1
|
Lv D, Han N, Yuan M, Huang W, Yan L, Tang H. Depression and the risk of non-alcohol fatty liver disease: Results from a cross-sectional study and a Mendelian randomization analysis. J Affect Disord 2024; 366:300-307. [PMID: 39216642 DOI: 10.1016/j.jad.2024.08.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous studies have suggested that psychiatric factors may be pathogenic for NAFLD. However, the association between depression and NAFLD is not been consistent, and whether depression plays a causal role in the development of NAFLD remains unclear. METHODS We extracted data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 to assess the correlation between depression and NAFLD risk. Based on previous genome-wide association studies (GWAS) meta-analyses on NAFLD and depression, we performed a Mendelian randomization (MR) analysis to explore the causal effect of depression on NAFLD. The primary analysis method used in the MR analysis was inverse variance weighted. RESULTS We ultimately extracted the data from 3878 individuals in the NHANES database to perform the cross-sectional study. Multivariable-adjusted logistic regression showed that depressed individuals had a higher risk of NAFLD than controls (odds ratio [OR] 1.33, 95 % CI 1.03-1.72, p = 0.027) among women. Based on GWAS data, we included 36 genetic variants as instrumental variables to estimate the causal effect of depression on NAFLD risk. The MR analysis revealed a causal association between genetically predicted depression and an increased risk of NAFLD (OR = 1.504, 95 % CI 1.13-2.00, p = 0.005). LIMITATIONS The consistency of these findings in Eastern populations requires further longitudinal studies. CONCLUSIONS This cross-sectional study suggested that depression might increase the risk of NAFLD in women. The MR analysis demonstrated that there exists a causal association between genetically predicated depression and NAFLD risk.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
2
|
Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol 2024; 46:6377-6389. [PMID: 39057023 PMCID: PMC11276081 DOI: 10.3390/cimb46070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| |
Collapse
|
3
|
Mikkelsen ACD, Kjærgaard K, Mookerjee RP, Vilstrup H, Wegener G, Bay-Richter C, Thomsen KL. Non-alcoholic Fatty Liver Disease: Also a Disease of the Brain? A Systematic Review of the Preclinical Evidence. Neurochem Res 2024; 49:1468-1488. [PMID: 35230646 DOI: 10.1007/s11064-022-03551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 12/09/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) currently affects 25% of the global adult population. Cognitive impairment is a recently recognised comorbidity impeding memory, attention, and concentration, affecting the patients' activities of daily living and reducing their quality of life. This systematic review provides an overview of the evidence for, and potential pathophysiological mechanisms behind brain dysfunction at a neurobiological level, in preclinical NAFLD. We performed a systematic literature search for animal models of NAFLD studying intracerebral conditions using PubMed, Embase and Scopus. We included studies that reported data on neurobiology in rodent and pig models with evidence of steatosis or steatohepatitis assessed by liver histology. 534 unique studies were identified, and 30 studies met the selection criteria, and were included. Findings of neurobiological changes were divided into five key areas: (1) neuroinflammation, (2) neurodegeneration, (3) neurotransmitter alterations, (4) oxidative stress, and (5) changes in proteins and synaptic density. Despite significant heterogeneity in the study designs, all but one study of preclinical NAFLD reported changes in one or more of the above key areas when compared to control animals. In conclusion, this systematic review supports an association between all stages of NAFLD (from simple steatosis to non-alcoholic steatohepatitis (NASH)) and neurobiological changes in preclinical models.
Collapse
Affiliation(s)
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
4
|
Mostafa AM, Hafez SM, Abdullah NM, Fouad Y. Fatigue, depression, and sleep disorders are more prevalent in patients with metabolic-associated fatty liver diseases. Eur J Gastroenterol Hepatol 2024; 36:665-673. [PMID: 38477854 DOI: 10.1097/meg.0000000000002752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
AIM To determine the prevalence and risk factors for depression, sleep disturbances, and exhaustion in MAFLD patients. METHODS Two hundred twenty-four consecutive patients with MAFLD attending the outpatient clinic from April to October 2023; were subjected to clinical evaluation, laboratory testing including non-invasive laboratory markers, fibroscan (measuring steatosis and fibrosis), and different quantitative and qualitative fatigue scores. A control group including 342 patients without MAFLD was taken. RESULTS The prevalence of fatigue, depression, and sleeping disorders in the MAFLD group was 67.8%, 75%, 62.5% vs 21%, 16.4%, and 19.5% in the control group respectively ( P = <0.001, P = <0.001 and P = <0.001). MAFLD with fatigue was significantly associated with the presence and severity of steatosis and fibrosis by fibroscan ( P = <0.0001). By univariate and multivariate analysis: age, BMI, waist circumference, T2DM, hypertension, steatosis, fibrosis, and Fib-4 were considered risk factors for fatigue in the MAFLD group. The age, high social level, diabetes, hypertension, steatosis, fibrosis, and fib-4 were considered, by univariate and multivariate analysis, independent risk factors for depression in the MAFLD group. age, BMI, waist circumference, diabetes, hypertension, steatosis, fibrosis, and fib-4 were independent risk factors for sleep disorders in MAFLD. CONCLUSION Fatigue, sleeping disorders, and depression are more prevalent in MAFLD patients than in the general population. The lower health utility scores in patients with MAFLD are associated with more advanced stages of the disease.
Collapse
Affiliation(s)
- Alaa M Mostafa
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University
| | - Shaimaa Moustafa Hafez
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Minia University
| | - Noha M Abdullah
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University
| |
Collapse
|
5
|
Sogabe M, Okahis T, Kagawa M, Sei M, Ueda H, Yokoyama R, Kagemoto K, Tanaka H, Kida Y, Nakamura F, Tomonari T, Okamoto K, Miyamoto H, Sato Y, Nakasono M, Takayama T. Association of variabilities in body mass index and waist circumference with newly achieved remission of metabolic dysfunction-associated fatty liver disease. Diabetes Metab Syndr 2024; 18:103036. [PMID: 38754333 DOI: 10.1016/j.dsx.2024.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
AIMS Although body weight reduction is recommended to ameliorate nonalcoholic fatty liver disease, the effects of body mass index (BMI) and waist circumference (WC) variability on newly achieved remission of metabolic dysfunction-associated fatty liver disease (MAFLD) remain unclear. We aimed to investigate the longitudinal association between BMI and WC variabilities and newly achieved MAFLD remission in both sexes. METHODS Among 26,952 patients, 1823 with MAFLD diagnosed by ultrasonography and with >2 health checkups over >2 years from April 2014 to March 2021 were included in this observational cohort study. A generalized estimation equation model analyzed the association between BMI and WC and newly achieved MAFLD remission according to repeated measures at baseline and the most recent stage. RESULTS Rates of MAFLD remission in male and female patients were 7.4 % and 6.0 %, respectively. Regarding decreased BMI variability, newly achieved MAFLD remission prevalence among the subgroups differed significantly between sexes (p < 0.001). In male patients, a decrease in BMI variability of ≥1.5 kg/m2 and WC variability of ≥4.2 cm had adjusted odds ratios (ORs) of 5.215 and 2.820, respectively, for newly achieved MAFLD remission. Among female patients, regular exercise and breakfast consumption were accelerating factors for newly achieved MAFLD remission. Non-invasive liver fibrosis scores significantly differed between MAFLD and newly achieved MAFLD remission, including in the subgroups (p < 0.01 and p < 0.001, respectively). CONCLUSIONS Reducing BMI and WC variabilities in male patients and improving lifestyle habits in female patients may accelerate MAFLD remission.
Collapse
Affiliation(s)
- Masahiro Sogabe
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan; Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, 2233 Kawanoe-cho, Shikokuchuo City, Ehime, 799-0193, Japan.
| | - Toshiya Okahis
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan; Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, 2233 Kawanoe-cho, Shikokuchuo City, Ehime, 799-0193, Japan
| | - Miwako Kagawa
- Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, 2233 Kawanoe-cho, Shikokuchuo City, Ehime, 799-0193, Japan
| | - Motoko Sei
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan; Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, 2233 Kawanoe-cho, Shikokuchuo City, Ehime, 799-0193, Japan
| | - Hiroyuki Ueda
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan; Department of Internal Medicine, Shikoku Central Hospital of the Mutual Aid Association of Public School Teachers, 2233 Kawanoe-cho, Shikokuchuo City, Ehime, 799-0193, Japan
| | - Reiko Yokoyama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Kaizo Kagemoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hironori Tanaka
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Yoshifumi Kida
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Fumika Nakamura
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Masahiko Nakasono
- Department of Internal Medicine, Tsurugi Municipal Handa Hospital, 234-1Nakayabu, Handaaza, Tsurugi-cho, Mimagun, Tokushima, 779-4401, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| |
Collapse
|
6
|
Shea S, Lionis C, Kite C, Lagojda L, Uthman OA, Dallaway A, Atkinson L, Chaggar SS, Randeva HS, Kyrou I. Non-alcoholic fatty liver disease and coexisting depression, anxiety and/or stress in adults: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1357664. [PMID: 38689730 PMCID: PMC11058984 DOI: 10.3389/fendo.2024.1357664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, affecting 25-30% of the general population globally. The condition is even more prevalent in individuals with obesity and is frequently linked to the metabolic syndrome. Given the known associations between the metabolic syndrome and common mental health issues, it is likely that such a relationship also exists between NAFLD and mental health problems. However, studies in this field remain limited. Accordingly, the aim of this systematic review and meta-analysis was to explore the prevalence of one or more common mental health conditions (i.e., depression, anxiety, and/or stress) in adults with NAFLD. Methods PubMed, EBSCOhost, ProQuest, Ovid, Web of Science, and Scopus were searched in order to identify studies reporting the prevalence of depression, anxiety, and/or stress among adults with NAFLD. A random-effects model was utilized to calculate the pooled prevalence and confidence intervals for depression, anxiety and stress. Results In total, 31 studies were eligible for inclusion, involving 2,126,593 adults with NAFLD. Meta-analyses yielded a pooled prevalence of 26.3% (95% CI: 19.2 to 34) for depression, 37.2% (95% CI: 21.6 to 54.3%) for anxiety, and 51.4% (95% CI: 5.5 to 95.8%) for stress among adults with NAFLD. Conclusion The present findings suggest a high prevalence of mental health morbidity among adults with NAFLD. Given the related public health impact, this finding should prompt further research to investigate such associations and elucidate potential associations between NAFLD and mental health morbidity, exploring potential shared underlying pathophysiologic mechanisms. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021288934.
Collapse
Affiliation(s)
- Sue Shea
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Christos Lionis
- Laboratory of “Health and Science” School of Medicine, University of Crete, Heraklion, Greece
- Department of Health, Medicine and Caring Sciences, University of Linkoping, Linkoping, Sweden
- Department of Nursing, Frederick University, Nicosia, Cyprus
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- Chester Medical School, University of Chester, Shrewsbury, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Olalekan A. Uthman
- Division of Health Sciences, Warwick Centre for Global Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alexander Dallaway
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Lou Atkinson
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- iPrescribe Exercise Digital Ltd (EXI), London, United Kingdom
| | | | - Harpal S. Randeva
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
7
|
Gabbia D, Sayaf K, Zanotto I, Colognesi M, Frion-Herrera Y, Carrara M, Russo FP, De Martin S. Tyrosol attenuates NASH features by reprogramming the hepatic immune milieu. Eur J Pharmacol 2024; 969:176453. [PMID: 38408597 DOI: 10.1016/j.ejphar.2024.176453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, and no drugs have been approved for its therapy. Among plant-derived molecules, phenolic compounds of extra virgin olive oil like tyrosol (Tyr) had demonstrated multiple beneficial actions for liver health, including the modulation of inflammation in fibrosis. This study aims at assessing the protective effect and mechanism of Tyr in invitro and in vivo models of NASH, with a focus on the hepatic immune microenvironment and extrahepatic manifestations. The effect of Tyr was evaluated in cellular models of NASH, obtained by co-culturing palmitic and oleic acid-treated HepG2 cells with THP1-derived M1 macrophages and LX2 cells, and in a mouse model of NASH induced by a high fructose-high fat diet combined to CCl4 treatment. In vitro Tyr reduced fatty acid (FA) accumulation in HepG2 cells and displayed a beneficial effect on LX2 activation and macrophage differentiation. In vivo, beside reducing steatosis and fibrosis in NASH animals, Tyr prevented inflammation, as demonstrated by the reduction of hepatic inflammatory foci, and immune cells like CD86+ macrophages (p < 0.05), CD4+ (p < 0.05) and T helper effector CD4+ FoxP3- CD62L-lymphocytes (p < 0.05). Also, the prooxidant enzyme NOX1 and the mRNA expression of TGF-β1 and IL6 (p < 0.05) were reduced by Tyr. Notably, in Tyr-treated animals, a significant increase of CD4+ FoxP3+ Treg cells (p < 0.05) was observed, involved in regenerative pathways. Moreover, Tyr attenuated the fatigue and anxious behavior observed in NASH mice. In conclusion, Tyr effectively reduced NASH-related steatosis, fibrosis, oxidative stress, and inflammation, displaying a beneficial effect on the hepatic immune infiltrate, indicating its possible development as a therapeutic agent for NASH due to its multifaceted mechanism.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Yahima Frion-Herrera
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Giuffrè M, Merli N, Pugliatti M, Moretti R. The Metabolic Impact of Nonalcoholic Fatty Liver Disease on Cognitive Dysfunction: A Comprehensive Clinical and Pathophysiological Review. Int J Mol Sci 2024; 25:3337. [PMID: 38542310 PMCID: PMC10970252 DOI: 10.3390/ijms25063337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) exponentially affects the global healthcare burden, and it is currently gaining increasing interest in relation to its potential impact on central nervous system (CNS) diseases, especially concerning cognitive deterioration and dementias. Overall, scientific research nowadays extends to different levels, exploring NAFLD's putative proinflammatory mechanism of such dysmetabolic conditions, spreading out from the liver to a multisystemic involvement. The aim of this review is to analyze the most recent scientific literature on cognitive involvement in NAFLD, as well as understand its underlying potential background processes, i.e., neuroinflammation, the role of microbiota in the brain-liver-gut axis, hyperammonemia neurotoxicity, insulin resistance, free fatty acids, and vitamins.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT 06511, USA
| | - Nicola Merli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
- Interdepartmental Research Center for Multiple Sclerosis and Other Inflammatory and Degenerative Disorders of the Nervous System, University of Ferrara, 44124 Ferrara, Italy
| | - Rita Moretti
- Department of Clinical, Medical and Surgical Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
9
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
10
|
Lin YK, Cai XR, Chen JZ, Hong HJ, Tu K, Chen YL, Du Q. Non-alcoholic fatty liver disease causally affects the brain cortical structure: a Mendelian randomization study. Front Neurosci 2024; 17:1305624. [PMID: 38260009 PMCID: PMC10800802 DOI: 10.3389/fnins.2023.1305624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Reduced brain volume, impaired cognition, and possibly a range of psychoneurological disorders have been reported in patients with non-alcoholic fatty liver disease (NAFLD); however, no underlying cause has been specified. Here, Mendelian randomization (MR) was employed to determine the causative NAFLD effects on cortical structure. Methods We used pooled-level data from FinnGen's published genome-wide association study (GWAS) of NAFLD (1908 cases and 340,591 healthy controls), as well as published GWAS with NAFLD activity score (NAS) and fibrosis stage-associated SNPs as genetic tools, in addition to the Enigma Consortium data from 51,665 patients, were used to assess genetic susceptibility in relation to changes with cortical thickness (TH) and surface area (SA). A main estimate was made by means of inverse variance weighted (IVW), while heterogeneity and pleiotropy were detected using MR-Egger, weighted median, and MR Pleiotropy RESidual Sum and Outlier to perform a two-sample MR analysis. Results At the global level, NAFLD reduced SA (beta = -586.72 mm2, se = 217.73, p = 0.007) and several changes in the cortical structure of the cerebral gyrus were found, with no detectable pleiotropy. Conclusion NAFLD causally affects cortical structures, which supports the presence of an intricate liver-brain axis.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Xin-Ran Cai
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Jiang-Zhi Chen
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Hai-Jie Hong
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Kai Tu
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Yan-Ling Chen
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Qiang Du
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| |
Collapse
|
11
|
Butt AS, Devi J. Polycystic ovary syndrome and nonalcoholic fatty liver disease. POLYCYSTIC OVARY SYNDROME 2024:92-99. [DOI: 10.1016/b978-0-323-87932-3.00021-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Korobeinikova AV, Zlobovskaya OA, Sheptulina AF, Ashniev GA, Bobrova MM, Yafarova AA, Akasheva DU, Kabieva SS, Bakoev SY, Zagaynova AV, Lukashina MV, Abramov IA, Pokrovskaya MS, Doludin YV, Tolkacheva LR, Kurnosov AS, Zyatenkova EV, Lavrenova EA, Efimova IA, Glazunova EV, Kiselev AR, Shipulin GA, Kontsevaya AV, Keskinov AA, Yudin VS, Makarov VV, Drapkina OM, Yudin SM. Gut Microbiota Patterns in Patients with Non-Alcoholic Fatty Liver Disease: A Comprehensive Assessment Using Three Analysis Methods. Int J Mol Sci 2023; 24:15272. [PMID: 37894951 PMCID: PMC10607775 DOI: 10.3390/ijms242015272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.
Collapse
Affiliation(s)
- Anna V. Korobeinikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Olga A. Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Ashniev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria M. Bobrova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Dariga U. Akasheva
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Shuanat Sh. Kabieva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Siroj Yu. Bakoev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anjelica V. Zagaynova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria V. Lukashina
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Ivan A. Abramov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Mariya S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Yurii V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Larisa R. Tolkacheva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Alexander S. Kurnosov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Elena V. Zyatenkova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya A. Lavrenova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Irina A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya V. Glazunova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Anton A. Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Valentin V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Sergey M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| |
Collapse
|
13
|
Jiang S, Zhang J, Liu Y, Zhang T, Zheng H, Sang X, Lu X, Xu Y. Unravelling the liver-brain connection: A two-sample Mendelian randomization study investigating the causal relationship between NAFLD and cortical structure. Diabetes Res Clin Pract 2023; 204:110927. [PMID: 37778665 DOI: 10.1016/j.diabres.2023.110927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has been linked to cognitive decline and neuropsychiatric conditions, implying a potential connection between NAFLD and brain health. However, the causal association between NAFLD and cortical changes remains uncertain. This study aimed to examine the causal impact of NAFLD on cortical structures using a two-sample Mendelian randomization (MR) approach. METHODS Summary data from genome-wide association studies (GWAS) for NAFLD were gathered from large-scale cohorts. Surface area (SA) and cortical thickness (TH) measurements were derived from Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium magnetic resonance imaging (MRI) data of 33,992 participants. Inverse-variance weighted (IVW) served as the primary method. Additional sensitivity analyses, including MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), MR-Egger, and weighted median procedures, were conducted to detect heterogeneity and pleiotropy. RESULTS Our MR analysis revealed that NAFLD led to notable alterations in cortical structures, particularly in the pars orbitalis gyrus. Specifically, genetically predicted NAFLD was linked to a decrease in TH (β = -0.008 mm, 95 % CI: -0.013 mm to -0.004 mm, P = 3.00 × 10-4) within this region. No significant heterogeneity and pleiotropy were identified. CONCLUSION The two-sample MR study supports the existence of a liver-brain axis by demonstrating a causal association between NAFLD and changes in cortical structures. These findings emphasize the potential association between NAFLD and brain health, which could have implications for preventing and treating cognitive deficits and neuropsychiatric conditions in patients with NAFLD.
Collapse
Affiliation(s)
- Shitao Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Custodio RJP, Hobloss Z, Myllys M, Hassan R, González D, Reinders J, Bornhorst J, Weishaupt AK, Seddek AL, Abbas T, Friebel A, Hoehme S, Getzmann S, Hengstler JG, van Thriel C, Ghallab A. Cognitive Functions, Neurotransmitter Alterations, and Hippocampal Microstructural Changes in Mice Caused by Feeding on Western Diet. Cells 2023; 12:2331. [PMID: 37759553 PMCID: PMC10529844 DOI: 10.3390/cells12182331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
15
|
Wernberg CW, Grønkjær LL, Gade Jacobsen B, Indira Chandran V, Krag A, Graversen JH, Weissenborn K, Vilstrup H, Lauridsen MM. The prevalence and risk factors for cognitive impairment in obesity and NAFLD. Hepatol Commun 2023; 7:e00203. [PMID: 37378627 PMCID: PMC10309508 DOI: 10.1097/hc9.0000000000000203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Severe obesity may be accompanied by cognitive dysfunction and NAFLD, but the associations remain unclear. We describe the prevalence and features of cognitive dysfunction and examine the associations between cognitive dysfunction and the presence and severity of NAFLD, and the associations between cognitive dysfunction and signs of other obesity-related comorbidities and neuronal damage. METHODS A cross-sectional study of patients with a body mass index of 35 kg/m2 underwent evaluation for bariatric surgery. They were screened for adiposity-related comorbidity and underwent a liver biopsy and basic cognitive testing with the Continuous Reaction Time test, the Portosystemic Encephalopathy Syndrome test, and the Stroop Test. A representative subgroup also underwent the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The primary study outcome was "cognitive impairment," defined as ≥2 abnormal basic cognitive tests and/or an abnormal RBANS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) served as a biomarker for neuronal damage. RESULTS We included 180 patients; 72% were women, age 46 ± 12 years, 78% had NAFLD, and 30% with NASH without cirrhosis. 8% were cognitively impaired by the basic tests and 41% by RBANS results. Most impaired were executive and short-time memory functions. There were no associations between cognitive impairment and BMI, NAFLD presence or severity, or metabolic comorbidities. Male sex (OR: 3.67, 95% CI, 1.32-10.27) and using 2 or more psychoactive medications (5.24, 95% CI, 1.34-20.4) were associated with impairment. TREM2 was not associated with cognitive impairment. CONCLUSIONS Nearly half of this severely obese study cohort exhibited measurable multidomain cognitive impairment. This was not dependent on NAFLD or another adiposity comorbidity.
Collapse
Affiliation(s)
- Charlotte W. Wernberg
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
| | - Lea L. Grønkjær
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Birgitte Gade Jacobsen
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| | | | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
| | - Jonas H. Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karin Weissenborn
- Department of Neurology, Medical School, Hannover, Hannover, Germany
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette M. Lauridsen
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
16
|
Wang S, Zeng F, Ma Y, Yu J, Xiang C, Feng X, Wang S, Wang J, Zhao S, Zhu X. Strontium Attenuates Hippocampal Damage via Suppressing Neuroinflammation in High-Fat Diet-Induced NAFLD Mice. Int J Mol Sci 2023; 24:10248. [PMID: 37373395 DOI: 10.3390/ijms241210248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) leads to hippocampal damage and causes a variety of physiopathological responses, including the induction of endoplasmic reticulum stress (ERS), neuroinflammation, and alterations in synaptic plasticity. As an important trace element, strontium (Sr) has been reported to have antioxidant effects, to have anti-inflammatory effects, and to cause the inhibition of adipogenesis. The present study was undertaken to investigate the protective effects of Sr on hippocampal damage in NAFLD mice in order to elucidate the underlying mechanism of Sr in NAFLD. The mouse model of NAFLD was established by feeding mice a high-fat diet (HFD), and the mice were treated with Sr. In the NAFLD mice, we found that treatment with Sr significantly increased the density of c-Fos+ cells in the hippocampus and inhibited the expression of caspase-3 by suppressing ERS. Surprisingly, the induction of neuroinflammation and the increased expression of inflammatory cytokines in the hippocampus following an HFD were attenuated by Sr treatment. Sr significantly attenuated the activation of microglia and astrocytes induced by an HFD. The expression of phospho-p38, ERK, and NF-κB was consistently significantly increased in the HFD group, and treatment with Sr decreased their expression. Moreover, Sr prevented HFD-induced damage to the ultra-structural synaptic architecture. This study implies that Sr has beneficial effects on repairing the damage to the hippocampus induced by an HFD, revealing that Sr could be a potential candidate for protection from neural damage caused by NAFLD.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiaojiao Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chenyao Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
17
|
Sheptulina AF, Yafarova AA, Golubeva JA, Mamutova EM, Kiselev AR, Drapkina OM. Clinically Meaningful Fatigue and Depression Are Associated with Sarcopenia in Patients with Non-Alcoholic Fatty Liver Disease. J Pers Med 2023; 13:932. [PMID: 37373921 DOI: 10.3390/jpm13060932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sarcopenia is thought to be related to an increased risk of non-alcoholic steatohepatitis and advanced liver fibrosis. Our cross-sectional single-center study was designed to analyze the prevalence of sarcopenia in patients with NAFLD and possible influencing factors. METHODS A survey on the presence of sarcopenia, fatigue, anxiety, and depression, along with a quality-of-life (QoL) assessment, was forwarded by email to 189 outpatients. Demographics, anthropometric and clinical data (laboratory test results and abdomen complete ultrasound protocol), performed within 2-4 weeks prior to the enrollment, were obtained. RESULTS Sarcopenia (defined as SARC-F score ≥ 4) was identified in 17 (15.7%) patients, all of them (100%) females, with median age (interquartile range) 56 (51-64) years. These patients had a poorer metabolic state (greater values of waist and hip circumferences, body mass index, and HOMA-IR) and significantly poorer QoL, specifically, regarding the physical component of health, compared with NAFLD patients without sarcopenia. Multivariate analysis showed that depression (OR = 1.25, 95% CI: 1.02-1.53, p = 0.035) and clinically meaningful fatigue (OR = 1.14, 95% CI: 1.04-1.26, p = 0.008) were the factors independently associated with sarcopenia in patients with NAFLD. CONCLUSION Sarcopenia is associated with depression and fatigue rather than with the severity of liver disease alone and may negatively affect QoL in patients with NAFLD.
Collapse
Affiliation(s)
- Anna F Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Adel A Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
| | - Julia A Golubeva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
| | - Elvira M Mamutova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
| | - Oxana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow 101990, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
18
|
Metro D, Buda M, Manasseri L, Corallo F, Cardile D, Lo Buono V, Quartarone A, Bonanno L. Role of Nutrition in the Etiopathogenesis and Prevention of Nonalcoholic Fatty Liver Disease (NAFLD) in a Group of Obese Adults. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59030638. [PMID: 36984639 PMCID: PMC10055888 DOI: 10.3390/medicina59030638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is liver damage characterized by an accumulation of triglycerides in hepatocytes of >5% (due to an alteration of the balance of the lipid metabolism in favour of lipogenesis compared to lipolysis) that is not induced by the consumption of alcohol. The pathology includes simple steatosis and nonalcoholic steatohepatitis, or NASH (steatosis associated with microinflammatory activities), which can evolve in 15% of subjects with hepatic fibrosis to cirrhosis and the development of hepatocellular carcinoma. The aim of this study is to report the role of macro- and micronutrients in the pathogenesis and prevention of NAFLD in obese subjects. A total of 22 obese or overweight patients with hepatic steatosis were monitored periodically, evaluating their eating habits, fasting glycaemia, lipid picture, liver enzymes, anthropometric parameters, nutrition status, liver ultrasound, oxidative stress, and adherence to the Mediterranean diet. A statistical analysis shows a significant positive relationship between total cholesterol and the Mediterranean adequacy index (MAI) (r = -0.57; p = 0.005) and a significant negative relationship between ALT transaminases and the MAI (r = -0.56; p = 0.007). Nutrition and diet are important factors in the pathogenesis and prevention of NAFLD. The dietary model, based on the canons of the Mediterranean diet, prevents and reduces the accumulation of fat in hepatocytes. Therefore, in agreement with other studies in the literature, we can state that a dietary model characterized by foods rich in fibre, carotenoids, polyphenols, ω3 fatty acids, folic acid, and numerous other molecules is inversely correlated with the serum levels of ALT transaminases, an enzyme whose level increases when the liver is damaged and before the most obvious symptoms of organ damage appear.
Collapse
Affiliation(s)
- Daniela Metro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy
| | - Martina Buda
- Department Oncological D.A.I., UOC of General Surgery-Oncology, 98125 Messina, Italy
| | - Luigi Manasseri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy
| |
Collapse
|
19
|
From NAFLD to MAFLD: Definition, Pathophysiological Basis and Cardiovascular Implications. Biomedicines 2023; 11:biomedicines11030883. [PMID: 36979861 PMCID: PMC10046146 DOI: 10.3390/biomedicines11030883] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a chronic liver disease characterized by excessive fat accumulation in the liver without another obvious cause (no excessive alcohol consumption, hepatotoxic medications, toxins, viral infections, genetic hepatic diseases), therefore it is an exclusion diagnosis. The term NAFLD literally refers to non-alcohol related hepatopathy and does not adequately correlate with metabolic dysfunction and related cardiovascular risks. Therefore, researchers and scientific societies have moved towards changing the terminology. The novel nomenclature for a metabolic-associated fatty liver disease (MAFLD) has been proposed in 2020 by a group of experts to overcome the issues related to the old terminology. The diagnosis of MAFLD is based on the presence of hepatic steatosis and at least one between these three conditions: type 2 diabetes mellitus (T2DM), obesity or metabolic dysregulation. MAFLD has been shown to be an independent risk factor for cardiovascular diseases and atherosclerosis. It is better related to the main risk factors for atherosclerosis and cardiovascular diseases than NAFLD, such as dyslipidemia, T2DM and hypertension. The aim of this review is to highlight the reasons why the term NAFLD is moving to the term MAFLD, what are the conceptual basis of this choice and its clinical implications, particularly in the cardiovascular field.
Collapse
|
20
|
Sex differences in the relationship between hepatic steatosis, mood and anxiety disorders. J Psychosom Res 2023; 168:111216. [PMID: 36913766 DOI: 10.1016/j.jpsychores.2023.111216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVE To investigate the association between non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), mental symptoms (mood, anxiety disorders and distress) by sex. METHODS This a cross-sectional study performed in working-age adults from a Health Promotion Center (primary care) in São Paulo, Brazil. Self-reported mental symptoms from rating scales (21-item Beck Anxiety Inventory, Patient Health Questionnaire-9, and K6 distress scale) were evaluated by hepatic steatosis (NAFLD and ALD). Logistic regression models estimated the association between hepatic steatosis subtypes and mental symptoms by Odds ratios (OR) adjusted by confounders in the total sample and sex stratified. RESULTS Among 7241 participants (70.5% men, median age: 45 years), the frequency of steatosis was of 30.7% (25.1% NAFLD), being higher in men than women (70.5% vs. 29.5%, p < 0.0001), regardless of the steatosis subtype. Metabolic risk factors were similar in both subtypes of steatosis, but not mental symptoms. Overall, NAFLD was inversely associated with anxiety (OR = 0.75, 95%CI 0.63-0.90) and positively associated with depression (OR = 1.17, 95%CI 1.00-1.38). On the other hand, ALD was positively associated with anxiety (OR = 1.51; 95%CI 1.15-2.00). In sex-stratified analyses, only men presented an association of anxiety symptoms with NAFLD (OR = 0.73; 95%CI 0.60-0.89) and ALD (OR = 1.60; 95%CI 1.18-2.16). CONCLUSIONS The complex association between different types of steatosis (NAFLD and ALD), mood and anxiety disorders indicates the need for a deeper understanding of their common causal pathways.
Collapse
|
21
|
Pang F, Yang Y, Huang S, Yang Z, Zhu Z, Liao D, Guo X, Zhou M, Li Y, Tang C. Electroacupuncture Alleviates Depressive-like Behavior by Modulating the Expression of P2X7/NLRP3/IL-1β of Prefrontal Cortex and Liver in Rats Exposed to Chronic Unpredictable Mild Stress. Brain Sci 2023; 13:brainsci13030436. [PMID: 36979246 PMCID: PMC10046261 DOI: 10.3390/brainsci13030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Depression is a complex clinical disorder associated with poor outcomes. Electroacupuncture (EA) has been demonstrated to have an important role in both clinical and pre-clinical depression investigations. Evidence has suggested that the P2X7 receptor (P2X7R), NLRP3, and IL-1β play an important role in depressive disorder. Our study is aimed at exploring the role of EA in alleviating depression-like behaviors in rats. We therefore investigated the effects of EA on the prefrontal cortex and liver of rats subjected to chronic unpredictable mild stress (CUMS) through behavior tests, transmission electron microscopy, Nissl staining, HE staining, immunohistochemistry and Western blotting. Five weeks after exposure to CUMS, Sprague-Dawley (SD) rats showed depression-like behavior. Three weeks after treatment with brilliant blue G (BBG) or EA, depressive symptoms were significantly improved. Liver cells and microglia showed regular morphology and orderly arrangement in the BBG and EA groups compared with the CUMS group. Here we show that EA downregulated P2X7R/NLRP3/IL-1β expression and relieved depression-like behavior. In summary, our findings demonstrated the efficacy of EA in alleviating depression-like behaviors induced by CUMS in rats. This suggests that EA may serve as an adjunctive therapy in clinical practice, and that P2X7R may be a promising target for EA intervention on the liver–brain axis in treatment of depression.
Collapse
|
22
|
Swain MG, Pettersson B, Meyers O, Venerus M, Oscarsson J. A qualitative patient interview study to understand the experience of patients with nonalcoholic steatohepatitis. Hepatol Commun 2023; 7:e0036. [PMID: 36757391 PMCID: PMC9915959 DOI: 10.1097/hc9.0000000000000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 02/10/2023] Open
Abstract
NASH is a potentially progressive form of NAFLD characterized by hepatocyte injury and liver inflammation which can cause fibrosis. Currently, there are limited data on the patient experience of NASH. Our aim was to use both literature review and patient interviews to understand the signs/symptoms and life impacts of NASH fibrosis stages F1-F4 that are important to patients, as well as begin to investigate the applicability of an instrument (ie, questionnaire) that may be used to capture patients' experiences. The literature review identified concepts (signs/symptoms and impacts) related to NASH fibrosis stages F1-F4 and the NASH-specific patient-reported outcome instrument (NASH-CHECK) for reporting patient experience of NASH. Interviews with 22 patients from Canada and the USA with NASH fibrosis stages F1-F4 revealed 27 signs/symptoms and 32 impacts that they felt were important, including fatigue, pain in the abdomen, worry, and frustration. Three concepts reported during patient interviews were not identified in the literature review. No concepts appeared to be exclusive to a specific fibrosis stage or presence/absence of obesity and no linear trends were identified between fibrosis stage or presence/absence of obesity and level of disturbance reported for concepts. The patient interviews supported the concepts included in the NASH-CHECK overall, demonstrating that it could be used to report the patient experience of NASH fibrosis stages F1-F4. Interviews with patients with NASH fibrosis stages F1-F4 revealed patients can self-report and elaborate on signs/symptoms and impacts related to the disease regardless of fibrosis stage. The NASH-CHECK was identified as a suitable instrument that could be used by patients with fibrosis stages F1-F4.
Collapse
Affiliation(s)
- Mark G. Swain
- Liver Unit, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Billie Pettersson
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Gothenburg, Sweden
| | - Oren Meyers
- Patient Centered Endpoints, IQVIA, New York, New York, USA
| | | | - Jan Oscarsson
- Late-stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
23
|
Ntona S, Papaefthymiou A, Kountouras J, Gialamprinou D, Kotronis G, Boziki M, Polyzos SA, Tzitiridou M, Chatzopoulos D, Thavayogarajah T, Gkolia I, Ntonas G, Vardaka E, Doulberis M. Impact of nonalcoholic fatty liver disease-related metabolic state on depression. Neurochem Int 2023; 163:105484. [PMID: 36634820 DOI: 10.1016/j.neuint.2023.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), also recently referred as metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by hepatocyte steatosis in the setting of metabolic risk conditions and in the absence of an underlying precursor, for instance alcohol consumption, hepatotropic viruses and hepatotoxic drugs. A possible association between NAFLD and depression has been proposed, owing to intersecting pathophysiological pathways. This narrative review aimed to summarize the current evidence that illustrate the potential pathophysiological and clinical linkage between NAFLD-related metabolic state and depression. Prefrontal cortex lesions are suggested to be a consequence of liver steatosis-associated systematic hyperinflammatory state, a phenomenon also occurring in depression. In addition, depressive symptoms are present in neurotransmitter imbalances. These abnormalities seem to be correlated with NAFLD/MAFLD, in terms of insulin resistance (IR), ammonia and gut dysbiosis' impact on serotonin, dopamine, noradrenaline levels and gamma aminobutyric acid receptors. Furthermore, reduced levels of nesfatin-1 and copine-6-associated BDNF (brain-derived neurotrophic factor) levels have been considered as a probable link between NAFLD and depression. Regarding NAFLD-related gut dysbiosis, it stimulates mediators including lipopolysaccharides, short-chain fatty acids and bile acids, which play significant role in depression. Finally, western diet and IR, which are mainstay components of NAFLD/MAFLD, are, also, substantiated to affect neurotransmitters in hippocampus and produce neurotoxic lipids that contribute to neurologic dysfunction, and thus trigger emotional disturbances, mainly depressive symptoms.
Collapse
Affiliation(s)
- Smaragda Ntona
- Alexandrovska University Hospital, Medical University Sofia, 1431, Sofia, Bulgaria
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larisa, 41110, Mezourlo, Larissa, Thessaly, Greece; First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece; Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Dimitra Gialamprinou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Second Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56403, Thessaloniki, Macedonia, Greece
| | - Georgios Kotronis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Tharshika Thavayogarajah
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Ioanna Gkolia
- Psychiatric Hospital of Thessaloniki, 54634, Stavroupoli, Macedonia, Greece
| | - Georgios Ntonas
- Department of Anesthesiology, Agios Dimitrios General Hospital, 54635, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Gastroenterology and Hepatology, University of Zurich, 8091, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
24
|
Calluna vulgaris Crude Extract Reverses Liver Steatosis and Insulin Resistance-Associated-Brain Lesion Induced by CCl4 Administration. SEPARATIONS 2023. [DOI: 10.3390/separations10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fatty liver (FL) is one of the most prevalent diseases in the world, characterized by insulin resistance and hyperlipidemia, which consequently lead to neurodegenerative disorders through the induction of oxidative stress-inflammatory axis, which alters the neurotransmitters’ levels. Calluna vulgaris (CV), also known as heather, has anti-inflammatory and antidepressant properties, making it a promising candidate for treating steatosis and brain lesions. This study aimed to assess the prophylactic and therapeutic effect of CV extract on brain dysfunction associated with steatosis. FL was induced in rats by CCl4 oral administration (50 µL/Kg in olive oil three times/week) for six weeks. The protection group received 200 mg/kg CV extract orally for two weeks before and two weeks during FL induction, while the treatment group was orally administered CV extract after FL induction for one month. The biochemical parameters revealed that CCl4 administration induced hepatotoxicity as blood-liver function parameters (AST, ALT, ALP, protein, and LDH) were increased by 1.8, 1.4, 2, 2.4, and 1.2-fold, respectively. Moreover, insulin resistance was characterized by a two-fold increase in the glucose, insulin, and lipid profile when compared to control one, at p < 0.05. Steatosis liver demonstrated a two-fold increase in all following parameters— acetaldehyde (AC), prooxidant (TBARS), acetylcholine esterase (AChE), monoamine oxidase (MAO), hyaluronidase, and ATPase—when compared to control one, at p < 0.05. CCl4 administration led to brain lesions where the brain level of TBARS, insulin, cholesterol, AChE, and MAO was progressively increased by 2, 1.6, 2.2, 4, and 1.6-fold, respectively, that was associated with reduced glucose (8-fold) and GSH (2-fold) than that of control level, at p < 0.05. CV extract as a prophylactic and therapeutic agent increased GSH and decreased TBARS of both the liver and brain than that of induced group, at p < 0.05, normalized the activities of AChE and MAO, and increased insulin sensitivity where they successfully decreased the HOMA-IR, glucose, TG, and cholesterol compared to than that of induced group, at p < 0.05. This positive effect of CV extract contributed to the presence of polyphenolic compounds such as catechins (5.501 ± 0.056 µg/g extract), gallic (3.525 ± 0.143 µg/g) extract, and protocatechuic acid (2.719 ± 0.132 µg/g extract). Therefore, we concluded that FL induced brain dysfunction through the formation of ROS and elevation of insulin and lipid inside the brain tissue, which alter the amount of neurotransmitter and cellular energy production. Rich in polyphenolic compounds, CV extract functions as an antioxidant, antidiabetic, hepatoprotective, inhibitor of neurotransmitter catabolizing enzymes, and a regulator for energy production. Therefore, it can be used as a preventative or treatment for NAFLD and brain damage.
Collapse
|
25
|
Petrea O, Stefanescu G, Stefanescu C. Psychological Burden of NAFLD and Psychiatric Disorders as Extrahepatic Manifestations. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:203-215. [DOI: 10.1007/978-3-031-33548-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Hadjihambi A, Konstantinou C, Klohs J, Monsorno K, Le Guennec A, Donnelly C, Cox IJ, Kusumbe A, Hosford PS, Soffientini U, Lecca S, Mameli M, Jalan R, Paolicelli RC, Pellerin L. Partial MCT1 invalidation protects against diet-induced non-alcoholic fatty liver disease and the associated brain dysfunction. J Hepatol 2023; 78:180-190. [PMID: 35995127 DOI: 10.1016/j.jhep.2022.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) has been associated with mild cerebral dysfunction and cognitive decline, although the exact pathophysiological mechanism remains ambiguous. Using a diet-induced model of NAFLD and monocarboxylate transporter-1 (Mct1+/-) haploinsufficient mice, which resist high-fat diet-induced hepatic steatosis, we investigated the hypothesis that NAFLD leads to an encephalopathy by altering cognition, behaviour, and cerebral physiology. We also proposed that global MCT1 downregulation offers cerebral protection. METHODS Behavioural tests were performed in mice following 16 weeks of control diet (normal chow) or high-fat diet with high fructose/glucose in water. Tissue oxygenation, cerebrovascular reactivity, and cerebral blood volume were monitored under anaesthesia by multispectral optoacoustic tomography and optical fluorescence. Cortical mitochondrial oxygen consumption and respiratory capacities were measured using ex vivo high-resolution respirometry. Microglial and astrocytic changes were evaluated by immunofluorescence and 3D reconstructions. Body composition was assessed using EchoMRI, and liver steatosis was confirmed by histology. RESULTS NAFLD concomitant with obesity is associated with anxiety- and depression-related behaviour. Low-grade brain tissue hypoxia was observed, likely attributed to the low-grade brain inflammation and decreased cerebral blood volume. It is also accompanied by microglial and astrocytic morphological and metabolic alterations (higher oxygen consumption), suggesting the early stages of an obesogenic diet-induced encephalopathy. Mct1 haploinsufficient mice, despite fat accumulation in adipose tissue, were protected from NAFLD and associated cerebral alterations. CONCLUSIONS This study provides evidence of compromised brain health in obesity and NAFLD, emphasising the importance of the liver-brain axis. The protective effect of Mct1 haploinsufficiency points to this protein as a novel therapeutic target for preventing and/or treating NAFLD and the associated brain dysfunction. IMPACT AND IMPLICATIONS This study is focused on unravelling the pathophysiological mechanism by which cerebral dysfunction and cognitive decline occurs during NAFLD and exploring the potential of monocarboxylate transporter-1 (MCT1) as a novel preventive or therapeutic target. Our findings point to NAFLD as a serious health risk and its adverse impact on the brain as a potential global health system and economic burden. These results highlight the utility of Mct1 transgenic mice as a model for NAFLD and associated brain dysfunction and call for systematic screening by physicians for early signs of psychological symptoms, and an awareness by individuals at risk of these potential neurological effects. This study is expected to bring attention to the need for early diagnosis and treatment of NAFLD, while having a direct impact on policies worldwide regarding the health risk associated with NAFLD, and its prevention and treatment.
Collapse
Affiliation(s)
- Anna Hadjihambi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chris Donnelly
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sports Science, University of Lausanne, Lausanne, Switzerland
| | - I Jane Cox
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Ugo Soffientini
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland; Inserm, UMR-S 839, Paris, France
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, University College London, London, UK
| | | | - Luc Pellerin
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Inserm U1313, Université de Poitiers et CHU de Poitiers, France.
| |
Collapse
|
27
|
Pipitone RM, Ciccioli C, Infantino G, La Mantia C, Parisi S, Tulone A, Pennisi G, Grimaudo S, Petta S. MAFLD: a multisystem disease. Ther Adv Endocrinol Metab 2023; 14:20420188221145549. [PMID: 36726391 PMCID: PMC9885036 DOI: 10.1177/20420188221145549] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 01/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), affecting about 25% of general population and more than 50% of dysmetabolic patients, is an emerging cause of chronic liver disease and its complications. Recently, an international consensus of experts proposed to rename this disease as 'Metabolic dysfunction-Associated Fatty Liver Disease' (MAFLD) to focus on the bidirectional interplay between fatty liver and metabolic alterations and to stress the need of assessing fatty liver independently from alcohol consumption and other coexisting causes of liver disease. The peculiarity of NAFLD/MAFLD lies in the presence of a higher risk of not only - as expected - liver-related events but also of extrahepatic events, mostly cardiovascular and cancers. Available evidence suggests that these associations are not only the expression of sharing the same risk factors but shed light about the ability of NAFLD/MAFLD and particularly of its progressive form - nonalcoholic/metabolic dysfunction-associated steatohepatitis - to act as an independent risk factor via promotion of atherogenic dyslipidemia and a proinflammatory, profibrogenic, and procoagulant systemic environment. The present review summarizes available epidemiological and clinical evidence supporting the concept of NAFLD/MAFLD as a multisystemic disease, and highlights potential explanatory mechanisms underlying the association between NAFLD/MAFLD and extrahepatic disorders.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefanie Parisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Adele Tulone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Grazia Pennisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | | |
Collapse
|
28
|
Kang S, Kim E, Cho H, Kim DJ, Kim HC, Jung SJ. Associations between non-alcoholic fatty liver disease and cognitive impairment and the effect modification of inflammation. Sci Rep 2022; 12:12614. [PMID: 35871085 PMCID: PMC9308768 DOI: 10.1038/s41598-022-16788-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThis study aimed to evaluate the association between non-alcoholic fatty liver disease (NAFLD) and cognitive impairment and explore the effect modification by the inflammatory status. A total of 4400 community-based participants aged 50–64 years from the Cardiovascular and Metabolic Disease Etiology Research Center were included in this cross-sectional study. NAFLD was identified as the Fatty Liver Index 30 or higher in the absence of excessive alcohol consumption. Cognitive impairment was defined as the total score of the Mini-Mental State Examination (cutoff 24). The inflammatory status was evaluated using white blood cell (WBC) and high-sensitivity C-reactive protein (hsCRP). Multivariate logistic regression analyses were performed. Stratified analyses by the WBC count (the highest quartile) and the hsCRP level (≥ 1.0 mg/dL vs. < 1.0 mg/dL) were conducted. Participants with NAFLD showed an increased prevalence of cognitive impairment (odds ratio [OR] = 1.26; 95% confidence interval [CI] = 1.04–1.52) compared with the non-NAFLD population. In women, this association was significantly stronger in the highest quartile WBC group than in lower WBC group (OR = 1.81; 95% CI = 1.19–2.74 vs. OR = 1.02; 95% CI = 0.78–1.33, p-interaction = 0.05). NAFLD was positively associated with a higher proportion of cognitive impairment, and this association was stronger in women with higher inflammatory status.
Collapse
|
29
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
30
|
Mikkelsen ACD, Thomsen KL, Mookerjee RP, Hadjihambi A. The role of brain inflammation and abnormal brain oxygen homeostasis in the development of hepatic encephalopathy. Metab Brain Dis 2022; 38:1707-1716. [PMID: 36326976 DOI: 10.1007/s11011-022-01105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Hepatic encephalopathy (HE) is a frequent complication of chronic liver disease (CLD) and has a complex pathogenesis. Several preclinical and clinical studies have reported the presence of both peripheral and brain inflammation in CLD and their potential impact in the development of HE. Altered brain vascular density and tone, as well as compromised cerebral and systemic blood flow contributing to the development of brain hypoxia, have also been reported in animal models of HE, while a decrease in cerebral metabolic rate of oxygen and cerebral blood flow has consistently been observed in patients with HE. Whilst significant strides in our understanding have been made over the years, evaluating all these mechanistic elements in vivo and showing causal association with development of HE, have been limited through the practical constraints of experimentation. Nonetheless, improvements in non-invasive assessments of different neurophysiological parameters, coupled with techniques to assess changes in inflammatory and metabolic pathways, will help provide more granular insights on these mechanisms. In this special issue we discuss some of the emerging evidence supporting the hypothesis that brain inflammation and abnormal oxygen homeostasis occur interdependently during CLD and comprise important contributors to the development of HE. This review aims at furnishing evidence for further research in brain inflammation and oxygen homeostasis as additional therapeutic targets and potentially diagnostic markers for HE.
Collapse
Affiliation(s)
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
31
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:ijms231810654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
- Correspondence:
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
32
|
Ramos A, Joshi RS, Szabo G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front Mol Neurosci 2022; 15:910298. [PMID: 36157070 PMCID: PMC9505690 DOI: 10.3389/fnmol.2022.910298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder is associated with systemic inflammation and organ dysfunction especially in the liver and the brain. For more than a decade, studies have highlighted alcohol abuse-mediated impairment of brain function and acceleration of neurodegeneration through inflammatory mechanisms that directly involve innate immune cells. Furthermore, recent studies indicate overlapping genetic risk factors between alcohol use and neurodegenerative disorders, specifically regarding the role of innate immunity in the pathomechanisms of both areas. Considering the pressing need for a better understanding of the relevance of alcohol abuse in dementia progression, here we summarize the molecular mechanisms of neuroinflammation observed in alcohol abuse and Alzheimer’s disease, the most common cause of dementia. In addition, we highlight mechanisms that are already established in the field of Alzheimer’s disease that may be relevant to explore in alcoholism to better understand alcohol mediated neurodegeneration and dementia, including the relevance of the liver-brain axis.
Collapse
Affiliation(s)
- Adriana Ramos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Gyongyi Szabo,
| |
Collapse
|
33
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
34
|
Golubeva JA, Sheptulina AF, Yafarova AA, Mamutova EM, Kiselev AR, Drapkina OM. Reduced Quality of Life in Patients with Non-Alcoholic Fatty Liver Disease May Be Associated with Depression and Fatigue. Healthcare (Basel) 2022; 10:healthcare10091699. [PMID: 36141310 PMCID: PMC9498740 DOI: 10.3390/healthcare10091699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often thought of as clinically asymptomatic. However, many NAFLD patients complain of fatigue and low mood, which may affect their quality of life (QoL). This may create a barrier to weight loss and hinder the achievement of NAFLD therapy goals. Our study aimed to evaluate the QoL in NAFLD patients vs. healthy volunteers, and to analyze likely influencing factors. From March 2021 through December 2021, we enrolled 140 consecutive adult subjects (100 NAFLD patients and 40 controls). Overall, 95 patients with NAFLD and 37 controls were included in the final analysis. Fatty liver was diagnosed based on ultrasonographic findings. We employed 36-Item Short Form Health Survey (SF-36) to evaluate QoL, Hospital Anxiety and Depression Scale (HADS) to identify anxiety and/or depression, and Fatigue Assessment Scale (FAS) to measure fatigue. NAFLD patients had significantly lower physical component summary scores, as well as significantly higher HADS-D scores, compared with the control group (Mann-Whitney U criterion = 1140.0, p = 0.001 and U = 1294.5, p = 0.022, respectively). Likewise, fatigue was more common in NAFLD patients (χ2 = 4.008, p = 0.045). Impaired QoL was significantly associated with fatigue (FAS score ≥ 22, p < 0.001) and depression (HADS-D ≥ 8, p < 0.001). In conclusion, NAFLD patients had significantly poorer QoL vs. controls, in particular with respect to the physical component of health. Impaired QoL may be associated with fatigue and depression, and together they may interfere with increased physical activity and lifestyle modifications in patients with NAFLD.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Laboratory for the Study of Human Gut Microbiota, Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Laboratory for the Study of Human Gut Microbiota, Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Adel A. Yafarova
- Laboratory for the Study of Human Gut Microbiota, Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Elvira M. Mamutova
- Laboratory for the Study of Human Gut Microbiota, Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence: ; Tel.: +7-49-9553-6938; Fax: +7-49-5621-0122
| | - Oxana M. Drapkina
- Laboratory for the Study of Human Gut Microbiota, Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
35
|
Gairing SJ, Schleicher EM, Labenz C. Diabetes mellitus - risk factor and potential future target for hepatic encephalopathy in patients with liver cirrhosis? Metab Brain Dis 2022; 38:1691-1700. [PMID: 36001211 DOI: 10.1007/s11011-022-01068-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Hepatic encephalopathy (HE) is one of the major complications of cirrhosis, and its presence is associated with poor survival. Several risk factors for HE are well established, including age, history of HE, portosystemic shunts, or poorer liver function. In recent years, diabetes mellitus (DM) has emerged as another potential risk factor for the development of HE. This may be important for many patients, as the incidence of type 2 DM (T2DM) is increasing worldwide and, consequently, the incidence of NAFLD-related cirrhosis is rising simultaneously. In addition, DM is a critical factor in the progression of other liver diseases, such as alcohol-related liver disease. Thus, the number of patients with cirrhosis and comorbid T2DM will also increase. To date, the prevalence of DM already ranges between 22 - 40% in patients with cirrhosis. DM-associated factors that may influence the risk of HE include systemic inflammation, insulin resistance with increased muscle protein breakdown as well as autonomic dysfunction with prolonged intestinal transit time and small intestinal bacterial overgrowth. Currently, the evidence for an association between DM and both minimal and overt HE is weak and it seems likely that only poor glycemic control has an impact on HE risk. In addition, there are some early signs indicating that DM may impair the response of patients with HE to pharmacological therapies such as rifaximin. Thus, improvements in the management of glycemic control may be a candidate future target to reduce the risk of HE. In this concise review, we summarize the current evidence on the association between DM and HE and its potential future implications.
Collapse
Affiliation(s)
- Simon Johannes Gairing
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Cirrhosis Center Mainz (CCM), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany
| | - Eva Maria Schleicher
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Cirrhosis Center Mainz (CCM), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany
| | - Christian Labenz
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Cirrhosis Center Mainz (CCM), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| |
Collapse
|
36
|
May M, Barlow D, Ibrahim R, Houseknecht KL. Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach. Biomedicines 2022; 10:biomedicines10061225. [PMID: 35740245 PMCID: PMC9220331 DOI: 10.3390/biomedicines10061225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Atypical antipsychotic (AA) medications are widely prescribed for the treatment of psychiatric disorders, including schizophrenia, bipolar disorder and treatment-resistant depression. AA are associated with myriad metabolic and endocrine side effects, including systemic inflammation, weight gain, dyslipidemia and insulin resistance, all of which are associated with increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is highly prevalent in patients with mental illness, and AA have been shown to increase incidence of NAFLD pre-clinically and clinically. However, the underlying mechanisms have not been described. We mined multi-omic datasets from preclinical murine models of sub-chronic risperidone or olanzapine treatment, in vitro exposure of human cells to risperidone and psychiatric patients following onset of aripiprazole therapy focused on pathways associated with the pathophysiology of NAFLD, including iron accumulation, systemic inflammation and dyslipidemia. We identified numerous differentially expressed traits affecting these pathways conserved across study systems and AA medications. We used these findings to propose mechanisms for AA-associated development of NAFLD and dysregulated iron homeostasis.
Collapse
Affiliation(s)
- Meghan May
- Correspondence: (M.M.); (K.L.H.); Tel.: +1-207-602-2872 (K.L.H.)
| | | | | | | |
Collapse
|
37
|
Kaya E, Yilmaz Y. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver. J Clin Transl Hepatol 2022; 10:329-338. [PMID: 35528971 PMCID: PMC9039705 DOI: 10.14218/jcth.2021.00178] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multisystemic clinical condition that presents with a wide spectrum of extrahepatic manifestations, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, chronic kidney disease, extrahepatic malignancies, cognitive disorders, and polycystic ovarian syndrome. Among NAFLD patients, the most common mortality etiology is cardiovascular disorders, followed by extrahepatic malignancies, diabetes mellitus, and liver-related complications. Furthermore, the severity of extrahepatic diseases is parallel to the severity of NAFLD. In clinical practice, awareness of the associations of concomitant diseases is of major importance for initiating prompt and timely screening and multidisciplinary management of the disease spectrum. In 2020, a consensus from 22 countries redefined the disease as metabolic (dysfunction)-associated fatty liver disease (MAFLD), which resulted in the redefinition of the corresponding population. Although the patients diagnosed with MAFLD and NAFLD mostly overlap, the MAFLD and NAFLD populations are not identical. In this review, we compared the associations of key extrahepatic diseases between NAFLD and MAFLD.
Collapse
Affiliation(s)
- Eda Kaya
- Department of Internal Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| |
Collapse
|
38
|
Gu Y, Zhang W, Hu Y, Chen Y, Shi J. Association between nonalcoholic fatty liver disease and depression: A systematic review and meta-analysis of observational studies. J Affect Disord 2022; 301:8-13. [PMID: 34986375 DOI: 10.1016/j.jad.2021.12.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with an increased prevalence of psychological conditions such as depression and anxiety. However, the correlation between NAFLD and depression has not been well illustrated. METHODS Studies that investigate the association between nonalcoholic fatty liver disease and depression were searched in multiple electronic databases. Pooled odds ratios (ORs) and confidence intervals (CIs) of the included articles were calculated using a fixed- or random effects model. RESULTS A total of seven articles were included in this study. The results of the meta-analysis showed that compared with those without nonalcoholic fatty liver disease, individuals with it had a significantly increased risk of depression (pooled OR = 1.13, 95% CI: 1.03, 1.24, p = 0.007), and there was evidence that heterogeneity was not significant (I2 = 13.6%, p for heterogeneity = 0.324). Moreover, depressed patients had a significantly increased risk of developing nonalcoholic fatty liver disease compared with non-depressed patients (pooled OR = 1.46, 95% CI: 1.15, 1.85, p = 0.002), and evidence of non-significant heterogeneity was observed (I2 = 0%, p = 0.837 for heterogeneity). LIMITATIONS The majority of the included articles in this study are cross-sectional studies and could not elucidate the causal relationship, so further longitudinal studies are needed to clarify the causal relationship. CONCLUSION Nonalcoholic fatty liver and depression are highly correlated, the two interact with each other and have a high risk of comorbidities. In the future more high quality prospective studies will be needed to validate our results.
Collapse
Affiliation(s)
- Yunpeng Gu
- School of Public Health, Hangzhou Normal University, Zhejiang, China.
| | - Wei Zhang
- School of Public Health, Hangzhou Normal University, Zhejiang, China.
| | - Yanli Hu
- School of Nursing, Jinan University, Guangdong, China
| | - Yutong Chen
- School of Nursing, Hangzhou Normal University, Zhejiang, China.
| | - Junping Shi
- The Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Ballester MP, Gallego JJ, Fiorillo A, Casanova-Ferrer F, Giménez-Garzó C, Escudero-García D, Tosca J, Ríos MP, Montón C, Durbán L, Ballester J, Benlloch S, Urios A, San-Miguel T, Kosenko E, Serra MÁ, Felipo V, Montoliu C. Metabolic syndrome is associated with poor response to rifaximin in minimal hepatic encephalopathy. Sci Rep 2022; 12:2463. [PMID: 35165326 PMCID: PMC8844048 DOI: 10.1038/s41598-022-06416-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractPatients with cirrhosis may show minimal hepatic encephalopathy (MHE), for which rifaximin is effective. Metabolic syndrome may be associated with cognitive impairment. Our aims were to evaluate the influence of metabolic syndrome features on response to rifaximin for neurological and inflammatory alterations in MHE. A prospective cohort study was conducted in 63 cirrhotic patients and 30 controls from two tertiary centres recruited between 2015 and 2019. Metabolic syndrome was defined according to the Adult Treatment Panel-III. Patients were classified into 31 without and 32 with MHE according to the Psychometric Hepatic Encephalopathy Score (PHES). All participants performed specific psychometric tests, and inflammatory parameters were studied. Patients with MHE received rifaximin (400 mg/8 h). Response was evaluated by PHES at 3 and 6 months. Response according to metabolic syndrome manifestations was compared. The response rate was 66%. Older age (p = 0.012) and all metabolic syndrome diseases (p < 0.05) were associated with non-response, plus an increase in risk as the number of manifestations rose (p < 0.001). Patients with metabolic manifestations exhibited worse processing speed (p = 0.011), working memory (p = 0.005), visual coordination (p = 0.013) and lower proportion of activated CD4+ lymphocytes (p = 0.039) at baseline, as well as worse concentration (p = 0.030), bimanual coordination (p = 0.004) and higher levels of intermediate monocytes (p = 0.026), CX3CL1 (p < 0.05), IL-17 (p = 0.022), AHR (p = 0.010) and IgG (p < 0.05) at 3 and/or 6 months of rifaximin. Patients with clinical signs of metabolic syndrome have poor response to rifaximin for MHE, with a higher proportion of neurological alterations associated with a pro-inflammatory environment.
Collapse
|
40
|
Muthiah MD, Cheng Han N, Sanyal AJ. A clinical overview of non-alcoholic fatty liver disease: A guide to diagnosis, the clinical features, and complications-What the non-specialist needs to know. Diabetes Obes Metab 2022; 24 Suppl 2:3-14. [PMID: 34387409 DOI: 10.1111/dom.14521] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a rapidly rising prevalence worldwide and is the most common cause of liver disease in developed countries. In this article, we discuss the spectrum of disease of NAFLD with a focus on the earlier spectrum of the disease that is commonly encountered by non-specialists, as well as the hepatic and extra-hepatic associations of the disease. We discuss in detail the two common presentations of NAFLD, incidentally detected hepatic steatosis and asymptomatic raised liver enzymes, and provide an algorithm for management and continued to follow up for these patients. Considerations for the management of cardiovascular comorbidities in these patients are also discussed. Finally, we cover the topic of screening for NAFLD in high-risk populations.
Collapse
Affiliation(s)
- Mark D Muthiah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Ng Cheng Han
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
41
|
Chen C, Lu Z, Zhang D, Li S. The Mediation Role of the Risk of Non-Alcoholic Fatty Liver Disease in Relationship between Lutein and Zeaxanthin and Cognitive Functions among Older Adults in the United States. Nutrients 2022; 14:nu14030578. [PMID: 35276937 PMCID: PMC8840044 DOI: 10.3390/nu14030578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Previous studies showed lutein and zeaxanthin (L and Z) may influence cognitive function by different mechanisms. Our study aimed to be the first to examine whether the risk of non-alcoholic fatty liver disease (NAFLD) mediated the possible association between the dietary intake of L and Z and cognitive function. Methods: We conducted a cross-sectional analysis of participants aged 60 years or over in the National Health and Nutrition Examination Survey (NHANES) 2011–2014. Multivariable linear regression was used to investigate the association between the dietary intake of L and Z and cognitive function, and structural equation modeling tested the mediation effect. Results: The fatty liver index for the United States population (US FLI) acted as a mediator in the association between the higher intake of L and Z and the Animal Fluency Test, the Digit Symbol Substitution Test (DSST), and composite score and mediated 13.89%, 17.87%, and 13.79% of the total association in dietary L and Z intake (14.29%, 13.68%, and 10.34% of the total association in total L and Z intake), respectively. Conclusion: Our study indicated the potential role of the risk of NAFLD as a mediator of associations between the dietary intake of L and Z and cognitive function in the geriatric American population.
Collapse
Affiliation(s)
| | | | | | - Suyun Li
- Correspondence: ; Tel.: +86-0532-8299-1712
| |
Collapse
|
42
|
Liu Q, Liu C, Hu F, Deng X, Zhang Y. Non-alcoholic Fatty Liver Disease and Longitudinal Cognitive Changes in Middle-Aged and Elderly Adults. Front Med (Lausanne) 2022; 8:738835. [PMID: 35111769 PMCID: PMC8803120 DOI: 10.3389/fmed.2021.738835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Background and PurposeNon-alcoholic fatty liver disease (NAFLD) and cognitive impairment are common aging-related disorders. This study aims to explore the changes of cognitive function in middle-aged and elderly population with NAFLD from a Jidong impairment cohort.MethodsA total of 1,651 middle-aged and elderly participants (>40 years) without cognitive impairment were recruited into the current study in 2015 and were followed up until to 2019. Abdominal ultrasonography was used for diagnosis of NAFLD. Global cognitive function was assessed with the Mini-Mental State Examination (MMSE). Cognitive impairment was defined as a score <18 for illiterates, a score <21 for primary school graduates, and a score <25 for junior school graduates or above. Multivariable regression analysis was performed to evaluate the association between NAFLD and the four-year cognitive changes.ResultsOut of 1,651 participants, 795 (48.2%) of them had NAFLD in 2015. Cognitive impairment occurred in 241 (14.6%) participants in 2019. Patients with NAFLD had higher 4-year incidence of cognitive impairment than non-NAFLD patients did (17.7 vs. 11.7%, p < 0.001). Multivariable linear regression analysis showed significant association of baseline NAFLD with lower MMSE score in 2019 (β = −0.36, p < 0.05). Multivariable logistic analysis found that the adjusted odds ratio (OR) with 95% confidence interval (CI) of baseline NAFLD was 1.45 (1.00–2.11) for cognitive impairment in 2019 (p = 0.05). We also identified effects of baseline NAFLD on subsequent cognitive impairment as modified by age (interaction p < 0.01) and carotid stenosis (interaction p = 0.05) but not by gender.ConclusionsNAFLD is associated with cognitive decline, especially in middle-aged and with carotid stenosis population.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feifei Hu
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Deng
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yumei Zhang
| |
Collapse
|
43
|
George ES, Sood S, Daly RM, Tan SY. Is there an association between non-alcoholic fatty liver disease and cognitive function? A systematic review. BMC Geriatr 2022; 22:47. [PMID: 35016619 PMCID: PMC8753832 DOI: 10.1186/s12877-021-02721-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is represented as the most common liver disease worldwide. NAFLD is associated with metabolic risk factors underpinned by insulin resistance, inflammation and endothelial dysfunction, leading to extrahepatic changes in central nervous diseases such as cognitive impairment, Alzheimer's disease and dementia. The aim of the review is to explore the association between NAFLD and cognitive function. METHODS Using the PRISMA guidelines, a systematic electronic literature search was conducted in four databases: MEDLINE, PsychINFO, Embase and CINAHL from inception until March 2021. Neuropsychological tests utilised within each study were grouped into relevant cognitive domains including 'general cognition', 'reasoning', 'mental speed, attention and psychomotor speed', 'memory and learning', 'language', 'visuospatial perception' and 'ideas, abstraction, figural creations and mental flexibility'. RESULTS Eleven observational studies that involved 7978 participants with a mean age of 51 years were included. Those with NAFLD had poor cognitive performance in three cognitive domains, including 'general cognition', 'mental speed, attention and psychomotor speed', and 'ideas, abstraction, figural creations and mental flexibility'. CONCLUSION The observed results from the 11 included studies showed that NAFLD was associated with lower cognitive performance across several domains. However, studies conducted to date are limited to observational designs and are heterogeneous with varying diagnostic tools used to assess cognitive function. TRIAL REGISTRATION PROSPERO Registration: CRD42020161640 .
Collapse
Affiliation(s)
- Elena S George
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia.
| | - Surbhi Sood
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| | - Robin M Daly
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| | - Sze-Yen Tan
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
44
|
Ma Y, Wu H, Wang H, Chen F, Xie Z, Zhang Z, Peng Q, Yang J, Zhou Y, Chen C, Chen M, Zhang Y, Yu J, Wang K. Psychiatric Comorbidities and Liver Injury Are Associated With Unbalanced Plasma Bile Acid Profile During Methamphetamine Withdrawal. Front Endocrinol (Lausanne) 2022; 12:801686. [PMID: 35046900 PMCID: PMC8761939 DOI: 10.3389/fendo.2021.801686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of methamphetamine usedisorders (MUDs) remains largely unknown; however, bile acids may play arole as potential mediators of liver injury and psychiatric comorbidities.The aim of this study was to characterize bile acid (BA) profiles in plasmaof patients with MUDs undergoing withdrawal. Methods Liver functions and psychiatric symptoms wereevaluated in a retrospective cohort (30 MUDs versus 30 control subjects) andan exploratory cohort (30 MUDs including 10 subjects each at the 7-day,3-month, and 12-month withdrawal stages versus 10 control subjects). BAcompositions in plasma samples from MUD patients in the exploratory cohortwere determined by gas-liquid chromatography. Results Both psychiatric comorbidities andmethamphetamine-induced liver injury were observed in patients in both MUDcohorts. The plasma concentrations of the total BA, cholic acid (CA), andchenodeoxycholic acid (CDCA) were lower in MUD patients relative tocontrols. The maximum decline was observed at the 3-month stage, withgradual recovery at the 12-month stage. Notably, the ratios of deoxycholicacid (DCA)/CA and lithocholic acid (LCA)/CDCA were statistically significantat the 3-month stage comparing with controls. Significant correlations werefound between the LCA/CDCA and taurolithocholic acid (TLCA)/CDCA ratios andthe levels of alanine transaminase and aspartate aminotransferase, andbetween the LCA/CDCA ratio and the HAM-A score. Conclusion BA profile during METH withdrawal weremarkedly altered, with these unbalanced BAs being associated with liverinjury. The associations between BA profiles and psychiatric symptomssuggest an association between specific BAs and disease progression,possibly through the liver-brain axis.
Collapse
Affiliation(s)
- Yuru Ma
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjin Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huawei Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhenrong Xie
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan University, Kunming, China
| | - Qingyan Peng
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiqing Yang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yong Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minghui Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjin Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
45
|
Manusov EG, Diego VP, Sheikh K, Laston S, Blangero J, Williams-Blangero S. Non-alcoholic Fatty Liver Disease and Depression: Evidence for Genotype × Environment Interaction in Mexican Americans. Front Psychiatry 2022; 13:936052. [PMID: 35845438 PMCID: PMC9283683 DOI: 10.3389/fpsyt.2022.936052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study examines the impact of G × E interaction effects on non-alcoholic fatty liver disease (NAFLD) among Mexican Americans in the Rio Grande Valley (RGV) of South Texas. We examined potential G × E interaction using variance components models and likelihood-based statistical inference in the phenotypic expression of NAFLD, including hepatic steatosis and hepatic fibrosis (identified using vibration controlled transient elastography and controlled attenuation parameter measured by the FibroScan Device). We screened for depression using the Beck Depression Inventory-II (BDI-II). We identified significant G × E interactions for hepatic fibrosis × BDI-II. These findings provide evidence that genetic factors interact with depression to influence the expression of hepatic fibrosis.
Collapse
Affiliation(s)
- Eron Grant Manusov
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Vincent P Diego
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Khalid Sheikh
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sandra Laston
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - John Blangero
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Sarah Williams-Blangero
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
46
|
Wójcik M, Goncerz D, Piasny M, Surówka A, Mazurek E, Drożdż D, Kozioł-Kozakowska A, Starzyk JB, Makara-Studzińska M. Obesity in adolescents may be associated with limitations in daily activities and an increased level of anxiety in patients and their parents - preliminary results of a pilot study. Front Endocrinol (Lausanne) 2022; 13:1007765. [PMID: 36303874 PMCID: PMC9594964 DOI: 10.3389/fendo.2022.1007765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Obesity is a chronic disease, that in adolescents may lead to serious consequences affecting somatic and mental health. This study aimed to assess the prevalence of depressive symptoms and anxiety in adolescents with obesity and their parents. The relationships between depressive and anxiety symptoms and the somatic consequences of obesity were also analyzed. MATERIAL AND METHODS 19 patients with obesity (BMI Z-SCORE 2.1-5.5), at the age 16-17, and their parents answered validated questionnaires (Children's Depression Inventory 2, The State-Trait Anxiety Inventory), and a survey assessing everyday functioning. RESULTS There were no significant differences in the occurrence of symptoms of depression in children and their parents: for the overall scale score of T-score (p=0.331), for the emotional problems (p=0.281) subscale, and the functional problems (p=0.147) subscale. The comparison of the results between boys and girls revealed no significant differences. A significantly higher level of anxiety was found in parents of children who gained weight in the year preceding the study (p = 0.046), and both in children and parents of children with metabolic-associated fatty liver disease - MAFLD (p=0.022 and p=0.007). According to adolescents, obesity affects the most leisure activities. CONCLUSION Obesity, like any chronic disease, can have a significant impact on the emotional state of children and adolescents as well as the possibility of realizing interests and spending free time. Much more important than depressive disorders are anxiety disorders concerning both patients and their parents.
Collapse
Affiliation(s)
- Małgorzata Wójcik
- Department of Pediatric and Adolescents Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Małgorzata Wójcik, ; Marta Makara-Studzińska,
| | - Dawid Goncerz
- Students’ Scientific Group, Department of Pediatric and Adolescents Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Piasny
- Students’ Scientific Group, Department of Pediatric and Adolescents Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Surówka
- Students’ Scientific Group, Department of Pediatric and Adolescents Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Mazurek
- Department of Statistics, Faculty of Economics and Finance, Wroclaw University of Economics and Business, Wrocław, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy B. Starzyk
- Department of Pediatric and Adolescents Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Makara-Studzińska
- Department of Health Psychology, Faculty of Health Science, Jagiellonian University, Medical College, Kraków, Poland
- *Correspondence: Małgorzata Wójcik, ; Marta Makara-Studzińska,
| |
Collapse
|
47
|
NASH and Systemic Complications: From Basic to Clinical Research. Biomedicines 2021; 9:biomedicines9121913. [PMID: 34944726 PMCID: PMC8698260 DOI: 10.3390/biomedicines9121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
|
48
|
Incidences of hypothyroidism and autoimmune thyroiditis are increased in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2021; 33:e1008-e1012. [PMID: 33852514 DOI: 10.1097/meg.0000000000002136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease, with about one in four people being affected in most areas of the world. Due to its strong association with metabolic syndrome, NAFLD is associated with high morbidity and mortality. Recent data have suggested a pathophysiological association between NAFLD and thyroid disease, but most studies are explorative and results remained conflicting. Here, we aimed at evaluating a potential association between NAFLD and hypothyroidism as well as autoimmune thyroiditis primary care patients in Germany. METHODS Incidence rates of hypothyroidism and autoimmune thyroiditis were compared between a cohort of n = 40,583 patients with NAFLD and a cohort of equal size without NAFLD that was matched by sex, age, index year, obesity and diabetes within 10 years from the index date. RESULTS Within the 10 years observation period, incidence of hypothyroidism was significantly higher among patients with NAFLD compared to patients without NAFLD [hazard ratio: 1.53 (95% confidence interval, 1.43-1.64), P < 0.001]. Importantly, regression analysis revealed that the association was significant in both men and women patients as well as in patients from all age groups. Moreover, NAFLD patients showed a significantly higher incidence rate of autoimmune thyroiditis compared to patients without NAFLD [hazard ratio: 1.55 (95% confidence interval, 1.34-1.79), P < 0.001]. This association was most pronounced in patients >70 years. CONCLUSION Our study provides strong evidence for a significant association between NAFLD and hypothyroidism as well as autoimmune thyroiditis in a large population-based cohort in Germany. This finding should trigger a particular awareness of thyroid diseases in this increasingly important patient group.
Collapse
|
49
|
Non-Alcoholic Fatty Liver Disease (NAFLD) and Potential Links to Depression, Anxiety, and Chronic Stress. Biomedicines 2021; 9:biomedicines9111697. [PMID: 34829926 PMCID: PMC8615558 DOI: 10.3390/biomedicines9111697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes the most common liver disease worldwide, and is frequently linked to the metabolic syndrome. The latter represents a clustering of related cardio-metabolic components, which are often observed in patients with NAFLD and increase the risk of cardiovascular disease. Furthermore, growing evidence suggests a positive association between metabolic syndrome and certain mental health problems (e.g., depression, anxiety, and chronic stress). Given the strong overlap between metabolic syndrome and NAFLD, and the common underlying mechanisms that link the two conditions, it is probable that potentially bidirectional associations are also present between NAFLD and mental health comorbidity. The identification of such links is worthy of further investigation, as this can inform more targeted interventions for patients with NAFLD. Therefore, the present review discusses published evidence in relation to associations of depression, anxiety, stress, and impaired health-related quality of life with NAFLD and metabolic syndrome. Attention is also drawn to the complex nature of affective disorders and potential overlapping symptoms between such conditions and NAFLD, while a focus is also placed on the postulated mechanisms mediating associations between mental health and both NAFLD and metabolic syndrome. Relevant gaps/weaknesses of the available literature are also highlighted, together with future research directions that need to be further explored.
Collapse
|
50
|
Kirk FT, Munk DE, Laursen TL, Vilstrup H, Ott P, Grønbæk H, Lauridsen MM, Sandahl TD. Cognitive impairment in stable Wilson disease across phenotype. Metab Brain Dis 2021; 36:2173-2177. [PMID: 34342812 DOI: 10.1007/s11011-021-00804-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
In Wilson disease (WD), mutations in the gene encoding the ATP7B copper transport protein causes accumulation of copper especially in liver and brain. WD typically presents with hepatic and/or neuropsychiatric symptoms. Impaired cognition is a well-described feature in patients with neurological WD, while the reports on cognition in hepatic WD patients are fewer and less conclusive. We examined cognition in a cohort of WD patients with both phenotypes. In this cross-sectional pilot study, we investigated cognition in 28 stable Danish WD patients by the PortoSystemic Encephalopathy (PSE) and the Continuous Reaction Time (CRT) tests. Half of the patients were female, and their median age was 35.5 years (IQR 24.5). Their phenotype was hepatic in 14 (50%), neurologic in 10 (36%) and mixed in 4 (14%). The duration of treatment was > 2 year in all patients, and their condition was stable as judged by urinary copper excretion, liver enzymes, and clinical assessment. The hepatic patients did not show signs of liver failure. In total, 16 (57%) patients performed worse than normal in the PSE and/or the CRT tests. The two tests were correlated (rho = 0.60, p = 0.0007), but neither correlated with phenotype, MELD-, Child-Pugh score, 24 h-U-Cu, or treatment type. Measurable cognitive impairment was present in more than half of the stable WD patients independent of phenotype. Thus, our data questions the existence of a purely hepatic phenotype.
Collapse
Affiliation(s)
- Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Mette Munk Lauridsen
- Department of Hepatology and Gastroenterology, University Hospital of South Denmark, Esbjerg, Denmark
| | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| |
Collapse
|