1
|
Befikadu D, Tamrat R, Garedo AW, Beyene G, Gudina EK, Gashaw M. Faecal carriage of extended-spectrum beta-lactamase and carbapenemase-producing enterobacterales among HIV patients at Jimma Medical Center, Southwest Ethiopia. BMC Microbiol 2024; 24:459. [PMID: 39506640 PMCID: PMC11539523 DOI: 10.1186/s12866-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Enterobacterales infections in immunocompromised individuals are associated with considerable morbidity, mortality, and health care costs. This study aimed to assess the faecal carriage of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacterales (CPE) among HIV-infected patients at Jimma Medical Center. A total of 344 stool samples were collected and inoculated on Mac-Conkey and Eosin-Methylene Blue agar and incubated at 35-37 °C aerobically. ESBL and carbapenemase production were detected using D68C ESBL/AmpC and D73C CARBA plus (Mast Group, UK). RESULTS A total of 376 Enterobacterales were isolated. The prevalence of ESBL-PE and CPE carriage rate was 13.3% (50/376) and 4.3% (16/376) respectively. The highest proportion of ESBL producing isolates were found in K. pneumoniae 29.0% (9/31) followed by E. coli 13.4% (39/292). Similarly, K. pneumoniae 12.9% (4/31) was the most common carbapenem-resistant isolate followed by E. coli 3.8% (11/292). Multi-drug resistance was observed in 66.5% (250/376) of the isolates. Prior cephalosporin use (AOR = 7.9; 2.31-27.29), CD4 count (≤ 350 cells/µL) (AOR = 3.8; 1.12-12.9), and comorbidities (AOR = 2.3; 1.24-4.32) were significantly associated with ESBL production. Additionally, cephalosporin use (AOR = 6.34; 1.27-31.66) was significantly associated with the presence of CRE. CONCLUSIONS This study revealed a high prevalence of ESBL-PE and CPE among HIV patients, with K. pneumoniae and E. coli being the dominant isolates. MDR was common, with key risk factors being prior cephalosporin use, low CD4 counts, and comorbidities. These findings emphasize the need for enhanced infection prevention and control, regular screening, and improved antibiotic stewardship to curb the spread of resistant bacteria in immunocompromised individuals.
Collapse
Affiliation(s)
- Dechasa Befikadu
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Institute of Health, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - Rahel Tamrat
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia.
| | - Aster Wakjira Garedo
- School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Getenet Beyene
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | | | - Mulatu Gashaw
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
| |
Collapse
|
2
|
Badr DF, Zaki MES, Elsayed AG, Elsayed MA, Kamel NM, Salam MMM. "Molecular Characterization of Extended Spectrum Beta-Lactamase Resistance in Pediatric Shigella Isolates in Egypt". Biochem Genet 2024:10.1007/s10528-024-10943-x. [PMID: 39485669 DOI: 10.1007/s10528-024-10943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
Shigellosis is a major cause of morbidity and mortality among children, especially in developing countries. The increased extended-spectrum beta-lactamase (ESBL) resistance in Shigella poses a challenge for effective treatment. To examine the antibiotic resistance and ESBL profile of Shigella isolates from children with acute diarrhea. Shigella was isolated from stool cultures from pediatric patients suffering from acute diarrhea. The isolates were identified by bacteriological tests, serotyping, and multiplex polymerase chain reaction (PCR). The antimicrobial resistance was examined by disc diffusion. Phenotypic tests and PCR examined the ESBLs and CTX-M, SHV, and TEM genes. A total of 100 Shigella (10% prevalence rate) were isolated. The S. sonnei and S. dysenteries were the most prevalent species (33% and 31%, respectively), followed by S. flexneri (27%), and only 9% were S. boydii. The isolates had complete resistance (100%) to ampicillin. There was lower resistance to ciprofloxacin (24%), and no resistance to imipenem. By phenotypic tests, 54% of isolates had ESBL. By PCR, bla-CTX-M gene was the most prevalent (50%), followed by bla-TEM (48.1%). Only one isolate (1.9%) had the bla-SHV gene. The alarmingly high rates of antibiotic resistance and ESBL resistance among Shigella spp highlight the urgent need to restrict the unguided use of these drugs. Continuous monitoring of local and global antibiotic resistance patterns is required to prevent the spread of resistance.
Collapse
Affiliation(s)
- Dina F Badr
- Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Ahmed Gomaa Elsayed
- Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
3
|
Itani R, Khojah HMJ, Kibrit R, Raychouni H, Shuhaiber P, Dib C, Hassan M, Mukattash TL, El-Lakany A. Risk factors associated with multidrug-resistant Klebsiella pneumoniae infections: a multicenter observational study in Lebanese hospitals. BMC Public Health 2024; 24:2958. [PMID: 39449026 PMCID: PMC11515809 DOI: 10.1186/s12889-024-20474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a significant global public health burden, especially in low-income countries and regions with fragile healthcare infrastructures, due to its ability to cause severe infections, increase mortality rates, and its rising antimicrobial resistance. This study aimed to estimate the proportion of multidrug-resistant (MDR) K. pneumoniae infections and identify associated risk factors. METHODS Data were retrospectively collected from three academic hospitals in Beirut, Lebanon, between January 2021 and September 2023 using a standardized form. Binary logistic regression was used to determine risk factors associated with MDR, extended-spectrum beta-lactamase (ESBL)-producing, and carbapenem-resistant K. pneumoniae (CRKP) infections. RESULTS Out of 2,655 K. pneumoniae cases, 410 met the inclusion criteria. The primary infection sources were the urinary tract (58.3%) and the respiratory tract (12.4%). Among the isolates, 61% were MDR K. pneumoniae, with 7.3% being extensively drug-resistant, and 0.5% pandrug-resistant. Additionally, 36.8% were ESBL-producing, while 6.3% were CRKP. Predictors significantly associated with MDR K. pneumoniae infections included male sex (adjusted odds ratio [AOR] = 3.46, 95% CI = 1.01-11.86, P = 0.04), recent antibiotics use (AOR = 4.52, 95% CI = 1.65-12.36, P = 0.003), and recent cancer chemotherapy (AOR = 3.43, 95% CI = 1.25-9.42, P = 0.01). ESBL-producing infections were associated with age ≥ 65 years, higher Charlson Comorbidity Index (CCI), and recent antibiotic use. CRKP infections were linked to male sex, prior antibiotic use, and longer hospital stays prior to infection (all P < 0.05). CONCLUSIONS MDR K. pneumoniae infections are steadily rising in Lebanon, along with an increase in ESBL-producing and CRKP cases. The main risk factors for MDR K. pneumoniae infections were male sex, recent antibiotic use, and cancer chemotherapy. ESBL-producing infections were associated with advanced age, higher CCI, and recent antibiotic use, while CRKP infections were linked to male sex, prior antibiotic use, and prolonged hospital stays. This situation is further exacerbated by inadequate healthcare infrastructure and suboptimal national surveillance. Strengthening local surveillance and implementing effective antibiotic stewardship programs are critical to managing this growing threat..
Collapse
Affiliation(s)
- Rania Itani
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Rahaf Kibrit
- Pharmacy Department, Lebanese Hospital Geitaoui University Medical Center, Beirut, Lebanon
| | - Hamza Raychouni
- Intensive Care Unit, Anesthesia Department, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
- Intensive Care Unit, Respiratory Care Department, American University of Beirut Medical Center, Beirut, Lebanon
- Intensive Care Unit, Aboujaoudé Hospital, Maten, Lebanon
| | - Patricia Shuhaiber
- Pharmacy Department, Mount Lebanon Hospital Balamand University Medical Center, Hazmieh, Lebanon
| | - Carole Dib
- Pharmacy Department, Lebanese Hospital Geitaoui University Medical Center, Beirut, Lebanon
| | - Mariam Hassan
- Emergency Department, Sahel General Hospital, Beirut, Lebanon
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdalla El-Lakany
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Lawrence J, O'Hare D, van Batenburg-Sherwood J, Sutton M, Holmes A, Rawson TM. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat Commun 2024; 15:9070. [PMID: 39433753 PMCID: PMC11494114 DOI: 10.1038/s41467-024-53192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Beta-lactamase-producing Enterobacteriaceae present a significant therapeutic challenge. Current developments in phenotypic diagnostics focus primarily on rapid minimum inhibitory concentration (MIC) determination. There is a requirement for rapid phenotypic diagnostics to improve antimicrobial susceptibility tests (AST) and aid prescribing decisions. Phenotypic AST are limited in their ability to characterise beta-lactamase-producing Enterobacteriaceae in detail. Despite advances in rapid AST, gaps and opportunities remain for developing additional diagnostic approaches that facilitate personalised antimicrobial prescribing. In this perspective, we highlight the state-of-the-art in beta-lactamase detection, identify gaps in current practice, and discuss barriers for innovation within this field.
Collapse
Affiliation(s)
- Jennifer Lawrence
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom.
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom.
| | - Danny O'Hare
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Joseph van Batenburg-Sherwood
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, White City Campus, London, United Kingdom
| | - Mark Sutton
- Antimicrobial Discovery, Development and Diagnostics (AD3) UK Health Security Agency, Porton Down, Salisbury, Wiltshire, United Kingdom
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Alison Holmes
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- David Price Evans Infectious Diseases and Global Health Group, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Miles Rawson
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Abera D, Negash AA, Fentaw S, Mekonnen Y, Cataldo RJ, Wami AA, Mihret A, Abegaz WE. High prevalence of colonization with extended-spectrum β-lactamase-producing and multidrug-resistant Enterobacterales in the community in Addis Ababa Ethiopia: risk factors, carbapenem resistance, and molecular characterization. BMC Microbiol 2024; 24:402. [PMID: 39390409 PMCID: PMC11465526 DOI: 10.1186/s12866-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Globally, extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales are major causes of hospital-acquired infections and there are increasing concerns about their role in community-acquired infections. OBJECTIVE We aimed to investigate the prevalence of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and Carbapenemase-producing-Carbapenemresistant-Enterobacterales (CP-CRE) and associated factors in community settings in Gulele sub city, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted among 261 healthy individuals. Stool samples were collected and processed using standard microbiological methods. Antimicrobial susceptibility and phenotypic ESBL and carbapenemase tests were performed. Antibiotic resistance genes were detected by Polymerase Chain Reaction (PCR). RESULTS The colonization rate of ESBL-PE and CP-CRE were 31.4% (82/261, 95% CI: 25.91-37.48) and 0.8% (2/261, 95% CI: 0.13-3.1), respectively by phenotypic method. Molecular detection of genes for ESBL-PE was 27.9% (73/261, 95% CI:22.7-33.9), and for CP-CRE was 0.8% (2/261, 95% CI: 0.13-3.1). The most prevalent genes were blaTEM [76.7% (56/73)] and blaCTX-M [45.2% (33/73)]. Previous antibiotic use (AOR:2.04, 95%CI: 1.35-4.41, P:0.041) and age between 42 and 53 years old (AOR:3.00, 95%CI:1.12-7.48, P:0.019) were significantly associated with ESBL-PE colonization. CONCLUSION Intestinal colonization by ESBL-PE harboring the associated antibiotic resistance genes was substantially high but with low CP-CRE. Continued surveillance of community-level carriage of antimicrobial resistance Enterobacterales is warranted.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Kasanga M, Gajdács M, Muleya W, Ikhimiukor OO, Mudenda S, Kasanga M, Chizimu J, Shempela DM, Solochi BB, Mwikisa MJ, Yamba K, Andam CP, Chanda R, Chanda D, Kwenda G. Genotypic Characterisation and Antimicrobial Resistance of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Humans, Animals, and the Environment from Lusaka, Zambia: Public Health Implications and One Health Surveillance. Antibiotics (Basel) 2024; 13:951. [PMID: 39452217 PMCID: PMC11505244 DOI: 10.3390/antibiotics13100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Extended-spectrum β-lactamases (ESBL) in Escherichia coli are a serious concern due to their role in developing multidrug resistance (MDR) and difficult-to-treat infections. OBJECTIVE This study aimed to identify ESBL-carrying E. coli strains from both clinical and environmental sources in Lusaka District, Zambia. METHODS This cross-sectional study included 58 ESBL-producing E. coli strains from hospital inpatients, outpatients, and non-hospital environments. Antimicrobial susceptibility was assessed using the Kirby-Bauer disk diffusion method and the VITEK® 2 Compact System, while genotypic analyses utilised the Illumina NextSeq 2000 sequencing platform. RESULTS Among the strains isolated strains, phylogroup B2 was the most common, with resistant MLST sequence types including ST131, ST167, ST156, and ST69. ESBL genes such as blaTEM-1B, blaCTX-M,blaOXA-1, blaNDM-5, and blaCMY were identified, with ST131 and ST410 being the most common. ST131 exhibited a high prevalence of blaCTX-M-15 and resistance to fluoroquinolones. Clinical and environmental isolates carried blaNDM-5 (3.4%), with clinical isolates showing a higher risk of carbapenemase resistance genes and the frequent occurrence of blaCTX-M and blaTEM variants, especially blaCTX-M-15 in ST131. CONCLUSIONS This study underscores the public health risks of blaCTX-M-15- and blaNDM-5-carrying E. coli. The strengthening antimicrobial stewardship programmes and the continuous surveillance of AMR in clinical and environmental settings are recommended to mitigate the spread of resistant pathogens.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka 15101, Zambia; (B.B.S.); (R.C.)
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary;
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, State University of New York, Albany, NY 12222, USA; (O.O.I.); (C.P.A.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 15101, Zambia;
| | - Maika Kasanga
- Department of Pharmacy, University Teaching Hospitals, Lusaka 15101, Zambia;
| | - Joseph Chizimu
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (J.C.); (K.Y.)
| | - Doreen Mainza Shempela
- Department of Laboratory Services and Research, Churches Health Association of Zambia, Lusaka 10101, Zambia;
| | - Benjamin Bisesa Solochi
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka 15101, Zambia; (B.B.S.); (R.C.)
| | - Mark John Mwikisa
- Department of Pathology, Lusaka Trust Hospital, Lusaka 10101, Zambia;
| | - Kaunda Yamba
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (J.C.); (K.Y.)
| | - Cheryl P. Andam
- Department of Biological Sciences, State University of New York, Albany, NY 12222, USA; (O.O.I.); (C.P.A.)
| | - Raphael Chanda
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka 15101, Zambia; (B.B.S.); (R.C.)
| | - Duncan Chanda
- Centre of Excellence for Adult Infectious Diseases, University Teaching Hospitals, Lusaka 15101, Zambia;
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 15101, Zambia;
| |
Collapse
|
7
|
Samir A, Abdel-Moein KA, Zaher HM. Predominance of enterotoxigenic Escherichia coli among ESBL/plasmid-mediated AmpC-producing strains isolated from diarrheic foals: a public health concern. Acta Vet Scand 2024; 66:54. [PMID: 39363309 PMCID: PMC11448284 DOI: 10.1186/s13028-024-00774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The upsurge of diarrheagenic E. coli pathotypes carrying extended-spectrum beta-lactamases (ESBLs)/plasmid-mediated AmpC β-lactamase (pAmpC) among animals constitutes an emerging threat for humans and animals. This study investigated the burden of ESBL-/pAmpC-producing diarrheagenic E. coli among diarrheic foals and its potential public health implications. Rectal swabs were collected from 80 diarrheic foals. These swabs were processed to isolate and identify ESBL/pAmpC-producing E. coli using a selective culture medium, biochemical tests, phenotypic identification, and molecular identification of ESBL- and pAmpC-encoding genes. Moreover, all ESBL-/pAmpC-producing E. coli isolates were examined for different virulence genes related to diarrheagenic E. coli pathotypes. RESULTS Out of 80 examined foals, 26 (32.5%) were confirmed as ESBL-/pAmpC-producing E. coli, of which 14 (17.5%) animals carried only ESBL-producing E. coli, whereas 12 (15%) animals possessed ESBL-pAmpC-producing E. coli. The only detected diarrheagenic pathotype was enterotoxigenic, encoded by the heat-stable enterotoxin gene (ST) with a prevalence rate of 80.8% (21/26). The ST gene was further characterized where STa, STb, and STa + STb were found in one, four, and 16 strains, respectively. Moreover, all enterotoxigenic E. coli (ETEC) isolates exhibited a multidrug-resistance pattern. The phylogenetic analysis of 3 obtained partial STb sequences revealed high genetic relatedness to ETEC isolates retrieved from humans, conferring such sequences' public health significance. CONCLUSIONS These findings highlight that diarrheic foals could serve as a potential reservoir for multidrug-resistant ESBL-/pAmpC-producing enterotoxigenic E. coli.
Collapse
Affiliation(s)
- Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Hala M Zaher
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Viasus D, Gudiol C, Carratalà J. Treatment of multidrug-resistant Gram-negative bloodstream infections in critically ill patients: an update. Curr Opin Crit Care 2024; 30:448-455. [PMID: 39150047 DOI: 10.1097/mcc.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review describes the latest information in the management of bloodstream infections caused by multidrug-resistant Gram-negative bacilli (MDRGNB) in critically ill patients. RECENT FINDINGS The prevalence of bloodstream infections due to MDRGNB is high, and they pose a significant risk in critically ill patients. Recently, novel antimicrobial agents, including new β-lactam/β-lactamase inhibitor combinations and cefiderocol, have been introduced for treating these infections. Concurrently, updated guidelines have been issued to aid in treatment decisions. Prompt diagnosis and identification of resistance patterns are crucial for initiating effective antibiotic therapy. Current studies, especially with observational design, and with limited sample sizes and patients with bacteremia, suggest that the use of these new antibiotics is associated with improved outcomes in critically ill patients with MDRGNB bloodstream infections. SUMMARY For critically ill patients with bloodstream infections caused by MDRGNB, the use of newly developed antibiotics is recommended based on limited observational evidence. Further randomized clinical trials are necessary to determine the most effective antimicrobial therapies among the available options.
Collapse
Affiliation(s)
- Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla, Colombia
| | - Carlota Gudiol
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
- Institut Català d'Oncologia, IDIBELL, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
| |
Collapse
|
9
|
Chaisaeng S, Phetburom N, Kasemsiri P, Putthanachote N, Wangnadee N, Boueroy P, Kerdsin A, Chopjitt P. Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand. Antibiotics (Basel) 2024; 13:917. [PMID: 39452184 PMCID: PMC11505529 DOI: 10.3390/antibiotics13100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The global emergence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae presents a significant public health threat and complicates antibiotic treatment for infections. This study aimed to determine the prevalence of ESBL-producing K. pneumoniae in a clinical setting, analyze their antimicrobial susceptibility profiles, and characterize both phenotypic and genetic determinants. A total of 507 non-duplicate clinical isolates of Enterobacterales were collected between 2019 and 2020, and third-generation cephalosporin resistance was screened by disk diffusion. Identification of K. pneumoniae was confirmed using biochemical tests and PCR with species-specific primers. Antimicrobial susceptibility testing was conducted using disk diffusion, and phenotypic ESBL production was confirmed using the combined disk method. Multiplex PCR detected ESBL genes (blaTEM, blaSHV, and blaCTX-M) and identified blaCTX-M groups. The genetic relatedness of ESBL-producing strains was assessed using the ERIC-PCR approach. Fitty-four isolates were confirmed as ESBL producers, all classified as multidrug-resistant (MDR). All ESBL-producing K. pneumoniae isolates exhibited resistance to ampicillin and cefotaxime, with high resistance rates for ciprofloxacin (98.2%), azithromycin (94.4%), piperacillin-tazobactam (88.9%), and trimethoprim (83.3%). Genotypic analysis revealed blaCTX-M was present in 94.4% of isolates, blaSHV in 87%, and blaTEM in 55.5%. The blaCTX-M-1 group was the most prevalent, accounting for 96.1% of isolates. Co-harboring of blaCTX-M, blaSHV, and blaTEM occurred in 42.6% of isolates, with co-carrying of blaCTX-M, and blaSHV was observed in 23/54 isolates. The ERIC-PCR analysis revealed 15 distinct types, indicating high genetic diversity. These findings highlight the urgent need for ongoing monitoring to control the spread of ESBL among K. pneumoniae and emphasize the importance of early detection and appropriate antibiotic selection for effectively treating infection caused by these pathogens.
Collapse
Affiliation(s)
- Sumontha Chaisaeng
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Pachara Kasemsiri
- Clinical Microbiology Laboratory, Sakon Nakhon Hospital, Sakon Nakhon 47000, Thailand;
| | - Nuntiput Putthanachote
- Clinical Microbiology Laboratory, Roi-Et Hospital, Roi-Et 45000, Thailand; (N.P.); (N.W.)
| | - Naowarut Wangnadee
- Clinical Microbiology Laboratory, Roi-Et Hospital, Roi-Et 45000, Thailand; (N.P.); (N.W.)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| |
Collapse
|
10
|
Geleta D, Abebe G, Tilahun T, Gezahegn D, Workneh N, Beyene G. Phenotypic bacterial epidemiology and antimicrobial resistance profiles in neonatal sepsis at Jimma medical center, Ethiopia: Insights from prospective study. PLoS One 2024; 19:e0310376. [PMID: 39283882 PMCID: PMC11404823 DOI: 10.1371/journal.pone.0310376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epidemiological profiles and the rundown crisis of antimicrobial resistance from bacterial isolates in neonatal sepsis compel regular surveillance to enhance data-driven decision-making. Accordingly, this study aimed to assess the phenotypic epidemiology and antimicrobial resistance profiles of bacteria isolated from clinically suspected neonatal sepsis in Ethiopia. METHODS A total of 342 neonates suspected of clinical sepsis were randomly included in a prospective observational study conducted at the neonatal intensive care unit (NICU) of Jimma medical center (JMC) from May 2022 to July 2023. Blood samples were collected from each neonate and subjected to a culture test for identification of bacterial isolates and their antibiotic resistance profiles following the standardized guidelines. The laboratory results, along with relevant clinical data, were recorded using WHONET and analyzed using STATA software. RESULTS Out of the 342 blood samples that were analyzed, 138 samples (40.4%, 95% CI: 35.1-45.6, P<0.01) exhibited proven bacterial infection. The infection rates were notably higher in males with 85/138 (61.6%, 95% CI: 53.4-69.8, P<0.01) and neonates aged 0-3 days with 81/138 (58.7%, 95% CI: 50.5-66.9, P<0.01). The majority of the infections were attributed to Gram-negative bacteria, accounting for 101/138(73.2%, 95% CI: 65.6-80.7) cases, with 69/101(68.3%, 95% CI: 63.8-72.8) cases involving ESBL-producing strains, while Gram-positive bacteria were responsible for 26.8% (95% CI: 19.3-34.4) of the infections. The predominant isolates included Klebsiella pneumoniae (37.7%, 95% CI: 29.6-45.8), Coagulase-negative Staphylococci (CoNs) (20.3%, 95% CI: 13.6-27.0), and Acinetobacter species (11.6%, 95% CI: 6.0-17.1). Of the total cases, 43/72 (59.7%, 95% CI: 48.4-71.1, P<0.01) resulted in mortality, with 28/72 (38.9%, 95% CI: 27.70-50.1, P<0.03) deaths linked to Extended-Spectrum Beta-Lactamase (ESBL)-producing strains. Klebsiella pneumoniae displayed high resistance rates to trimethoprim-sulfamethoxazole (100%), ceftriaxone (100%), cefotaxime (98.1%), ceftazidime (90.4%), and gentamicin (84.6%). Acinetobacter species showed resistance to ampicillin (100%), cefotaxime (100%), trimethoprim-sulfamethoxazole (75%), ceftazidime (68.8%), chloramphenicol (68.8%), and ceftriaxone (68.8%). Likewise, CoNs displayed resistance to ampicillin (100%), penicillin (100%), cefotaxime (86.0%), gentamicin (57.2%), and oxacillin (32.2%). Multidrug resistance was observed in 88.4% (95% CI: 81.8-93.0) of isolates, with ESBL-producers significantly contributing (49.3%, 95% CI: 45.1-53.5). Furthermore, 23.0% (95% CI: 15.8-31.6) exhibited a prevalent resistance pattern to seven distinct antibiotic classes. CONCLUSION The prevalence and mortality rates of neonatal sepsis were significantly high at JMC, with a notable surge in antibiotic and multidrug resistance among bacterial strains isolated from infected neonates, specifically ESBL-producers. These resistant strains have a significant impact on infection rates and resistance profiles, highlighting the requisite for enhanced diagnostic and antimicrobial stewardship, stringent infection control, and further molecular characterization of isolates to enhance neonatal survival.
Collapse
Affiliation(s)
- Daniel Geleta
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemeda Abebe
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
| | - Tsion Tilahun
- Department of Pediatrics and Child Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Didimos Gezahegn
- Microbiology Unit, Jimma Medical Center, Jimma, Oromia, Ethiopia
| | - Netsanet Workneh
- Department of Health Behavior and Society, Jimma University, Jimma, Oromia, Ethiopia
| | - Getenet Beyene
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
11
|
Suchanta N, Ullah N, Santanirand P, Am-In N, Chaichanawongsaroj N. Antimicrobial Susceptibility of Commensal Escherichia coli from Pig Fecal Samples and Enhanced Sensitivity for Direct Detection of the blaCTX-M Gene by Nested PCR. Animals (Basel) 2024; 14:2630. [PMID: 39335221 PMCID: PMC11428893 DOI: 10.3390/ani14182630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The commensal Escherichia coli in the gut of pigs is a major reservoir of antimicrobial resistance and can result in possible transmission to humans through the food chain. Direct detection of E. coli from fecal samples is challenging and can be used as a bioindicator of antimicrobial resistance. This study aimed to compare the antimicrobial susceptibility profiles in commensal E. coli from antibiotic- and nonantibiotic-using pig farms and developed the direct detection of ESBL genes in pig fecal samples using nested PCR (nPCR) and multiplex PCR (mPCR) techniques. All direct genotypic results were validated with the results of PCR sequencing of isolated E. coli colonies. The ESBL-producing E. coli were found in 98.6% (145 isolates) and 96.6% (144 isolates) of antibiotic-using and nonantibiotic-using farms, respectively, predominantly CTX-M-55. The nPCR decreased the limit of detection (LOD) from sPCR about 100 times, and the lower LODs of 102, 101, and 1 CFU/mL were reached after incubating samples in an enrichment medium for 2, 4, and 8 h, respectively. The mPCR, sPCR, and nPCR techniques showed sensitivities of 30.15%, 69.85%, and 91.91%, respectively, compared to PCR sequencing. The stability and recycling of ESBL genes were independent of antibiotic usage in commensal E. coli originating in pig farms.
Collapse
Affiliation(s)
- Nutchaba Suchanta
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Naeem Ullah
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nutthee Am-In
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nuntaree Chaichanawongsaroj
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Widodo A, Khairullah AR, Effendi MH, Moses IB, Agustin ALD. Extended-spectrum β-lactamase-producing Escherichia coli from poultry: A review. Vet World 2024; 17:2017-2027. [PMID: 39507773 PMCID: PMC11536724 DOI: 10.14202/vetworld.2024.2017-2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) are β-lactamase enzymes produced by Gram-negative bacterial pathogens that harbor the ESBL genes. In addition, most ESBL genes are plasmid-mediated and usually encode a broader spectrum of antimicrobial resistance, especially to penicillins, first-generation, second-generation, and third-generation cephalosporins, as well as monobactam, such as aztreonam. Escherichia coli has become an opportunistic pathogen, especially in poultry, and has been implicated in zoonotic diseases that can be transmitted to humans, resulting in public health problems. Poultry can act as carriers of ESBL-producing E. coli (ESBL-EC) bacteria to humans through poultry meat that is contaminated by waste products, feces, and excretions. The ESBL gene CTX-M type was identified as the main cause of infection in humans and was detected in poultry as a cause of infection accompanied by clinical symptoms. Several studies have also shown a link between E. coli and ESBL gene transfer from birds to humans. Controlling the spread of ESBL-EC involves maintaining the cleanliness of poultry products, especially meat, and eliminating contaminant sources from poultry. Likewise, maintaining the environmental cleanliness of poultry slaughterhouses and poultry farms must be taken as a precautionary measure to curtail the increasing spread of ESBL-EC into the environment. This review aimed to explain the spread of ESBL-producing E. coli in poultry.
Collapse
Affiliation(s)
- Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Alfiana Laili Dwi Agustin
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
13
|
Naser JA, Hossain H, Chowdhury MSR, Liza NA, Lasker RM, Rahman A, Haque MA, Hossain MM, Rahman MM. Exploring of spectrum beta lactamase producing multidrug-resistant Salmonella enterica serovars in goat meat markets of Bangladesh. Vet Anim Sci 2024; 25:100367. [PMID: 38947184 PMCID: PMC11214345 DOI: 10.1016/j.vas.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The emergence of Salmonella enterica serovars that produce extended-spectrum beta-lactamase and exhibit multi-drug resistance (MDR) poses a substantial global threat, contributing to widespread foodborne illnesses and presenting an alarming issue for public health. This study specifically concentrated on the isolation and identification of ESBL-resistant genes (bla TEM, bla SHV, bla CTX-M1, bla CTX-M2, bla CTX-M9, MultiCase ACC, MultiCase MOX, MultiCase DHA, bla OXA) and the antibiogram profiling of Salmonella enterica serovars found in goat meat samples procured from retail outlets in Bangladesh. During the research in the Sylhet district of Bangladesh, researchers gathered a total of 210 samples of goat meat from 13 different Upazilas. Primarily, cultural and biochemical methods were used for isolation of bacteria from the selected samples. Salmonella enterica serovars Typhimurium and Enteritidis, along with three ESBL-resistant genes, were identified through polymerase chain reactions (PCRs). The disk diffusion test was used to determine antimicrobial susceptibilities. Out of 210 samples analysed, Salmonella spp. was detected in 18.10 % (38 out of 210), with S. Enteritidis and S. Typhimurium found in 9.05 % (19 out of 210) and 5.24 % (11 out of 210) of the samples, respectively. A total of 72.73 % (8/11) of S. Enteritidis and 100 % (19/19) of S. Typhimurium isolates were positive by Multidrug-resistant patterns. The positive outcomes were found of S. Typhimurium tested 63.16 % (12 out of 19) for the bla TEM gene and 21.05 % (4/19) for the bla SHV, gene. The study proposes that the retail goat meat market channel could be a prominent transmission way of ESBL-producing MDR Salmonella enterica serovars, representing a significant public health hazard.
Collapse
Affiliation(s)
- Jarin Al Naser
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Hemayet Hossain
- Department of Anatomy and Histology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Shahidur Rahman Chowdhury
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Nasrin Akter Liza
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rayhan Mahmud Lasker
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Asikur Rahman
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Ariful Haque
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Mukter Hossain
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Mahfujur Rahman
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
14
|
Justiz-Vaillant A, Gopaul D, Soodeen S, Unakal C, Thompson R, Pooransingh S, Arozarena-Fundora R, Asin-Milan O, Akpaka PE. Advancements in Immunology and Microbiology Research: A Comprehensive Exploration of Key Areas. Microorganisms 2024; 12:1672. [PMID: 39203514 PMCID: PMC11357253 DOI: 10.3390/microorganisms12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Immunology and microbiology research has witnessed remarkable growth and innovation globally, playing a pivotal role in advancing our understanding of immune mechanisms, disease pathogenesis, and therapeutic interventions. This manuscript presents a comprehensive exploration of the key areas in immunology research, spanning from the utilisation of bacterial proteins as antibody reagents to the intricate realms of clinical immunology and disease management. The utilisation of bacterial immunoglobulin-binding proteins (IBPs), including protein A (SpA), protein G (SpG), and protein L (SpL), has revolutionised serological diagnostics, showing promise in early disease detection and precision medicine. Microbiological studies have shed light on antimicrobial resistance patterns, particularly the emergence of extended-spectrum beta-lactamases (ESBLs), guiding antimicrobial stewardship programmes and informing therapeutic strategies. Clinical immunology research has elucidated the molecular pathways underlying immune-mediated disorders, resulting in tailored management strategies for conditions such as severe combined immunodeficiency (SCID), neuropsychiatric systemic lupus erythematosus (NPSLE), etc. Additionally, significant efforts in vaccine development against tuberculosis and HIV are highlighted, underscoring the ongoing global pursuit of effective preventive measures against these infectious diseases. In summary, immunology and microbiology research have provided significant contributions to global healthcare, fostering collaboration, innovation, and improved patient outcomes.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Shalini Pooransingh
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | | | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
| |
Collapse
|
15
|
Ibaideya MA, Taha AA, Qadi M. Phenotypic and molecular characterization of multidrug-resistant Enterobacterales isolated from clinical samples in Palestine: a focus on extended-spectrum β-lactamase- and carbapenemase-producing isolates. BMC Infect Dis 2024; 24:812. [PMID: 39134953 PMCID: PMC11318133 DOI: 10.1186/s12879-024-09726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum β-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.
Collapse
Affiliation(s)
- Mamoun At Ibaideya
- PhD Program in Clinical Laboratory Science, Department of Medical and Health Sciences, Faculty of Graduate Studies, An-Najah National University, Nablus, 44839, State of Palestine
- Department of Microbiology, Palestinian Medical Complex, Ministry of Health, Ramallah, State of Palestine
| | - Adham Abu Taha
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839, State of Palestine.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, State of Palestine.
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, State of Palestine.
| |
Collapse
|
16
|
Fenollar-Penadés A, Catalá-Gregori P, Tallá-Ferrer V, Castillo MÁ, García-Ferrús M, Jiménez-Belenguer A. Evolution of the Antibiotic Resistance Levels, Multi-Resistance Patterns, and Presence of Antibiotic Resistance Genes in E. coli Isolates from the Feces of Breeding Hens during the Rearing Period. Antibiotics (Basel) 2024; 13:753. [PMID: 39200053 PMCID: PMC11350658 DOI: 10.3390/antibiotics13080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The food chain acts as an entry point for antibiotic resistance to reach humans and environment. Because of the importance of the poultry sector, we investigated the prevalence and evolution of antibiotic resistance in Escherichia coli isolates from a series of 14,500 breeding hens and their farm environment during the rearing period. Samples included meconium from one-day-old breeders and fecal samples and boot swabs from the breeding sheds of pullets and adult hens. All E. coli isolates from one-day-old chicks, 77% from feces and 61% from boot swabs, were resistant to at least one antibiotic. Cefotaxime and multi-drug resistance in fecal isolates decreased during the rearing period from 41.2% and 80.8% in one-day-old chicks to 3.8% and 33.8% in adults. All genes studied were detected in E. coli from feces and boot swabs, the most common being blaTEM (75%), blaSHV (72%), and qnrB (67%). blaCMY-2 was detected in 100% of one-day-old breeders. The combination of at least one cephalosporin and one quinolone resistance gene was detected in 68.7% of fecal and boot swab isolates. Our results highlight the need to monitor the prevalence of antibiotic resistance on farms and to take appropriate measures to reduce the risk to public and environmental health.
Collapse
Affiliation(s)
- Alejandro Fenollar-Penadés
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Pablo Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), CEU Universities, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Spain;
| | | | - María Ángeles Castillo
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Miguel García-Ferrús
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| | - Ana Jiménez-Belenguer
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain; (A.F.-P.); (M.G.-F.); (A.J.-B.)
| |
Collapse
|
17
|
Soni K, Jyoti K, Kumar A, Chandra R. Coexistence of multidrug resistance and ESBL encoding genes - bla TEM, bla SHV, and bla CTX-M; its amplification and dispersion in the environment via municipal wastewater treatment plant. CHEMOSPHERE 2024; 362:142829. [PMID: 38992444 DOI: 10.1016/j.chemosphere.2024.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anil Kumar
- State Level Water Analysis Laboratory, UP Jal Nigam (Urban) 6, Rana Pratap Marg, Lucknow, 226001, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
18
|
Keck JM, Viteri A, Schultz J, Fong R, Whitman C, Poush M, Martin M. New Agents Are Coming, and So Is the Resistance. Antibiotics (Basel) 2024; 13:648. [PMID: 39061330 PMCID: PMC11273847 DOI: 10.3390/antibiotics13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a global threat that requires urgent attention to slow the spread of resistant pathogens. The United States Centers for Disease Control and Prevention (CDC) has emphasized clinician-driven antimicrobial stewardship approaches including the reporting and proper documentation of antimicrobial usage and resistance. Additional efforts have targeted the development of new antimicrobial agents, but narrow profit margins have hindered manufacturers from investing in novel antimicrobials for clinical use and therefore the production of new antibiotics has decreased. In order to combat this, both antimicrobial drug discovery processes and healthcare reimbursement programs must be improved. Without action, this poses a high probability to culminate in a deadly post-antibiotic era. This review will highlight some of the global health challenges faced both today and in the future. Furthermore, the new Infectious Diseases Society of America (IDSA) guidelines for resistant Gram-negative pathogens will be discussed. This includes new antimicrobial agents which have gained or are likely to gain FDA approval. Emphasis will be placed on which human pathogens each of these agents cover, as well as how these new agents could be utilized in clinical practice.
Collapse
Affiliation(s)
- J. Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alina Viteri
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Rebecca Fong
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Charles Whitman
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Madeline Poush
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marlee Martin
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
19
|
Handayani KS, Setiyono A, Lukman DW, Pisestyani H, Rahayu P. Distribution of extended-spectrum β-lactamase producing Escherichia coli genes in an integrated poultry-fish farming system in Bogor, Indonesia. Vet World 2024; 17:1596-1602. [PMID: 39185037 PMCID: PMC11344124 DOI: 10.14202/vetworld.2024.1596-1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The excessive use of antimicrobials in livestock farming leads to the emergence and dissemination of antimicrobial-resistant organisms. This study aimed to detect extended-spectrum β-lactamase (ESBL)-producing Escherichia coli genes in integrated poultry-fish farms in Bogor, Indonesia. Materials and Methods A total of 256 samples were collected from six poultry-fish farms. One hundred and seventy-five chicken cloaca swabs, 60 fish skin swabs, six pond water samples, and 15 farmer's hand swabs. ESBL-producing E. coli was confirmed through double-disk diffusion. The specific primers and probe genes for quantitative polymerase chain reaction detection of ESBL-producing E. coli targeted blaTEM, blaCTX-M, blaSHV, and blaOXA-48 genes. Results Among the 256 samples tested, 145 (56.6%) were positive for E. coli, and 67.6% (98/145) were identified as ESBL-producing E. coli. The most ESBL-producing E. coli isolates were obtained from chicken cloaca (78.3%, 72/92), followed by pond water (66.7%, 4/6), fish skin (47.6%, 20/42), and farmer's hand swabs (40%, 2/5). About 100% of the isolates carried the genes blaTEM and blaCTX-M, whereas 17.3% and 24.5% carried blaSHV and blaOXA-48, respectively. Conclusion ESBL-producing E. coli genes were investigated in chicken cloaca, fish, pond water, and farmers' hands within an interconnected poultry-fish farming operation. The ESBL-producing E. coli in chickens can transfer resistant genes to aquatic environments. The transfer could harm other aquatic species and food chains, potentially threatening human health.
Collapse
Affiliation(s)
- Kusuma Sri Handayani
- Animal Biomedical Science Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Bogor Agricultural Development Polytechnic, Bogor, Indonesia
| | - Agus Setiyono
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Denny Widaya Lukman
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Herwin Pisestyani
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Animal Products Quality Testing and Certification Center, Directorate General of Livestock and Animal Health, Ministry of Agriculture, Bogor, Indonesia
| |
Collapse
|
20
|
Duc HM, Hoa TTK, Thang NV, Son HM. First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam. Microorganisms 2024; 12:1305. [PMID: 39065073 PMCID: PMC11279206 DOI: 10.3390/microorganisms12071305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin-resistant Escherichia coli (COE) has been recently recognized as a serious threat to animal and human health. This study aimed to determine the prevalence and antibiotic resistance profile of COE isolated from raw beef and cow feces in Vietnam. Our results showed that 16% (16/100) and 32% (32/100) of raw beef and cow feces samples were positive for COE, respectively. A total of 48 COE strains were isolated, with 16 originating from raw beef and 32 from cow feces samples. The antibiotic susceptibility test revealed that the COE isolates were highly resistant to ampicillin, tetracycline, florfenicol, trimethoprim/sulfamethoxazole, streptomycin, and nalidixic acid, with resistance rates ranging from 66.67% to 87.5%. In addition, 87.5% of the isolates were identified to be multidrug-resistant strains. Further molecular characterization indicated that all COE isolates carried the mcr-1 gene, with 16 of them also harboring blaCTX-M-55 genes. Taken together, the findings in this study demonstrate that raw beef and cow feces are important sources of COE, which can be potentially transmitted to humans through the food chain.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Tran Thi Khanh Hoa
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Nguyen Van Thang
- Veterinary Hospital, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| |
Collapse
|
21
|
Snyder KB, Hunter CJ, Buonpane CL. Perforated Appendicitis in Children: Management, Microbiology, and Antibiotic Stewardship. Paediatr Drugs 2024; 26:277-286. [PMID: 38653916 DOI: 10.1007/s40272-024-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Although appendicitis has been described for more than 300 years, its optimal management remains a topic of active investigation. Acute appendicitis is the most common cause of peritonitis in children, and rates of perforated appendicitis are much higher in children than in adults. Increased risk for perforated appendicitis in children is related to a delay in diagnosis due to age, size, access to care, and more. Surgical options include immediate appendectomy versus nonoperative management with intravenous antibiotics ± a drainage procedure, with a subsequent interval appendectomy. Microbiota of perforated appendicitis in children most often includes Escherichia coli, Bacteroides fragilis, Streptococcus, and more. Even though the most common organisms are known, there is a large variety of practice when it comes to postoperative antibiotic management in these patients. Studies discuss the benefits of mono- versus dual or triple therapy without a particular consensus regarding what to use. This is reflected across differing practices at various institutions. In this review, we aim to explore the implications of perforated appendicitis in pediatrics, common organisms seen, antibiotic regimen coverage, and the implications of variations of practice. Resistance to commonly used broad-spectrum antibiotics is evolving, therefore minimization of care variability is needed for improved patient outcomes and proper antibiotic stewardship.
Collapse
|
22
|
Cui J, Dong Y, Chen Q, Zhang C, He K, Hu G, He D, Yuan L. Horizontal transfer characterization of ColV plasmids in bla CTX-M-bearing avian Escherichia coli. Poult Sci 2024; 103:103631. [PMID: 38537404 PMCID: PMC11067769 DOI: 10.1016/j.psj.2024.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Extended-spectrum-β-lactamases (ESBLs)-producing Escherichia coli conferred resistance to most β-lactams, except for carbapenems. To date, the transmission mechanism of blaCTX-M, as the most common ESBLs subtype, in E. coli has received sustained attention around the worldwide, but the research on the pathogenicity of blaCTX-M-bearing E. coli is still scarce. The aims of this study were to discern the spread characteristics of ColV (encoding colicin V) plasmids in blaCTX-M-positive E. coli. The multi-drug resistance traits, phylogroups, and ColV plasmid profilings were screened in 76 blaCTX-M-positive E. coli. Thereafter, the genetic profiles of E. coli G12 and GZM7 were determined by whole genome sequencing, conjugation and S1-pulsed-field gel electrophoresis. The median lethal dose was analyzed in E. coli G12 and TG12A, the ColV-plasmid transconjugant of G12. Of all 76 blaCTX-M-bearing E. coli, 67.11% exhibited resistance to at least 2 drugs in addition to ceftiofur, 14.47% carried ColV-positive plasmids, and 53.95% were phylogroup C. Further studies demonstrated that the blaCTX-M-bearing E. coli G12 was assigned to the predominant lineage O78:H4-ST117 of phylogroup G. In addition, its ColV-positive plasmid simultaneously carried multiple resistance genes, and could be independently transferred to confer partial pathogenicity on its host by plasmid mating. E. coli GZM7 was O53:H9-ST23 of phylogroup C, which belonged to another representative lineage of APEC (avian pathogenic E. coli). Its ColV-positive plasmid could complete conjugation with the help of the other coexisting-resistance conjugative plasmid, although it failed to transfer alone. Our findings highlight the flexibly horizontal transfer of ColV plasmids along with multidrug-resistant genes among blaCTX-M-bearing E. coli poses a threat to poultry health and food safety, which contributes to elucidate the concept of "One Health" and deserves particular concern.
Collapse
Affiliation(s)
- Junling Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yanbin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiuru Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chaojun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
23
|
Mansouri S, Savari M, Malakian A, Abbasi Montazeri E. High prevalence of multidrug-resistant Enterobacterales carrying extended-spectrum beta-lactamase and AmpC genes isolated from neonatal sepsis in Ahvaz, Iran. BMC Microbiol 2024; 24:136. [PMID: 38658819 PMCID: PMC11040821 DOI: 10.1186/s12866-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.
Collapse
Affiliation(s)
- Sima Mansouri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Malakian
- Department of Pediatrics, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Di Pietro M, Filardo S, Sessa R. Editorial for the Special Issue "Antibacterial Activity of Drug-Resistant Strains". Int J Mol Sci 2024; 25:1878. [PMID: 38339156 PMCID: PMC10856051 DOI: 10.3390/ijms25031878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Antimicrobial resistance is an urgent global public health threat, as approximately 700,000 deaths annually can be attributed to antibiotic-resistant bacterial infections, and this figure is expected to reach 10 million deaths/year by 2050, a number that greatly exceeds the number of deaths resulting from cancer [...].
Collapse
|