xiue Ma
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liming Gao
- Department of Cardiology, Ji'an Hospital, Shanghai East Hospital, Ji'an, 343000, Jiangxi, China
| | - Rucun Ge
- Shandong Provincial Third Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tianyou Yuan
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Bowen Lin
- School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Lixiao Zhen
- Shandong Provincial Third Hospital, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
He F, Wang F, Xiang H, Ma Y, Lu Q, Xia Y, Zhou H, Wang Y, Ke J. Activation of adenosine A2B receptor alleviates myocardial ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and restoring autophagy flux. Arch Biochem Biophys 2024; 754:109945. [PMID: 38395121 DOI: 10.1016/j.abb.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) poses a significant threat to patients with coronary heart disease. Adenosine A2A receptors have been known as a protective role in MIRI by regulating autophagy, so we assumed that activation of adenosine A2B receptor (A2BAR) might exert a similar effect during MIRI and underlying mechanism be related to proteostasis maintenance as well. In situ hearts were subjected to 30 min of ischemia and 120 min of reperfusion (IR), while invitro cardiomyocytes from neonatal rats experienced 6 h of oxygen-glucose deprivation followed by 12 h of reoxygenation (OGDR). Initially, we observed that post-ischemia-reperfusion induced autophagy flux blockade and ERS both in vivo and in vitro, evident through the increased expression of p62, LC3II, and BIP, which indicated the deteriorated proteostasis. We used a selective A2BAR agonist, Bay 60-6583, to explore the positive effects of A2BAR on cardiomyocytes and found that A2BAR activation rescued damaged cardiac function and morphological changes in the IR group and improved frail cell viability in the OGDR group. The A2BAR agonist also alleviated the blockage of autophagic flux, coupled with augmented ERS in the IR/OGDR group, which was reassured by using an autophagy inhibitor chloroquine (CQ) and ERS inhibitor (4-PBA) in vitro. Additionally, considering cAMP/PKA as a well-known downstream effector of A2BAR, we utilized H89, a selective PKA inhibitor. We observed that the positive efficacy of Bay 60-6583 was inhibited by H89. Collectively, our findings demonstrate that the A2BAR/cAMP/PKA signaling pathway exerts a protective role in MIRI by mitigating impaired autophagic flux and excessive ERS.
Collapse
Affiliation(s)
- Feng He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuyu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanmin Xiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunna Ma
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Lu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huimin Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
7
|
Cheng W, Wang Y, Zhang L, Cheng C, Chen X, Huang W. The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:744-757. [PMID: 38102341 DOI: 10.1007/s11064-023-04066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
White matter lesions (WMLs) resulting from chronic cerebral hypoperfusion (CCH) are the leading cause of vascular dementia (VaD). This study aimed to investigate whether dipyridamole could alleviate WMLs by regulating the phenotype of disease-associated microglia (DAM) through equilibrative nucleoside transporter 2 (ENT2) and adenosine A2A receptor (Adora2a) and to clarify the underlying molecular mechanisms. CCH rat models were constructed to mimic VaD. Morris water maze and Luxol Fast Blue staining were employed to assess cognitive function and quantify the severity of WMLs, respectively. Immunofluorescent staining was performed to analyze the activation of glial cells and the phenotypic transformation of DAM. Additionally, levels of ENT2, proteins in the NF-κB and ERK1/2 pathways and inflammatory cytokines were detected. The results indicated that dipyridamole diminished the activation and proliferation of microglia and astrocytes, increased the expression of myelin basic protein and ameliorated WMLs and cognitive decline in CCH rats. Further study revealed that dipyridamole decreased the expression of ENT2 and inhibited the activation of ERK1/2 and NF-κB signaling pathways, which ultimately converted DAM to anti-inflammatory phenotype and suppressed the levels of TNF-α, IL-1β, IL-6 in WMLs. However, Adora2a inhibitor (SCH58261) attenuated above effects. Our study demonstrates that dipyridamole facilitates the conversion of DAM to the anti-inflammatory phenotype through ENT2/Adora2a pathway and inhibits the activation of ERK1/2 and NF-κB signaling pathways, thereby alleviating neuroinflammation in WMLs. The current findings establish the basis for using dipyridamole to treat VaD.
Collapse
Affiliation(s)
- Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
8
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
10
|
Bojórquez Martínez CA, García Murillo IM, Segón Mora S, López Mereles A. Tetralogy of Fallot: Hypoxia, the villain of the story? Birth Defects Res 2024; 116:e2279. [PMID: 38277413 DOI: 10.1002/bdr2.2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Tetralogy of Fallot (ToF) is a cyanotic congenital heart disease, composed of four malformations: persistent communication between the right and the left ventricle, pulmonary stenosis, overriding aorta, and right ventricle hypertrophy. The etiology of this disease is not entirely known as yet, but it has been proposed that the pathology has genetic components. During embryonic development, the fetus is exposed to a physiological hypoxia to facilitate the formation of blood vessels and blood cells through de novo processes. METHODS After researching scientific databases on the implications of oxygen on the normal and abnormal development of organs, especially the heart, we were able to propose that oxygen deprivation may be the cause of the disease. RESULTS During this period, the hypoxia-inducible factor is activated and triggers transcriptional responses that enable adaptation to the hypoxic environment through angiogenic activation. High levels of this protein can alter certain physiological pathways, such as those related to the vascular endothelial growth factor. Research has shown that prolonged oxygen deprivation during embryological development can lead to the occurrence of congenital heart diseases, such as ToF. CONCLUSIONS Studies using animal models have demonstrated that the deficiency or disruption of a protein called "CITED2," which plays an important role in cardiac morphogenesis and its loss, results in the alteration of pluripotent, cardiac, and neural lineage differentiation, thereby disrupting the normal development of the heart and other tissues.
Collapse
Affiliation(s)
| | | | - Santiago Segón Mora
- Faculty of Medicine, Facultad Mexicana de Medicina-La Salle University, Mexico City, Tlalpan, Mexico
| | - Andrea López Mereles
- Faculty of Medicine, Facultad Mexicana de Medicina-La Salle University, Mexico City, Tlalpan, Mexico
| |
Collapse
|
11
|
Montironi C, Jacobs CF, Cretenet G, Peters FS, Schomakers BV, van Weeghel M, Kater AP, Simon-Molas H, Eldering E. T-cell dysfunction by pseudohypoxia and autocrine purinergic signaling in chronic lymphocytic leukemia. Blood Adv 2023; 7:6540-6552. [PMID: 37552122 PMCID: PMC10632609 DOI: 10.1182/bloodadvances.2023010305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Acquired T-cell dysfunction is common in chronic B-cell malignancies. Given the strong connection between T-cell metabolism and function, we investigated metabolic alterations as the basis of T-cell dysfunction induced by malignant cells. Using B-cell malignant cell lines and human peripheral blood mononuclear cells, we first established a model that recapitulates major aspects of cancer-induced T-cell dysfunction. Cell lines derived from chronic lymphocytic leukemia (CLL) (PGA-1, CII, and Mec-1), but not from other B-cell malignancies, altered the T-cell metabolome by generating a pseudohypoxic state. T cells were retained in aerobic glycolysis and were not able to switch to oxidative phosphorylation (OXPHOS). Moreover, T cells produced immunosuppressive adenosine that negatively affected function by dampening the activation, which could be restored by the blocking of adenosine receptors. Subsequently, we uncovered a similar hypoxic-like signature in autologous T cells from primary CLL samples. Pseudohypoxia was reversible upon depletion of CLL cells ex vivo and, importantly, after the in vivo reduction of the leukemic burden with combination therapy (venetoclax and obinutuzumab), restoring T-cell function. In conclusion, we uncovered a pseudohypoxic program connected with T-cell dysfunction in CLL. Modulation of hypoxia and the purinergic pathway might contribute to therapeutic restoration of T-cell function.
Collapse
Affiliation(s)
- Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Chaja F. Jacobs
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Fleur S. Peters
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liang Y, Ruan W, Jiang Y, Smalling R, Yuan X, Eltzschig HK. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat Rev Cardiol 2023; 20:723-737. [PMID: 37308571 PMCID: PMC11014460 DOI: 10.1038/s41569-023-00886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/14/2023]
Abstract
Mammals have evolved to adapt to differences in oxygen availability. Although systemic oxygen homeostasis relies on respiratory and circulatory responses, cellular adaptation to hypoxia involves the transcription factor hypoxia-inducible factor (HIF). Given that many cardiovascular diseases involve some degree of systemic or local tissue hypoxia, oxygen therapy has been used liberally over many decades for the treatment of cardiovascular disorders. However, preclinical research has revealed the detrimental effects of excessive use of oxygen therapy, including the generation of toxic oxygen radicals or attenuation of endogenous protection by HIFs. In addition, investigators in clinical trials conducted in the past decade have questioned the excessive use of oxygen therapy and have identified specific cardiovascular diseases in which a more conservative approach to oxygen therapy could be beneficial compared with a more liberal approach. In this Review, we provide numerous perspectives on systemic and molecular oxygen homeostasis and the pathophysiological consequences of excessive oxygen use. In addition, we provide an overview of findings from clinical studies on oxygen therapy for myocardial ischaemia, cardiac arrest, heart failure and cardiac surgery. These clinical studies have prompted a shift from liberal oxygen supplementation to a more conservative and vigilant approach to oxygen therapy. Furthermore, we discuss the alternative therapeutic strategies that target oxygen-sensing pathways, including various preconditioning approaches and pharmacological HIF activators, that can be used regardless of the level of oxygen therapy that a patient is already receiving.
Collapse
Affiliation(s)
- Yafen Liang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yandong Jiang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard Smalling
- Department of Cardiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
13
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
14
|
Klaver D, Thurnher M. P2Y 11/IL-1 receptor crosstalk controls macrophage inflammation: a novel target for anti-inflammatory strategies? Purinergic Signal 2023; 19:501-511. [PMID: 37016172 PMCID: PMC10073626 DOI: 10.1007/s11302-023-09932-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Although first cloning of the human ATP receptor P2Y11 was successful 25 years ago, the exact downstream signaling pathways of P2Y11 receptor, which can couple to Gq and Gs proteins, have remained unclear. Especially the lack of rodent models as well as the limited availability of antibodies and pharmacological tools have hampered examination of P2Y11 expression and function. Many meaningful observations related to P2Y11 have been made in primary immune cells, indicating that P2Y11 receptors are important regulators of inflammation and cell migration, also by controlling mitochondrial activity. Our recent studies have shown that P2Y11 is upregulated during macrophage development and activates signaling through IL-1 receptor, which is well known for its ability to direct inflammatory and migratory processes. This review summarizes the results of the first transcriptomic and secretomic analyses of both, ectopic and native P2Y11 receptors, and discusses how P2Y11 crosstalk with the IL-1 receptor may govern anti-inflammatory and pro-angiogenic processes in human M2 macrophages.
Collapse
Affiliation(s)
- Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Tang T, Huang X, Lu M, Zhang G, Han X, Liang T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun 2023; 14:3364. [PMID: 37291128 PMCID: PMC10250326 DOI: 10.1038/s41467-023-38578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer cell metabolism contributes to the establishment of an immunosuppressive tumor microenvironment. Aberrant expression of CD73, a critical enzyme in ATP metabolism, on the cell surface results in the extracellular accumulation of adenosine, which exhibits direct inhibitory effects on tumor-infiltrating lymphocytes. However, little is known about the influence of CD73 on negative immune regulation-associated signaling molecules and transduction pathways inside tumor cells. This study aims to demonstrate the moonlighting functions of CD73 in immunosuppression in pancreatic cancer, an ideal model characterized by complex crosstalk among cancer metabolism, immune microenvironment, and immunotherapeutic resistance. The synergistic effect of CD73-specific drugs in combination with immune checkpoint blockade is observed in multiple pancreatic cancer models. Cytometry by time-of-flight analysis shows that CD73 inhibition reduces tumor-infiltrating Tregs in pancreatic cancer. Tumor cell-autonomous CD73 is found to facilitate Treg recruitment, in which CCL5 is identified as a significant downstream effector of CD73 using integrated proteomic and transcriptomic analyses. CD73 transcriptionally upregulates CCL5 through tumor cell-autocrine adenosine-Adora2a signaling-mediated activation of the p38-STAT1 axis, recruiting Tregs to pancreatic tumors and causing an immunosuppressive microenvironment. Together, this study highlights that CD73-adenosine metabolism transcriptionally controls pancreatic cancer immunosuppression in a tumor-autonomous and -autocrine manner.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Minghao Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xu Han
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Ruan W, Li J, Choi S, Ma X, Liang Y, Nair R, Yuan X, Mills TW, Eltzschig HK. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 2023; 8:e166011. [PMID: 37288658 PMCID: PMC10393224 DOI: 10.1172/jci.insight.166011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiwen Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Seungwon Choi
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xinxin Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Ragini Nair
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
17
|
Forstner D, Guettler J, Brugger BA, Lyssy F, Neuper L, Daxboeck C, Cvirn G, Fuchs J, Kraeker K, Frolova A, Valdes DS, Stern C, Hirschmugl B, Fluhr H, Wadsack C, Huppertz B, Nonn O, Herse F, Gauster M. CD39 abrogates platelet-derived factors induced IL-1β expression in the human placenta. Front Cell Dev Biol 2023; 11:1183793. [PMID: 37325567 PMCID: PMC10264854 DOI: 10.3389/fcell.2023.1183793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1β, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Beatrice A. Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Kristin Kraeker
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Alina Frolova
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Molecular Biology and Genetic of NASU, Kyiv, Ukraine
| | - Daniela S. Valdes
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christina Stern
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Agrawal R, Sharafkhaneh A, Nambi V, BaHammam A, Razjouyan J. Obstructive sleep apnea modulates clinical outcomes post-acute myocardial infarction: A large longitudinal veterans' dataset report. Respir Med 2023; 211:107214. [PMID: 36924849 PMCID: PMC10122709 DOI: 10.1016/j.rmed.2023.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND While the longer-term Obstructive Sleep apnea (OSA)-related intermittent hypoxia (IH) leads to various comorbidities, it has become increasingly evident that OSA confers protective advantages during and after acute myocardial infarction (AMI). We hypothesized in patients who were admitted with acute MI, the presence of OSA is associated with lower in-hospital mortality compared to those without a prior diagnosis of OSA. METHODS In this nationwide retrospective study utilizing Veterans Health Administration records, we included patients hospitalized for MI with a history of sleep disorders from 1999 to 2020. We divided patients into two cohorts: those with OSA and those without OSA. The primary outcome was in-hospital mortality during AMI hospitalization. We analyzed the data using logistic regression and calculated the odds ratio of in-hospital mortality. RESULTS Out of more than four million veterans with any sleep diagnosis, 76,359 patients were hospitalized with a diagnosis of AMI. We observed 30,116 with OSA (age, 64 ± 10 years; BMI, 33 ± 7 kg/m2) and 43,480 without OSA (age, 68 ± 12 years; BMI, 29 ± 6 kg/m2). The aOR of in-patient mortality (n = 333 (1.1%)) was lower in those with OSA (aOR, 0.43; 95% CI, 0.38 to 0.49) compared to without-OSA (n = 1,102, 2.5%). However, the OSA cohort had a higher proportion of the prolonged length of stay (28.1%). CONCLUSIONS Presence of OSA is associated with lower in-hospital mortality among patients admitted for AMI, after adjusting for various demographic and co-morbidity factors. This study highlights the complex relationship between OSA and cardiovascular health and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Ritwick Agrawal
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Pulmonary, Critical Care and Sleep Medicine Section, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Amir Sharafkhaneh
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Pulmonary, Critical Care and Sleep Medicine Section, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Cardiology Section, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Ahmed BaHammam
- Department of Medicine, University Sleep Disorders Center and Pulmonary Service, King Saud University, Riyadh, Saudi Arabia; Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Saudi Arabia
| | - Javad Razjouyan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA; South Central Mental Illness Research, Education, and Clinical Center, Houston, TX, USA; Big Data Scientist Training Enhancement Program (BD-STEP), VA Office of Research and Development, Washington, DC, USA
| |
Collapse
|