1
|
Macke AJ, Divita TE, Pachikov AN, Mahalingam S, Bellamkonda R, Rasineni K, Casey CA, Petrosyan A. Alcohol-induced Golgiphagy is triggered by the downregulation of Golgi GTPase RAB3D. Autophagy 2024; 20:1537-1558. [PMID: 38591519 PMCID: PMC11210917 DOI: 10.1080/15548627.2024.2329476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
The development of alcohol-associated liver disease (ALD) is associated with disorganized Golgi apparatus and accelerated phagophore formation. While Golgi membranes may contribute to phagophores, association between Golgi alterations and macroautophagy/autophagy remains unclear. GOLGA4/p230 (golgin A4), a dimeric Golgi matrix protein, participates in phagophore formation, but the underlying mechanism is elusive. Our prior research identified ethanol (EtOH)-induced Golgi scattering, disrupting intra-Golgi trafficking and depleting RAB3D GTPase from the trans-Golgi. Employing various techniques, we analyzed diverse cellular and animal models representing chronic and chronic/binge alcohol consumption. In trans-Golgi of non-treated hepatocytes, we found a triple complex formed between RAB3D, GOLGA4, and MYH10/NMIIB (myosin, heavy polypeptide 10, non-muscle). However, EtOH-induced RAB3D downregulation led to MYH10 segregation from the Golgi, accompanied by Golgi fragmentation and tethering of the MYH10 isoform, MYH9/NMIIA, to dispersed Golgi membranes. EtOH-activated autophagic flux is evident through increased WIPI2 recruitment to the Golgi, phagophore formation, enhanced LC3B lipidation, and reduced SQSTM1/p62. Although GOLGA4 dimerization and intra-Golgi localization are unaffected, loss of RAB3D leads to an extension of the cytoplasmic N terminal domain of GOLGA4, forming GOLGA4-positive phagophores. Autophagy inhibition by hydroxychloroquine (HCQ) prevents alcohol-mediated Golgi disorganization, restores distribution of ASGR (asialoglycoprotein receptor), and mitigates COL (collagen) deposition and steatosis. In contrast to short-term exposure to HCQ, extended co-treatment with both EtOH and HCQ results in the depletion of LC3B protein via proteasomal degradation. Thus, (a) RAB3D deficiency and GOLGA4 conformational changes are pivotal in MYH9-driven, EtOH-mediated Golgiphagy, and (b) HCQ treatment holds promise as a therapeutic approach for alcohol-induced liver injury.Abbreviation: ACTB: actin, beta; ALD: alcohol-associated liver disease; ASGR: asialoglycoprotein receptor; AV: autophagic vacuoles; EM: electron microscopy; ER: endoplasmic reticulum; EtOH: ethanol; HCQ: hydroxychloroquine; IP: immunoprecipitation; KD: knockdown; KO: knockout; MYH10/NMIIB: myosin, heavy polypeptide 10, non-muscle; MYH9/NMIIA: myosin, heavy polypeptide 9, non-muscle; PLA: proximity ligation assay; ORO: Oil Red O staining; PM: plasma membrane; TGN: trans-Golgi network; SIM: structured illumination super-resolution microscopy.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Taylor E. Divita
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Artem N. Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sundararajan Mahalingam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Carol A. Casey
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Macke AJ, Pachikov AN, Divita TE, Morris ME, LaGrange CA, Holzapfel MS, Kubyshkin AV, Zyablitskaya EY, Makalish TP, Eremenko SN, Qiu H, Riethoven JJM, Hemstreet GP, Petrosyan AA. Targeting the ATF6-Mediated ER Stress Response and Autophagy Blocks Integrin-Driven Prostate Cancer Progression. Mol Cancer Res 2023; 21:958-974. [PMID: 37314749 PMCID: PMC10527559 DOI: 10.1158/1541-7786.mcr-23-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Prostate cancer progression to the lethal metastatic castration-resistant phenotype (mCRPC) is driven by αv integrins and is associated with Golgi disorganization and activation of the ATF6 branch of unfolded protein response (UPR). Overexpression of integrins requires N-acetylglucosaminyltransferase-V (MGAT5)-mediated glycosylation and subsequent cluster formation with Galectin-3 (Gal-3). However, the mechanism underlying this altered glycosylation is missing. For the first time, using HALO analysis of IHC, we found a strong association of integrin αv and Gal-3 at the plasma membrane (PM) in primary prostate cancer and mCRPC samples. We discovered that MGAT5 activation is caused by Golgi fragmentation and mislocalization of its competitor, N-acetylglucosaminyltransferase-III, MGAT3, from Golgi to the endoplasmic reticulum (ER). This was validated in an ethanol-induced model of ER stress, where alcohol treatment in androgen-refractory PC-3 and DU145 cells or alcohol consumption in patient with prostate cancer samples aggravates Golgi scattering, activates MGAT5, and enhances integrin expression at PM. This explains known link between alcohol consumption and prostate cancer mortality. ATF6 depletion significantly blocks UPR and reduces the number of Golgi fragments in both PC-3 and DU145 cells. Inhibition of autophagy by hydroxychloroquine (HCQ) restores compact Golgi, rescues MGAT3 intra-Golgi localization, blocks glycan modification via MGAT5, and abrogates delivery of Gal-3 to the cell surface. Importantly, the loss of Gal-3 leads to reduced integrins at PM and their accelerated internalization. ATF6 depletion and HCQ treatment synergistically decrease integrin αv and Gal-3 expression and temper orthotopic tumor growth and metastasis. IMPLICATIONS Combined ablation of ATF6 and autophagy can serve as new mCRPC therapeutic.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Artem N. Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Taylor E. Divita
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Mary E. Morris
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Chad A. LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Anatoly V. Kubyshkin
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Evgeniya Y. Zyablitskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Tatiana P. Makalish
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Sergey N. Eremenko
- Saint Luc’s Clinique, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
| | - George P. Hemstreet
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- Omaha Western Iowa Health Care System Urology, VA Service, Department of Research Service, Omaha, NE, USA, 68105
| | - and Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| |
Collapse
|
3
|
Yadin D, Petrover Z, Shainberg A, Alcalai R, Waldman M, Seidman J, Seidman CE, Abraham NG, Hochhauser E, Arad M. Autophagy Guided Interventions to Modify the Cardiac Phenotype of Danon Disease. Biochem Pharmacol 2022; 204:115229. [PMID: 36027926 DOI: 10.1016/j.bcp.2022.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Danon disease is a lethal X-linked genetic syndrome resulting from radical mutations in the LAMP2 gene. LAMP2 protein deficiency results in defective lysosomal function, autophagy arrest and a multisystem disorder primarily involving the heart, skeletal muscle and the central nervous system. Cardiomyopathy is the main cause of morbidity and mortality. To investigate the mechanisms of and develop therapies for cardiac Danon disease we engineered a mouse model carrying an exon 6 deletion human mutation in LAMP2, which recapitulates the human cardiac disease phenotype. Mice develop cardiac hypertrophy followed by left ventricular dilatation and systolic dysfunction, in association with progressive fibrosis, oxidative stress, accumulation of autophagosomes and activation of proteasome. Stimulation of autophagy in Danon mice (by exercise training, caloric restriction, and rapamycin) aggravate the disease phenotype by promoting dilated cardiomyopathy. Inhibiting autophagy (by high fat diet or hydroxychloroquine) is better tolerated by Danon mice compared to wild type but is not curative. Inhibiting proteasome by Velcade was found to be highly toxic to Danon mice, suggesting that proteasome is activated to compensate for defective autophagy. In conclusion, activation of autophagy should be avoided in Danon patients. Since Danon's is a lifelong disease, we suggest that lifestyle interventions to decrease cardiac stress may be useful to slow progression of Danon's cardiomyopathy. While Danon mice better tolerate high fat diet and sedentary lifestyle, the benefit regarding cardiomyopathy in humans needs to be balanced against other health consequences of such interventions.
Collapse
Affiliation(s)
- Dor Yadin
- Felsenstein Research Center and the Department of Cardiothoracic, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel; Leviev Heart Center, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Zachary Petrover
- Felsenstein Research Center and the Department of Cardiothoracic, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel; Bar-Ilan University, Ramat Gan, Israel
| | | | - Ronny Alcalai
- Heart Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel. 5. Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maayan Waldman
- Felsenstein Research Center and the Department of Cardiothoracic, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Jon Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christine E Seidman
- Howard Hughes Medical Institute and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Edith Hochhauser
- Felsenstein Research Center and the Department of Cardiothoracic, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
4
|
Zhao F, Wang J, Wang Q, Hou Z, Zhang Y, Li X, Wu Q, Chen H. Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration. Exp Anim 2022; 71:316-328. [PMID: 35197405 PMCID: PMC9388344 DOI: 10.1538/expanim.21-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to COVID-19 patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Zhilli Hou
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Yingchao Zhang
- Department of Pulmonary and Critical Care Medicine, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Tianjin Key Laboratory of Lung Regenerative Medicine
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases.,Tianjin Key Laboratory of Lung Regenerative Medicine
| |
Collapse
|
5
|
Bonam SR, Muller S, Bayry J, Klionsky DJ. Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine. Autophagy 2020; 16:2260-2266. [PMID: 32522067 PMCID: PMC7755324 DOI: 10.1080/15548627.2020.1779467] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.Abbreviation: ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
- Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Zuchelkowski BE, Wang L, Gingras S, Xu Q, Yang M, Triulzi D, Page GP, Gordeuk VR, Kim-Shapiro DB, Lee JS, Gladwin MT. Brief Report: Hydroxychloroquine does not induce hemolytic anemia or organ damage in a "humanized" G6PD A- mouse model. PLoS One 2020; 15:e0240266. [PMID: 33007039 PMCID: PMC7531777 DOI: 10.1371/journal.pone.0240266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
Background Hydroxychloroquine (HCQ) is widely used in the treatment of malaria, rheumatologic disease such as lupus, and most recently, COVID-19. These uses raise concerns about its safe use in the setting of glucose-6-phosphate dehydrogenase (G6PD) deficiency, especially as 11% of African American men carry the G6PD A- variant. However, limited data exist regarding the safety of HCQ in this population. Study design and methods Recently, we created a novel “humanized” mouse model containing the G6PD deficiency A- variant (Val68Met) using CRISPR technology. We tested the effects of high-dose HCQ administration over 5 days on hemolysis in our novel G6PD A- mice. In addition to standard hematologic parameters including plasma hemoglobin, erythrocyte methemoglobin, and reticulocytes, hepatic and renal function were assessed after HCQ. Results Residual erythrocyte G6PD activity in G6PD A- mice was ~6% compared to wild-type (WT) littermates. Importantly, we found no evidence of clinically significant intravascular hemolysis, methemoglobinemia, or organ damage in response to high-dose HCQ. Conclusions Though the effects of high doses over prolonged periods was not assessed, this study provides early, novel safety data of the use of HCQ in the setting of G6PD deficiency secondary to G6PD A-. In addition to novel safety data for HCQ, to our knowledge, we are the first to present the creation of a “humanized” murine model of G6PD deficiency.
Collapse
Affiliation(s)
- Benjamin E. Zuchelkowski
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Ling Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Minying Yang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Darrell Triulzi
- Department of Pathology, Division of Transfusion Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Grier P. Page
- RTI International, Research Triangle Park, Durham, NC, United States of America
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, University of Illinois at Chicago School of Medicine, Chicago, IL, United States of America
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States of America
| | - Janet S. Lee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Mark T. Gladwin
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|