1
|
Yu Q, Gao L, Xu L, Han Y, Cao Y, Xi J, Zhong Y, Li L, Shen L, Che J, Dong X, Zhang C, Zeng L, Zhu H, Shao J, Xu Y, Li J, Zhou Y, Zhang J. Exploration of novel 20S proteasome activators featuring anthraquinone structures and their application in hypoxic cardiomyocyte protection. Bioorg Med Chem 2024; 115:117983. [PMID: 39500271 DOI: 10.1016/j.bmc.2024.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Under hypoxic conditions, the accumulation of misfolded proteins primarily relies on the autonomous activity of 20S proteasome for degradation. The buildup of toxic proteins in cardiomyocyte contribute to various cardiovascular diseases. Therefore, enhancing the 20S proteasome degradation capacity and restoring protein homeostasis in myocardial cells with small molecule activators represent a promising therapeutic strategy for the treatment of ischemic cardiomyopathy. In this study, the lead compound 8016-8398 was identified through virtual screening, and subsequent structure optimization resulted in a series of highly potent 20S proteasome activators. Intracellular protein degradation assessment revealed that these compounds possessed abilities to alleviate endoplasmic reticulum stress, as demonstrated by the luciferase reporter system. Additionally, selected compound B-03 significantly enhanced the survival rate of hypoxic-damaged cardiomyocytes. Mechanistic investigations verified B-03 rescued hypoxic damaged cardiomyocyte through apoptosis inhibition and proliferation promotion.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lixin Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China
| | - Yubing Han
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China
| | - Linjie Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Liteng Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China.
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
2
|
Folahan JT, Fakir S, Barabutis N. Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects. Cell Biochem Funct 2024; 42:e70007. [PMID: 39449673 PMCID: PMC11528298 DOI: 10.1002/cbf.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The endothelial semipermeable monolayers ensure tissue homeostasis, are subjected to a plethora of stimuli, and their function depends on cytoskeletal integrity and remodeling. The permeability of those membranes can fluctuate to maintain organ homeostasis. In cases of severe injury, inflammation or disease, barrier hyperpermeability can cause irreparable damage of endothelium-dependent issues, and eventually death. Elucidation of the signaling regulating cytoskeletal structure and barrier integrity promotes the development of targeted pharmacotherapies towards disorders related to the impaired endothelium (e.g., acute respiratory distress syndrome, sepsis). Recent reports investigate the role of unfolded protein response in barrier function. Herein we review the cytoskeletal components, the unfolded protein response function; and their interrelations on health and disorder. Moreover, we emphasize on unfolded protein response modulators, since they ameliorate illness related to endothelial leak.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
3
|
Yang X, Lu J, Su F, Wu J, Wang X, Hu Z, Yan Z, Xu H, Shang X, Guo W. Induction of LARP1B under endoplasmic reticulum stress and its regulatory role in proliferation of esophageal squamous cell carcinoma. Transl Oncol 2024; 50:102141. [PMID: 39341066 PMCID: PMC11470178 DOI: 10.1016/j.tranon.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
Endoplasmic Reticulum Stress (ER stress) is a series of cellular responses activated in response to misfolded and unfolded protein accumulation and calcium imbalance in the ER lumen. Cumulating evidence emphasized the crucial involvement of ER stress in cell survival, death, and proliferation. However, the precise process remained obscure, especially in esophageal squamous cell carcinoma (ESCC). In the present study, LARP1B was detected to be one of the genes with significant differential expression in the ER stress ESCC cell model by RNA sequencing. ESCC cells exposed to ER stress stimulants (thapsigargin and tunicamycin) showed increased expression levels of LARP1B. ER stress initiated the expression of LARP1B through activation of the ERN1-XBP1 pathway, with XBP1 acting as a transcription factor to boost LARP1B transcription. Up-regulation of LARP1B was detected in ESCC tissues and cell lines. Suppression of LARP1B effectively curtailed the growth of cells and hindered the progression of the cell cycle. By detecting the expression of some genes closely related to proliferation and cell cycle regulation, CCND1 was identified as the main contributor to the cell proliferation induced by LARP1B. As an RNA-binding protein, LARP1B has the capability to attach to CCND1 mRNA, thereby increasing its stability. Inhibiting CCND1 might partially counterbalance the proliferation-promoting impact of LARP1B overexpression on ESCC cells. These findings indicate that, upon ER stress, up-regulation of LARP1B, triggered by ERN1-XBP1 pathway, facilitates proliferation of ESCC cells through enhancing the mRNA stability of CCND1, and LARP1B may be used as a potential therapeutic target of ESCC.
Collapse
Affiliation(s)
- Xia Yang
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangyu Su
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhong Wu
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinhao Wang
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaokun Hu
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyang Yan
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huanchen Xu
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL, Chen JJ. Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther 2024; 24:400. [PMID: 39550552 PMCID: PMC11568601 DOI: 10.1186/s12906-024-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In China, Tongguanteng injection (TGT) is widely used in the treatment or adjuvant treatment of various types of cancer. However, the effect and mechanism of TGT in osteosarcoma is not clear. METHODS The 143B and MG-63 cells were treated with different concentrations of TGT. Cell proliferation, migration, invasion and apoptosis were detected using CCK8 assay, transwell assay and flow cytometry. Differentially expressed genes (DEGs) were screened using RNA sequencing (RNA-seq). The identified mRNA and protein expression associated with the IRE1/CHOP pathway was validated by RT-PCR and western blot assay. To explore the underlying mechanisms, 4-phenylbutyric acid (4-PBA) was selected as a specific endoplasmic reticulum (ER) stress inhibitor. Small interfering RNA (siRNA) or pEX-3-ERN1 plasmid was transfected into 143B cells to silence or overexpress IRE1, respectively. The potential downstream proteins, including CHOP, and apoptosis associated proteins, caspase-3 and PARP1 were determined. Furthermore, the effect of TGT was demonstrated in 143B cell tumor-bearing mice in vivo. H&E staining, TUNEL staining and immunohistochemistry were conducted in tumor tissues obtained from the xenograft mouse model. RESULTS TGT was shown to dramatically suppress the proliferation, migration and invasion, and induce apoptosis of osteosarcoma 143B and MG-63 cells in vitro. The identified DEGs included HSPA5 (encoding BiP) and ERN1 (encoding the IRE1 protein), as well as apoptosis-associated gene DDIT3 (encoding the CHOP protein). The term "IRE1-mediated unfolded protein response" was screened to be the most enriched biological process GO term. The expression of ER stress-associated proteins including ATF6, BiP, p-IRE1, XBP1s and CHOP, as well as apoptosis-associated cleaved caspase-3 and cleaved PARP1 proteins, was significantly upregulated by TGT treatment in osteosarcoma 143B cells, suggesting that TGT might promote the apoptosis of osteosarcoma 143B cells through the IRE1/CHOP pathway. Furthermore, knocking down IRE1 with si-IRE1 or inhibiting of ER stress with 4-PBA suppressed the expression of ATF6, BiP, XBP1s and CHOP induced by TGT, as well as the expression of cleaved caspase-3 and cleaved PARP1. On the contrary, overexpressing IRE1 promoted CHOP expression and induced osteosarcoma cell apoptosis. Consistent with in vitro results, TGT dramatically inhibited the tumor growth and promoted the expression of p-IRE1 and CHOP in tumor-bearing mice. CONCLUSION The findings suggest that TGT exerts an anti-osteosarcoma effect in vitro and in vivo. The underlying mechanism might be associated with the activation of IRE1/CHOP pathway in ER stress. Our findings suggest that targeting IRE1/CHOP pathway might be a potential novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiao-Chuan Xue
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling-Yan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lan-Yi Wei
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Meng-Yue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
5
|
Meng H, Ai H, Li D, Jiang X, Zhang H, Xu J, Huang S. Bombyx mori UFBP1 regulates apoptosis and promotes BmNPV proliferation by affecting the expression of ER chaperone BmBIP. Int J Biol Macromol 2024; 283:137681. [PMID: 39551318 DOI: 10.1016/j.ijbiomac.2024.137681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5) - E2 (UFC1) - E3 (UFL1) cascade. UFBP1 is a conserved UFL1-interacting protein in mammals. However, to date, no study has been conducted on UFBP1 in silkworm. In this study, we identified a UFBP1 ortholog in the B. mori genome. Spatiotemporal expression profiles showed that BmUFBP1 expression was high in the midgut and fatbody, and at the moth stage. BmUFBP1 knockdown inhibited ER chaperone BmBIP expression and BmNPV proliferation, while BmUFBP1 overexpression increased BmNPV proliferation, and BmBIP rescued BmUFBP1-regulated BmNPV proliferation. Mechanistically, Apoptosis and ATF6 signaling are involved in BmUFBP1-regulated BmBIP expression and BmNPV proliferation. These results suggest that BmUFBP1 facilitates BmNPV proliferation via ATF6-BIP signaling, and provide a potential molecular target for BmNPV prevention and silkworm breeding.
Collapse
Affiliation(s)
- Haonan Meng
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Heng Ai
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Danting Li
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Jiang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Hualing Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Jiaping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shoujun Huang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
7
|
Luchetti N, Smith KM, Matarrese MAG, Loppini A, Filippi S, Chiodo L. A statistical mechanics investigation of unfolded protein response across organisms. Sci Rep 2024; 14:27658. [PMID: 39532983 PMCID: PMC11557608 DOI: 10.1038/s41598-024-79086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Living systems rely on coordinated molecular interactions, especially those related to gene expression and protein activity. The Unfolded Protein Response is a crucial mechanism in eukaryotic cells, activated when unfolded proteins exceed a critical threshold. It maintains cell homeostasis by enhancing protein folding, initiating quality control, and activating degradation pathways when damage is irreversible. This response functions as a dynamic signaling network, with proteins as nodes and their interactions as edges. We analyze these protein-protein networks across different organisms to understand their intricate intra-cellular interactions and behaviors. In this work, analyzing twelve organisms, we assess how fundamental measures in network theory can individuate seed proteins and specific pathways across organisms. We employ network robustness to evaluate and compare the strength of the investigated protein-protein interaction networks, and the structural controllability of complex networks to find and compare the sets of driver nodes necessary to control the overall networks. We find that network measures are related to phylogenetics, and advanced network methods can identify main pathways of significance in the complete Unfolded Protein Response mechanism.
Collapse
Affiliation(s)
- Nicole Luchetti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy.
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, Rome, 00161, Italy.
| | - Keith M Smith
- Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Margherita A G Matarrese
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy.
- National Institute of Optics, National Research Council, Largo Enrico Fermi 6, Florence, 50125, Italy.
- International Center for Relativistic Astrophysics Network, Piazza della Repubblica 10, Pescara, 65122, Italy.
| | - Letizia Chiodo
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| |
Collapse
|
8
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
9
|
Kamel AG, Sabet S, El-Shibiny A. Potential mitochondrial ROS-mediated damage induced by chitosan nanoparticles bee venom-loaded on cancer cell lines. Int J Biol Macromol 2024; 279:135362. [PMID: 39245116 DOI: 10.1016/j.ijbiomac.2024.135362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Recently, numerous studies have confirmed the importance of chitosan nanoparticles (CNP) as a viable drug delivery carrier for increasing the efficacy of anticancer drugs in cancer treatment. It is a macromolecule and natural biopolymer compound, more stable and safer in use than metal nanoparticles. Bee venom (BV), a form of defense venom, has been shown to have anti-tumor, neuroprotective, anti-inflammatory, analgesic, and anti-infectivity properties. Moreover, the regulation of cell death has been linked to reactive oxygen species (ROS)-mediated cell apoptosis, which induces mitochondrial damage and ER stress through oxidative stress events. Therefore, this study aimed to illustrate the ROS-mediated effect on the cancer cells treatment with CNP-loaded BV (CNP-BV) and explained the adverse effects of ROS generation on Mitochondria and ER. We have found that the targeted CNP-BV were high in cytotoxicity against MCF-7 (IC50 437.2 μg/mL) and HepG2 (IC50 109.5 μg/mL) through the induction of massive generation of ROS, which in turn results in activating the mitochondrial cascade and ER stress. These results highlighted the role of ROS generation in inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
10
|
Shibata M, Yoshida K, Yokoi A, Suzuki H, Yamamoto Y, Kitagawa M, Asano-Inami E, Yasui Y, Nishiko Y, Yoshihara M, Tamauchi S, Yoshikawa N, Nishino K, Yamamoto E, Niimi K, Kajiyama H. Elucidation of the role of XBP1 in the progression of complete hydatidiform mole to invasive mole through RNA-seq. Gynecol Oncol 2024; 190:189-199. [PMID: 39216132 DOI: 10.1016/j.ygyno.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE A complete hydatidiform mole (CHM) is a common disease and is known to develop post-molar gestational trophoblast neoplasia (GTN). However, the molecular mechanisms underlying the progression of CHM to post-molar GTN remain largely unknown. In this study, we investigated the molecular factors associated with the progression using RNA-seq. METHODS We included 13 patients with CHM and performed RNA-seq using freshly frozen samples. We identified differentially expressed genes between patients who developed GTN (GTN group) and those who achieved spontaneous remission after uterine evacuation (SR group), and performed pathway analysis. Then, functional analyses were performed on choriocarcinoma (JAR and JEG-3) and CHM (Hmol1-3B and Hmol1-2C) cells. Moreover, we evaluated the in vivo tumorigenicity of XBP1-overexpressed Hmol1-3B cells. RESULTS The gene expression profiles were separated into two groups, and an upstream regulator analysis was performed using 281 differentially expressed genes. We focused on transcription factors and identified that 33 transcription factors were activated in the GTN group. Then, excluding those with low expression levels in clinical samples and cell lines, XBP1 was selected for further analysis. Additionally, XBP1 downregulation significantly decreased the migration and invasive abilities of choriocarcinoma cells, whereas XBP1 overexpression significantly increased the migration and invasive abilities of CHM cells. Furthermore, animal experiments showed that tumor weight and blood human chorionic gonadotropin (hCG) levels were significantly higher in the XBP1-overexpressing Hmol1-3B-bearing mice than those in the control mice. CONCLUSION RNA-seq identified XBP1 as a key factor in post-molar GTN, suggesting it contributes to the development of post-molar GTN.
Collapse
Affiliation(s)
- Mayu Shibata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hironori Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Yasui
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Nishiko
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Wang W, Wang Y, Lyu R, Grün D. Scalable identification of lineage-specific gene regulatory networks from metacells with NetID. Genome Biol 2024; 25:275. [PMID: 39425176 PMCID: PMC11488259 DOI: 10.1186/s13059-024-03418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
The identification of gene regulatory networks (GRNs) is crucial for understanding cellular differentiation. Single-cell RNA sequencing data encode gene-level covariations at high resolution, yet data sparsity and high dimensionality hamper accurate and scalable GRN reconstruction. To overcome these challenges, we introduce NetID leveraging homogenous metacells while avoiding spurious gene-gene correlations. Benchmarking demonstrates superior performance of NetID compared to imputation-based methods. By incorporating cell fate probability information, NetID facilitates the prediction of lineage-specific GRNs and recovers known network motifs governing bone marrow hematopoiesis, making it a powerful toolkit for deciphering gene regulatory control of cellular differentiation from large-scale single-cell transcriptome data.
Collapse
Affiliation(s)
- Weixu Wang
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Yichen Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Ruiqi Lyu
- School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- CAIDAS - Center for Artificial Intelligence and Data Science, Würzburg, Germany.
| |
Collapse
|
12
|
Campoy-Campos G, Solana-Balaguer J, Guisado-Corcoll A, Chicote-González A, Garcia-Segura P, Pérez-Sisqués L, Torres A, Canal M, Molina-Porcel L, Fernández-Irigoyen J, Santamaria E, de Pouplana L, Alberch J, Martí E, Giralt A, Pérez-Navarro E, Malagelada C. RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease. Nucleic Acids Res 2024; 52:11158-11176. [PMID: 39268577 PMCID: PMC11472047 DOI: 10.1093/nar/gkae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Julia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Anna Guisado-Corcoll
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Leticia Pérez-Sisqués
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Adrian Gabriel Torres
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
| | - Mercè Canal
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona 08036, Catalonia, Spain
- Neurological Tissue Bank, Biobank-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Catalonia, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Lluís Ribas de Pouplana
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Albert Giralt
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| |
Collapse
|
13
|
Wallaeys C, Garcia-Gonzalez N, Timmermans S, Vandewalle J, Vanderhaeghen T, De Beul S, Dufoor H, Eggermont M, Moens E, Bosteels V, De Rycke R, Thery F, Impens F, Verbanck S, Lienenklaus S, Janssens S, Blumberg RS, Iwawaki T, Libert C. Paneth cell TNF signaling induces gut bacterial translocation and sepsis. Cell Host Microbe 2024; 32:1725-1743.e7. [PMID: 39243761 DOI: 10.1016/j.chom.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Somara De Beul
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Hester Dufoor
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Elise Moens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Victor Bosteels
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research and Bioimaging Core, VIB, Ghent 9052, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium; VIB Proteomics Core, VIB, Ghent 9052, Belgium
| | - Serge Verbanck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Sophie Janssens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium.
| |
Collapse
|
14
|
Wu M, Zhang L, Pi L, Liu L, Wang S, Wu Y, Pan H, Liu M, Yi Z. IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells. Cell Oncol (Dordr) 2024; 47:1797-1809. [PMID: 38888849 DOI: 10.1007/s13402-024-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients. METHODS Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo. RESULTS We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC. CONCLUSIONS In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Lifu Pi
- Shanghai World Foreign Language Academy, Shanghai, 200030, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Siyu Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Yujie Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Hongli Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China.
| |
Collapse
|
15
|
Matour E, Asadi ZT, Deilami AA, Azandeh SS, Taheri B. MiR-34c-5p Inhibition Affects Bax/Bcl2 Expression and Reverses Bortezomib Resistance in Multiple Myeloma Cells. Indian J Hematol Blood Transfus 2024; 40:596-603. [PMID: 39469181 PMCID: PMC11512978 DOI: 10.1007/s12288-024-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/24/2024] [Indexed: 10/30/2024] Open
Abstract
Developing resistance to anticancer drugs complicates the clinical treatment of multiple myeloma patients. Previous studies revealed a link between the unfolded protein response (UPR) and miRNAs with acquired drug resistance. This study aimed to determine the expression profile of XBP1, hsa-miR-34c-5p, hsa-miR-214, and hsa-miR-30c-2* in resistant and sensitive multiple myeloma cell lines to a proteasome inhibitor, bortezomib. After establishing bortezomib-resistant cells, the expression level of XBP1, hsa-miR-214, hsa-miR-34c-5p, and hsa-miR-30c-2* in both cell lines were assessed by qRT-PCR. Hsa-miR-34c-5p was suppressed to study its effect on the expression profile of Bax/Bcl-2. Statistical analysis was done by t-test in two clinically resistant and sensitive cells to bortezomib. MTT assay confirmed the creation of the resistant cell line. The qRT-PCR screening showed a significant difference between XBP1 and miR-34c-5p levels in resistant and sensitive cells. Following hsa-miR-34c-5p blockage, while Bax was overexpressed, Bcl-2 expression was reduced in the resistant cell line, overcoming cells resistant to bortezomib. Our findings demonstrate miR-34c-5p is differentially expressed between bortezomib-sensitive and -resistant MM cells. Inhibiting miR-34c-5p re-sensitized resistant cells to bortezomib by modulating Bax/Bcl-2 expression, suggesting this miRNA regulates apoptosis and drug resistance and may be a promising therapeutic target for overcoming proteasome inhibitor resistance in MM.
Collapse
Affiliation(s)
- Emad Matour
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zari Tahannejad Asadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh Deilami
- Department of Internal Medicine, School of Medicine, Firoogar General Hospital, Iran University of Medical Science, Tehran, Iran
| | - Seyed Saeed Azandeh
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Brueck L, Roocke S, Matschke V, Richter-Unruh A, Marcus-Alic K, Theiss C, Stahlke S. FGF23 and Cell Stress in SaOS-2 Cells-A Model Reflecting X-Linked Hypophosphatemia Dynamics. Cells 2024; 13:1515. [PMID: 39329699 PMCID: PMC11430666 DOI: 10.3390/cells13181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Our study investigates the impact of FGF23 overexpression on SaOS-2 cells to elucidate its role in cellular stress and morphology, contributing to the understanding of skeletal pathologies like X-linked hypophosphatemia (XLH). Using transmission electron microscopy and protein analysis (Western blot), we analyzed the rough endoplasmic reticulum (rER) and mitochondria in SaOS-2 cells with FGF23 overexpression compared to controls. We found significant morphological changes, including enlarged and elongated rER and mitochondria, with increased contact zones, suggesting enhanced interaction and adaptation to elevated protein synthesis and secretion demands. Additionally, we observed higher apoptosis rates of the cells after 24-72 h in vitro and upregulated proteins associated with ER stress and apoptosis, such as CHOP, XBP1 (spliced and unspliced), GRP94, eIF2α, and BAX. These findings indicate a robust activation of the unfolded protein response (UPR) and apoptotic pathways due to FGF23 overexpression. Our results highlight the critical role of ER and mitochondrial interactions in cellular stress responses and provide new insights into the mechanistic link between FGF23 signaling and cellular homeostasis. In conclusion, our study underscores the importance of analyzing UPR-related pathways in the development of therapeutic strategies for skeletal and systemic diseases and contributes to a broader understanding of diseases like XLH.
Collapse
Affiliation(s)
- Lisanne Brueck
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sascha Roocke
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Annette Richter-Unruh
- Clinic for Children and Adolescents, Pediatric Endocrinology, St. Josefs-Hospital, D-44791 Bochum, Germany
| | - Katrin Marcus-Alic
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
17
|
Sun X, Lin R, Lu X, Wu Z, Qi X, Jiang T, Jiang J, Mu P, Chen Q, Wen J, Deng Y. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1α. Cell Death Dis 2024; 15:587. [PMID: 39138189 PMCID: PMC11322666 DOI: 10.1038/s41419-024-06973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
Collapse
Affiliation(s)
- XingSheng Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinxia Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhikai Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xueying Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
18
|
Starr AL, Nishimura T, Igarashi KJ, Funamoto C, Nakauchi H, Fraser HB. Disentangling cell-intrinsic and extrinsic factors underlying evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592777. [PMID: 38798687 PMCID: PMC11118348 DOI: 10.1101/2024.05.06.592777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A key goal of developmental biology is to determine the extent to which cells and organs develop autonomously, as opposed to requiring interactions with other cells or environmental factors. Chimeras have played a foundational role in this by enabling qualitative classification of cell-intrinsically vs. extrinsically driven processes. Here, we extend this framework to precisely decompose evolutionary divergence in any quantitative trait into cell-intrinsic, extrinsic, and intrinsic-extrinsic interaction components. Applying this framework to thousands of gene expression levels in reciprocal rat-mouse chimeras, we found that the majority of their divergence is attributable to cell-intrinsic factors, though extrinsic factors also play an integral role. For example, a rat-like extracellular environment extrinsically up-regulates the expression of a key transcriptional regulator of the endoplasmic reticulum (ER) stress response in some but not all cell types, which in turn strongly predicts extrinsic up-regulation of its target genes and of the ER stress response pathway as a whole. This effect is also seen at the protein level, suggesting propagation through multiple regulatory levels. Applying our framework to a cellular trait, neuronal differentiation, revealed a complex interaction of intrinsic and extrinsic factors. Finally, we show that imprinted genes are dramatically mis-expressed in species-mismatched environments, suggesting that mismatch between rapidly evolving intrinsic and extrinsic mechanisms controlling gene imprinting may contribute to barriers to interspecies chimerism. Overall, our conceptual framework opens new avenues to investigate the mechanistic basis of developmental processes and evolutionary divergence across myriad quantitative traits in any multicellular organism.
Collapse
Affiliation(s)
| | - Toshiya Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, 565-0871, Japan (current address for T.N.)
- Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Kyomi J. Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chihiro Funamoto
- Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Zhang R, Farshadyeganeh P, Ohkawara B, Nakajima K, Takeda JI, Ito M, Zhang S, Miyasaka Y, Ohno T, Mori-Yoshimura M, Masuda A, Ohno K. Muscle-specific lack of Gfpt1 triggers ER stress to alleviate misfolded protein accumulation. Dis Model Mech 2024; 17:dmm050768. [PMID: 38903011 PMCID: PMC11554261 DOI: 10.1242/dmm.050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.
Collapse
Affiliation(s)
- Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8775, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
20
|
Shi Z, Han Z, Chen J, Zhou JC. Endoplasmic reticulum-resident selenoproteins and their roles in glucose and lipid metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167246. [PMID: 38763408 DOI: 10.1016/j.bbadis.2024.167246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.
Collapse
Affiliation(s)
- Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingyi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
21
|
Joshi AS, Tomaz da Silva M, Roy A, Koike TE, Wu M, Castillo MB, Gunaratne PH, Liu Y, Iwawaki T, Kumar A. The IRE1α/XBP1 signaling axis drives myoblast fusion in adult skeletal muscle. EMBO Rep 2024; 25:3627-3650. [PMID: 38982191 PMCID: PMC11316051 DOI: 10.1038/s44319-024-00197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.
Collapse
Affiliation(s)
- Aniket S Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Tatiana E Koike
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Micah B Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA.
| |
Collapse
|
22
|
Chen Y, Liu Y, Li Y, Yao C, Qu J, Tang J, Chen G, Han Y. Acute exposure to polystyrene nanoplastics induces unfolded protein response and global protein ubiquitination in lungs of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116580. [PMID: 38865938 DOI: 10.1016/j.ecoenv.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China; Wujiang Center for Disease Control and Prevention, Suzhou, Jiangsu 215299, China
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
23
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
24
|
Iaiza A, Mazzanti G, Goeman F, Cesaro B, Cortile C, Corleone G, Tito C, Liccardo F, De Angelis L, Petrozza V, Masciarelli S, Blandino G, Fanciulli M, Fatica A, Fontemaggi G, Fazi F. WTAP and m 6A-modified circRNAs modulation during stress response in acute myeloid leukemia progenitor cells. Cell Mol Life Sci 2024; 81:276. [PMID: 38909325 PMCID: PMC11335200 DOI: 10.1007/s00018-024-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Oxidative Stress/drug effects
- Bortezomib/pharmacology
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Protein Serine-Threonine Kinases
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Gilla Mazzanti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Clelia Cortile
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Francesca Liccardo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
25
|
Mandell JD, Diviti S, Xu M, Townsend JP. Rare Drivers at Low Prevalence with High Cancer Effects in T-Cell and B-Cell Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:6589. [PMID: 38928295 PMCID: PMC11203805 DOI: 10.3390/ijms25126589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The genomic analyses of pediatric acute lymphoblastic leukemia (ALL) subtypes, particularly T-cell and B-cell lineages, have been pivotal in identifying potential therapeutic targets. Typical genomic analyses have directed attention toward the most commonly mutated genes. However, assessing the contribution of mutations to cancer phenotypes is crucial. Therefore, we estimated the cancer effects (scaled selection coefficients) for somatic substitutions in T-cell and B-cell cohorts, revealing key insights into mutation contributions. Cancer effects for well-known, frequently mutated genes like NRAS and KRAS in B-ALL were high, which underscores their importance as therapeutic targets. However, less frequently mutated genes IL7R, XBP1, and TOX also demonstrated high cancer effects, suggesting pivotal roles in the development of leukemia when present. In T-ALL, KRAS and NRAS are less frequently mutated than in B-ALL. However, their cancer effects when present are high in both subtypes. Mutations in PIK3R1 and RPL10 were not at high prevalence, yet exhibited some of the highest cancer effects in individual T-cell ALL patients. Even CDKN2A, with a low prevalence and relatively modest cancer effect, is potentially highly relevant for the epistatic effects that its mutated form exerts on other mutations. Prioritizing investigation into these moderately frequent but potentially high-impact targets not only presents novel personalized therapeutic opportunities but also enhances the understanding of disease mechanisms and advances precision therapeutics for pediatric ALL.
Collapse
Affiliation(s)
- Jeffrey D. Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA;
| | | | - Mina Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, New Haven, CT 06520, USA
| | - Jeffrey P. Townsend
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA;
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, New Haven, CT 06520, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Liu W, He C, Li C, Ye S, Zhao J, Zhu C, Wang X, Ma Q, Li B. Natural compound Alternol actives multiple endoplasmic reticulum stress-responding pathways contributing to cell death. Front Pharmacol 2024; 15:1397116. [PMID: 38831880 PMCID: PMC11144888 DOI: 10.3389/fphar.2024.1397116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Background: Alternol is a small molecular compound isolated from the fermentation of a mutant fungus obtained from Taxus brevifolia bark. Our previous studies showed that Alternol treatment induced reactive oxygen species (ROS)-dependent immunogenic cell death. This study conducted a comprehensive investigation to explore the mechanisms involved in Alternol-induced immunogenic cell death. Methods: Prostate cancer PC-3, C4-2, and 22RV1 were used in this study. Alternol interaction with heat shock proteins (HSP) was determined using CETSA assay. Alternol-regulated ER stress proteins were assessed with Western blot assay. Extracellular adenosine triphosphate (ATP) was measured using ATPlite Luminescence Assay System. Results: Our results showed that Alternol interacted with multiple cellular chaperone proteins and increased their expression levels, including endoplasmic reticulum (ER) chaperone hypoxia up-regulated 1 (HYOU1) and heat shock protein 90 alpha family class B member 1 (HSP90AB1), as well as cytosolic chaperone heat shock protein family A member 8 (HSPA8). These data represented a potential cause of unfolded protein response (UPR) after Alternol treatment. Further investigation revealed that Alternol treatment triggered ROS-dependent (ER) stress responses via R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α). The double-stranded RNA-dependent protein kinase (PKR) but not activating transcription factor 6 (ATF6) cascades, leading to ATF-3/ATF-4 activation, C/EBP-homologous protein (CHOP) overexpression, and X-box binding protein XBP1 splicing induction. In addition, inhibition of these ER stress responses cascades blunted Alternol-induced extracellular adenosine triphosphate (ATP) release, one of the classical hallmarks of immunogenic cell death. Conclusion: Taken together, our data demonstrate that Alternol treatment triggered multiple ER stress cascades, leading to immunogenic cell death.
Collapse
Affiliation(s)
- Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Changlin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shazhou Ye
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cunle Zhu
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
27
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
28
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
29
|
McFadden MJ, Reynolds MB, Michmerhuizen BC, Ólafsson EB, Anderson FM, Schultz TL, O’Riordan MX, O’Meara TR. Non-canonical activation of IRE1α during Candida albicans infection enhances macrophage fungicidal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560560. [PMID: 37873171 PMCID: PMC10592910 DOI: 10.1101/2023.10.02.560560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
While the canonical function of IRE1α is to detect misfolded proteins and activate the unfolded protein response (UPR) to maintain cellular homeostasis, microbial pathogens can also activate IRE1α, which modulates innate immunity and infection outcomes. However, how infection activates IRE1α and its associated inflammatory functions have not been fully elucidated. Recognition of microbe-associated molecular patterns can activate IRE1α, but it is unclear whether this depends on protein misfolding. Here, we report that a common and deadly fungal pathogen, Candida albicans, activates macrophage IRE1α through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. This activation did not depend on protein misfolding in response to C. albicans infection. Moreover, lipopolysaccharide treatment was also able to activate IRE1α prior to protein misfolding, suggesting that pathogen-mediated activation of IRE1α occurs through non-canonical mechanisms. During C. albicans infection, we observed that IRE1α activity promotes phagolysosomal fusion that supports the fungicidal activity of macrophages. Consequently, macrophages lacking IRE1α activity displayed inefficient phagosome maturation, enabling C. albicans to lyse the phagosome, evade fungal killing, and drive aberrant inflammatory cytokine production. Mechanistically, we show that IRE1α activity supports phagosomal calcium flux after phagocytosis of C. albicans, which is crucial for phagosome maturation. Importantly, deletion of IRE1α activity decreased the fungicidal activity of phagocytes in vivo during systemic C. albicans infection. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.
Collapse
Affiliation(s)
- Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Einar B. Ólafsson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X.D. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Al Otaibi A, Al Shaikh Mubarak S, Al Hejji F, Almasaud A, Al Jami H, Iqbal J, Al Qarni A, Harbi NKA, Bakillah A. Thapsigargin and Tunicamycin Block SARS-CoV-2 Entry into Host Cells via Differential Modulation of Unfolded Protein Response (UPR), AKT Signaling, and Apoptosis. Cells 2024; 13:769. [PMID: 38727305 PMCID: PMC11083125 DOI: 10.3390/cells13090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Abeer Al Otaibi
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Sindiyan Al Shaikh Mubarak
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Fatimah Al Hejji
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
| | - Abdulrahman Almasaud
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Haya Al Jami
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Naif Khalaf Al Harbi
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
32
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
33
|
Ham SY, Pyo MJ, Kang M, Kim YS, Lee DH, Chung JH, Lee ST. HSP47 Increases the Expression of Type I Collagen in Fibroblasts through IRE1α Activation, XBP1 Splicing, and Nuclear Translocation of β-Catenin. Cells 2024; 13:527. [PMID: 38534372 DOI: 10.3390/cells13060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of β-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear β-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear β-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.
Collapse
Affiliation(s)
- So Young Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Ju Pyo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Moonkyung Kang
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
| | - Yeon-Soo Kim
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. Cell Biosci 2024; 14:27. [PMID: 38388523 PMCID: PMC10885492 DOI: 10.1186/s13578-024-01203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA.
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
González-Pereira P, Trinh R, Vasuthasawat A, Bartsch-Jiménez A, Nuñez-Soto C, Altamirano C. Enhancing Antibody-Specific Productivity: Unraveling the Impact of XBP1s Overexpression and Glutamine Availability in SP2/0 Cells. Bioengineering (Basel) 2024; 11:201. [PMID: 38534475 DOI: 10.3390/bioengineering11030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Augmentation of glycoprotein synthesis requirements induces endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR) and triggering unconventional XBP1 splicing. As a result, XBP1s orchestrates the expression of essential genes to reduce stress and restore homeostasis. When this mechanism fails, chronic stress may lead to apoptosis, which is thought to be associated with exceeding a threshold in XBP1s levels. Glycoprotein assembly is also affected by glutamine (Gln) availability, limiting nucleotide sugars (NS), and preventing compliance with the increased demands. In contrast, increased Gln intake synthesizes ammonia as a by-product, potentially reaching toxic levels. IgA2m(1)-producer mouse myeloma cells (SP2/0) were used as the cellular mammalian model. We explored how IgA2m(1)-specific productivity (qIgA2m(1)) is affected by (i) overexpression of human XBP1s (h-XBP1s) levels and (ii) Gln availability, evaluating the kinetic behavior in batch cultures. The study revealed a two and a five-fold increase in qIgA2m(1) when lower and higher levels of XBP1s were expressed, respectively. High h-XBP1s overexpression mitigated not only ammonia but also lactate accumulation. Moreover, XBP1s overexpressor showed resilience to hydrodynamic stress in serum-free environments. These findings suggest a potential application of h-XBP1s overexpression as a feasible and cost-effective strategy for bioprocess scalability.
Collapse
Affiliation(s)
- Priscilla González-Pereira
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Ryan Trinh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Vasuthasawat
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Bartsch-Jiménez
- Escuela Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Constanza Nuñez-Soto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Av. Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso 2340000, Chile
| |
Collapse
|
36
|
Dasgupta D, Mahadev Bhat S, Creighton C, Cortes C, Delmotte P, Sieck GC. Molecular mechanisms underlying TNFα-induced mitochondrial fragmentation in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L190-L205. [PMID: 38084427 PMCID: PMC11280718 DOI: 10.1152/ajplung.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjana Mahadev Bhat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Claire Creighton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Catherin Cortes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
37
|
Fashemi BE, Rougeau AK, Salazar AM, Bark SJ, Chappidi R, Brown JW, Cho CJ, Mills JC, Mysorekar IU. A new role for IFRD1 in regulation of ER stress in bladder epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574887. [PMID: 38260387 PMCID: PMC10802459 DOI: 10.1101/2024.01.09.574887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A healthy bladder requires the homeostatic maintenance of and rapid regeneration of urothelium upon stress/injury/infection. Several factors have been identified to play important roles in urothelial development, injury and disease response, however, little is known about urothelial regulation at homeostasis. Here, we identify a new role for IFRD1, a stress-induced gene that has recently been demonstrated to play a critical role in adult tissue proliferation and regeneration, in maintenance of urothelial function/ homeostasis in a mouse model. We show that the mouse bladder expresses IFRD1 at homeostasis and its loss alters the global transcriptome of the bladder with significant accumulation of cellular organelles including multivesicular bodies with undigested cargo, lysosomes and mitochondria. We demonstrate that IFRD1 interacts with several mRNA-translation-regulating factors in human urothelial cells and that the urothelium of Ifrd1-/- mice reveal decreased global translation and enhanced endoplasmic reticulum (ER) stress response. Ifrd1-/- bladders have activation of the unfolded protein response (UPR) pathway, specifically the PERK arm, with a concomitant increase in oxidative stress and spontaneous exfoliation of urothelial cells. Further, we show that such increase in cell shedding is associated with a compensatory proliferation of the basal cells but impaired regeneration of superficial cells. Finally, we show that upon loss of IFRD1, mice display aberrant voiding behavior. Thus, we propose that IFRD1 is at the center of many crucial cellular pathways that work together to maintain urothelial homeostasis, highlighting its importance as a target for diagnosis and/or therapy in bladder conditions.
Collapse
Affiliation(s)
- Bisiayo E. Fashemi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amala K. Rougeau
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Arnold M. Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Steven J. Bark
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Rayvanth Chappidi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey W. Brown
- John T. Milliken Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO
| | - Charles J. Cho
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Anto EM, Jayamurthy P. Tangeretin enhances pancreatic beta-TC-6 function by ameliorating tunicamycin-induced cellular perturbations. Mol Biol Rep 2023; 51:43. [PMID: 38158492 DOI: 10.1007/s11033-023-09013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pancreatic beta cell health and its insulin-secreting potential are severely compromised under the diabetic condition. One of the key mediators of beta cell dysfunction is endoplasmic reticulum (ER) stress. Pharmacological intervention of ER stress and associated complications in pancreatic beta cells may be an effective strategy for the management of diabetes. In the present study, we evaluated the efficacy of tangeretin, a citrus pentamethoxyflavone, in the alleviation of ER stress and associated perturbations in pancreatic Beta-TC-6 cell lines. METHODS AND RESULTS Tunicamycin (pharmacological ER stress inducer) at subtoxic levels was observed to induce beta cell dysfunction by upregulation of intracellular ROS levels, lowering mitochondrial number/biogenesis and membrane potential, elevation of UPR markers, XBP-1, GADD153, and ER resident chaperones. Treatment with tangeretin was successful in improving the beta cell function by lowering the ROS levels and improving the mitochondrial biogenesis and mitochondrial membrane potential. Tangeretin also downregulated the expression levels of XBP-1, GADD153, and ER resident chaperones. GLUT2 expression, however, did not undergo any significant change under ER stress. We also observed altered expression of Pdx-1, TRB3, and p-Akt under the ER stress condition. Tangeretin augmented the expression levels of Pdx-1, and p-Akt while curtailing the expression of TRB3 in beta cells. Tunicamycin treatment suppressed the insulin levels, however, co-treatment with tangeretin could only marginally improve the levels. CONCLUSION Targeting ER stress and associated pathways in pancreatic Beta-TC-6 cell lines by tangeretin can be an effective strategy for improving beta cell function.
Collapse
Affiliation(s)
- Eveline M Anto
- Agro-Processing & Technology Division, Department of Biochemistry, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Jayamurthy
- Agro-Processing & Technology Division, Department of Biochemistry, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
40
|
Huang PY, Shih IA, Liao YC, You HL, Lee MJ. FT895 Impairs Mitochondrial Function in Malignant Peripheral Nerve Sheath Tumor Cells. Int J Mol Sci 2023; 25:277. [PMID: 38203448 PMCID: PMC10779378 DOI: 10.3390/ijms25010277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) stands as a prevalent neurocutaneous disorder. Approximately a quarter of NF1 patients experience the development of plexiform neurofibromas, potentially progressing into malignant peripheral nerve sheath tumors (MPNST). FT895, an HDAC11 inhibitor, exhibits potent anti-tumor effects on MPNST cells and enhances the cytotoxicity of cordycepin against MPNST. The study aims to investigate the molecular mechanism underlying FT895's efficacy against MPNST cells. Initially, our study unveiled that FT895 disrupts mitochondrial biogenesis and function. Post-FT895 treatment, reactive oxygen species (ROS) in MPNST notably increased, while mitochondrial DNA copy numbers decreased significantly. Seahorse analysis indicated a considerable decrease in basal, maximal, and ATP-production-coupled respiration following FT895 treatment. Immunostaining highlighted FT895's role in promoting mitochondrial aggregation without triggering mitophagy, possibly due to reduced levels of XBP1, Parkin, and PINK1 proteins. Moreover, the study using CHIP-qPCR analysis revealed a significant reduction in the copy numbers of promoters of the MPV17L2, POLG, TFAM, PINK1, and Parkin genes. The RNA-seq analysis underscored the prominent role of the HIF-1α signaling pathway post-FT895 treatment, aligning with the observed impairment in mitochondrial respiration. In summary, the study pioneers the revelation that FT895 induces mitochondrial respiratory damage in MPNST cells.
Collapse
Affiliation(s)
- Po-Yuan Huang
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - I-An Shih
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ying-Chih Liao
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Huey-Ling You
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| |
Collapse
|
41
|
Ito A, Matsuda N, Ukita Y, Okumura M, Chihara T. Akaluc/AkaLumine bioluminescence system enables highly sensitive, non-invasive and temporal monitoring of gene expression in Drosophila. Commun Biol 2023; 6:1270. [PMID: 38097812 PMCID: PMC10721803 DOI: 10.1038/s42003-023-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Bioluminescence generated by luciferase and luciferin has been extensively used in biological research. However, detecting signals from deep tissues in vivo poses a challenge to traditional methods. To overcome this, the Akaluc and AkaLumine bioluminescent systems were developed, resulting in improved signal detection. We evaluate the potential of Akaluc/AkaLumine in Drosophila melanogaster to establish a highly sensitive, non-invasive, and temporal detection method for gene expression. Our results show that oral administration of AkaLumine to flies expressing Akaluc provided a higher luminescence signal than Luc/D-luciferin, with no observed harmful effects on flies. The Akaluc/AkaLumine system allows for monitoring of dynamic temporal changes in gene expression. Additionally, using the Akaluc fusion gene allows for mRNA splicing monitoring. Our findings indicate that the Akaluc/AkaLumine system is a powerful bioluminescence tool for analyzing gene expression in deep tissues and small numbers of cells in Drosophila.
Collapse
Affiliation(s)
- Akira Ito
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Nagisa Matsuda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
42
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Wang D, Qu S, Zhang Z, Tan L, Chen X, Zhong HJ, Chong CM. Strategies targeting endoplasmic reticulum stress to improve Parkinson's disease. Front Pharmacol 2023; 14:1288894. [PMID: 38026955 PMCID: PMC10667558 DOI: 10.3389/fphar.2023.1288894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with motor symptoms, which is caused by the progressive death of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence shows that endoplasmic reticulum (ER) stress occurring in the SNpc DA neurons is an early event in the development of PD. ER stress triggers the activation of unfolded protein response (UPR) to reduce stress and restore ER function. However, excessive and continuous ER stress and UPR exacerbate the risk of DA neuron death through crosstalk with other PD events. Thus, ER stress is considered a promising therapeutic target for the treatment of PD. Various strategies targeting ER stress through the modulation of UPR signaling, the increase of ER's protein folding ability, and the enhancement of protein degradation are developed to alleviate neuronal death in PD models. In this review, we summarize the pathological role of ER stress in PD and update the strategies targeting ER stress to improve ER protein homeostasis and PD-related events.
Collapse
Affiliation(s)
- Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zaijun Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
45
|
Qu X, Yang T, Wang X, Xu D, Yu Y, Li J, Jiang L, Xia Q, Farmer DG, Ke B. Macrophage RIPK3 triggers inflammation and cell death via the XBP1-Foxo1 axis in liver ischaemia-reperfusion injury. JHEP Rep 2023; 5:100879. [PMID: 37841640 PMCID: PMC10568422 DOI: 10.1016/j.jhepr.2023.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/12/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023] Open
Abstract
Background & Aims Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central player in triggering necroptotic cell death. However, whether macrophage RIPK3 may regulate NOD1-dependent inflammation and calcineurin/transient receptor potential cation channel subfamily M member 7 (TRPM7)-induced hepatocyte death in oxidative stress-induced liver inflammatory injury remains elusive. Methods A mouse model of hepatic ischaemia-reperfusion (IR) injury, the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific RIPK3 knockout (RIPK3M-KO) and RIPK3-proficient (RIPK3FL/FL) mice. Results RIPK3M-KO diminished IR stress-induced liver damage with reduced serum alanine aminotransferase/aspartate aminotransferase levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the RIPK3FL/FL controls. IR stress activated RIPK3, inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), x-box binding protein 1 (XBP1), nucleotide-binding oligomerisation domain-containing protein 1 (NOD1), NF-κB, forkhead box O1 (Foxo1), calcineurin A, and TRPM7 in ischaemic livers. Conversely, RIPK3M-KO depressed IRE1α, XBP1, NOD1, calcineurin A, and TRPM7 activation with reduced serum tumour necrosis factor α (TNF-α) levels. Moreover, Foxo1M-KO alleviated IR-induced liver injury with reduced NOD1 and TRPM7 expression. Interestingly, chromatin immunoprecipitation coupled with massively parallel sequencing revealed that macrophage Foxo1 colocalised with XBP1 and activated its target gene Zc3h15 (zinc finger CCCH domain-containing protein 15). Activating macrophage XBP1 enhanced Zc3h15, NOD1, and NF-κB activity. However, disruption of macrophage Zc3h15 inhibited NOD1 and hepatocyte calcineurin/TRPM7 activation, with reduced reactive oxygen species production and lactate dehydrogenase release after macrophage/hepatocyte coculture. Furthermore, adoptive transfer of Zc3h15-expressing macrophages in RIPK3M-KO mice augmented IR-triggered liver inflammation and cell death. Conclusions Macrophage RIPK3 activates the IRE1α-XBP1 pathway and Foxo1 signalling in IR-stress livers. The XBP1-Foxo1 interaction is essential for modulating target gene Zc3h15 function, which is crucial for the control of NOD1 and calcineurin-mediated TRPM7 activation. XBP1 functions as a transcriptional coactivator of Foxo1 in regulating NOD1-driven liver inflammation and calcineurin/TRPM7-induced cell death. Our findings underscore a novel role of macrophage RIPK3 in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Impact and implications Macrophage RIPK3 promotes NOD1-dependent inflammation and calcineurin/TRPM7-induced cell death cascade by triggering the XBP1-Foxo1 axis and its target gene Zc3h15, which is crucial for activating NOD1 and calcineurin/TRPM7 function, implying the potential therapeutic targets in stress-induced liver inflammatory injury.
Collapse
Affiliation(s)
- Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeping Yu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jun Li
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
46
|
Hanquier Z, Misra J, Baxter R, Maiers JL. Stress and Liver Fibrogenesis: Understanding the Role and Regulation of Stress Response Pathways in Hepatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1363-1376. [PMID: 37422148 PMCID: PMC10548279 DOI: 10.1016/j.ajpath.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023]
Abstract
Stress response pathways are crucial for cells to adapt to physiological and pathologic conditions. Increased transcription and translation in response to stimuli place a strain on the cell, necessitating increased amino acid supply, protein production and folding, and disposal of misfolded proteins. Stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), allow cells to adapt to stress and restore homeostasis; however, their role and regulation in pathologic conditions, such as hepatic fibrogenesis, are unclear. Liver injury promotes fibrogenesis through activation of hepatic stellate cells (HSCs), which produce and secrete fibrogenic proteins to promote tissue repair. This process is exacerbated in chronic liver disease, leading to fibrosis and, if unchecked, cirrhosis. Fibrogenic HSCs exhibit activation of both the UPR and ISR, due in part to increased transcriptional and translational demands, and these stress responses play important roles in fibrogenesis. Targeting these pathways to limit fibrogenesis or promote HSC apoptosis is a potential antifibrotic strategy, but it is limited by our lack of mechanistic understanding of how the UPR and ISR regulate HSC activation and fibrogenesis. This article explores the role of the UPR and ISR in the progression of fibrogenesis, and highlights areas that require further investigation to better understand how the UPR and ISR can be targeted to limit hepatic fibrosis progression.
Collapse
Affiliation(s)
- Zachary Hanquier
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reese Baxter
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
47
|
Peng H, Zhou Q, Liu J, Wang Y, Mu K, Zhang L. Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm Res 2023; 72:1761-1772. [PMID: 37695356 DOI: 10.1007/s00011-023-01786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic and progressive disease characterized by persistent respiratory symptoms and progressive airflow obstruction, has attracted extensive attention due to its high morbidity and mortality. Although the understanding of the pathogenesis of COPD has gradually increased because of increasing evidence, many questions regarding the mechanisms involved in COPD progression and its deleterious effects remain unanswered. Recent advances have shown the potential functions of endoplasmic reticulum (ER) stress in causing airway inflammation, emphasizing the vital role of unfolded protein response (UPR) pathways in the development of COPD. METHODS A comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original research articles and reviews related to ER stress, UPR, and COPD. RESULTS The common causes of COPD, namely cigarette smoke (CS) and air pollutants, induce ER stress through the generation of reactive oxygen species (ROS). UPR promotes mucus secretion and further plays a dual role in the cell apoptosis-autophagy axis in the development of COPD. Existing drug research has indicated the potential of UPR as a therapeutic target for COPD. CONCLUSIONS ER stress and UPR activation play significant roles in the etiology, pathogenesis, and treatment of COPD and discuss whether related genes can be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
48
|
Liu X, Xu C, Xiao W, Yan N. Unravelling the role of NFE2L1 in stress responses and related diseases. Redox Biol 2023; 65:102819. [PMID: 37473701 PMCID: PMC10404558 DOI: 10.1016/j.redox.2023.102819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.
Collapse
Affiliation(s)
- Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
49
|
Vidal CM, Ouyang C, Qi Y, Mendez-Dorantes C, Coblentz A, Alva-Ornelas JA, Stark JM, Seewaldt VL, Ann DK. Arginine regulates HSPA5/BiP translation through ribosome pausing in triple-negative breast cancer cells. Br J Cancer 2023; 129:444-454. [PMID: 37386138 PMCID: PMC10403569 DOI: 10.1038/s41416-023-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.
Collapse
Affiliation(s)
- Christina M Vidal
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Carlos Mendez-Dorantes
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jackelyn A Alva-Ornelas
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Victoria L Seewaldt
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
50
|
Pistek M, Kahlig CI, Hackl M, Unterthurner S, Kraus B, Grabherr R, Grillari J, Hernandez Bort JA. Comprehensive mRNA-sequencing-based characterization of three HEK-293 cell lines during an rAAV production process for gene therapy applications. Biotechnol J 2023; 18:e2200513. [PMID: 37191240 DOI: 10.1002/biot.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Human embryonal kidney cells (HEK-293) are the most common host cells used for transient recombinant adeno-associated virus (rAAV) production in pharmaceutical industry. To better cover the expected gene therapy product demands in the future, different traditional strategies such as cell line sub-cloning and/or addition of chemical substances to the fermentation media have been used to maximize titers and improve product quality. A more effective and advanced approach to boost yield can be envisaged by characterizing the transcriptome of different HEK-293 cell line pedigrees with distinct rAAV productivity patterns to subsequently identify potential gene targets for cell engineering. In this work, the mRNA expression profile of three HEK-293 cell lines, resulting in various yields during a fermentation batch process for rAAV production, was investigated to gain basic insight into cell variability and eventually to identify genes that correlate with productivity. Mock runs using only transfection reagents were performed in parallel as a control. It finds significant differences in gene regulatory behaviors between the three cell lines at different growth and production stages. The evaluation of these transcriptomics profiles combined with collected in-process control parameters and titers shed some light on potential cell engineering targets to maximize transient production of rAAV in HEK-293 cells.
Collapse
Affiliation(s)
- Martina Pistek
- Biotherapeutics Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Carolin-Isabel Kahlig
- Biotherapeutics Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | | | - Sabine Unterthurner
- Biotherapeutics Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Barbara Kraus
- Biotherapeutics Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- TAmiRNA, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Collaboration with AUVA, Vienna, Austria
| | - Juan A Hernandez Bort
- Biotherapeutics Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| |
Collapse
|