1
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Bögel G, Sváb G, Murányi J, Szokol B, Kukor Z, Kardon T, Őrfi L, Tretter L, Hrabák A. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophages. Int Immunopharmacol 2024; 141:112957. [PMID: 39197292 DOI: 10.1016/j.intimp.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Gergely Sváb
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092 Hőgyes E. u. 9., Hungary
| | - László Tretter
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary.
| |
Collapse
|
3
|
Sone K, Sakamaki Y, Hirose S, Inagaki M, Tachikawa M, Yoshino D, Funamoto K. Hypoxia suppresses glucose-induced increases in collective cell migration in vascular endothelial cell monolayers. Sci Rep 2024; 14:5164. [PMID: 38431674 PMCID: PMC10908842 DOI: 10.1038/s41598-024-55706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Blood glucose levels fluctuate during daily life, and the oxygen concentration is low compared to the atmosphere. Vascular endothelial cells (ECs) maintain vascular homeostasis by sensing changes in glucose and oxygen concentrations, resulting in collective migration. However, the behaviors of ECs in response to high-glucose and hypoxic environments and the underlying mechanisms remain unclear. In this study, we investigated the collective migration of ECs simultaneously stimulated by changes in glucose and oxygen concentrations. Cell migration in EC monolayer formed inside the media channels of microfluidic devices was observed while varying the glucose and oxygen concentrations. The cell migration increased with increasing glucose concentration under normoxic condition but decreased under hypoxic condition, even in the presence of high glucose levels. In addition, inhibition of mitochondrial function reduced the cell migration regardless of glucose and oxygen concentrations. Thus, oxygen had a greater impact on cell migration than glucose, and aerobic energy production in mitochondria plays an important mechanistic role. These results provide new insights regarding vascular homeostasis relative to glucose and oxygen concentration changes.
Collapse
Affiliation(s)
- Kazuki Sone
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuka Sakamaki
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | - Daisuke Yoshino
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8597, Japan.
| |
Collapse
|
4
|
Iacobini C, Vitale M, Sentinelli F, Haxhi J, Pugliese G, Menini S. Renal Expression and Localization of the Receptor for (Pro)renin and Its Ligands in Rodent Models of Diabetes, Metabolic Syndrome, and Age-Dependent Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2024; 25:2217. [PMID: 38396894 PMCID: PMC10888662 DOI: 10.3390/ijms25042217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia, potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localization during renal injury, a critical information base, remain unexplored. This study investigates the expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin), and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models of renal injury. The protein expression of these targets, initially confined to specific tubular renal cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR gene expression correlates with protein changes in a genetic model of focal and segmental glomerulosclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glucose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing, likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in future studies exploring this receptor's involvement in renal damage of different origins.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Federica Sentinelli
- Department of Public Health and Infectious Diseases, “La Sapienza” University, 00189 Rome, Italy;
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| |
Collapse
|
5
|
Atawia RT, Batori R, Jordan CR, Kennard S, Antonova G, Bruder-Nascimento T, Mehta V, Saeed MI, Patel VS, Fukai T, Ushio-Fukai M, Huo Y, Fulton DJR, de Chantemèle EJB. Type 1 Diabetes Impairs Endothelium-Dependent Relaxation Via Increasing Endothelial Cell Glycolysis Through Advanced Glycation End Products, PFKFB3, and Nox1-Mediated Mechanisms. Hypertension 2023; 80:2059-2071. [PMID: 37729634 PMCID: PMC10514399 DOI: 10.1161/hypertensionaha.123.21341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.
Collapse
Affiliation(s)
- Reem T. Atawia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Coleton R. Jordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Vinay Mehta
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Muhammad I. Saeed
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vijay S Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David JR Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
6
|
Pfeffer T, Wetzel C, Kirschner P, Bartosova M, Poth T, Schwab C, Poschet G, Zemva J, Bulkescher R, Damgov I, Thiel C, Garbade SF, Klingbeil K, Peters V, Schmitt CP. Carnosinase-1 Knock-Out Reduces Kidney Fibrosis in Type-1 Diabetic Mice on High Fat Diet. Antioxidants (Basel) 2023; 12:1270. [PMID: 37372000 DOI: 10.3390/antiox12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine and anserine supplementation markedLy reduce diabetic nephropathy in rodents. The mode of nephroprotective action of both dipeptides in diabetes, via local protection or improved systemic glucose homeostasis, is uncertain. Global carnosinase-1 knockout mice (Cndp1-KO) and wild-type littermates (WT) on a normal diet (ND) and high fat diet (HFD) (n = 10/group), with streptozocin (STZ)-induced type-1 diabetes (n = 21-23/group), were studied for 32 weeks. Independent of diet, Cndp1-KO mice had 2- to 10-fold higher kidney anserine and carnosine concentrations than WT mice, but otherwise a similar kidney metabolome; heart, liver, muscle and serum anserine and carnosine concentrations were not different. Diabetic Cndp1-KO mice did not differ from diabetic WT mice in energy intake, body weight gain, blood glucose, HbA1c, insulin and glucose tolerance with both diets, whereas the diabetes-related increase in kidney advanced glycation end-product and 4-hydroxynonenal concentrations was prevented in the KO mice. Tubular protein accumulation was lower in diabetic ND and HFD Cndp1-KO mice, interstitial inflammation and fibrosis were lower in diabetic HFD Cndp1-KO mice compared to diabetic WT mice. Fatalities occurred later in diabetic ND Cndp1-KO mice versus WT littermates. Independent of systemic glucose homeostasis, increased kidney anserine and carnosine concentrations reduce local glycation and oxidative stress in type-1 diabetic mice, and mitigate interstitial nephropathy in type-1 diabetic mice on HFD.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Charlotte Wetzel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Philip Kirschner
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maria Bartosova
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology (CMCP), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivan Damgov
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Thiel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kristina Klingbeil
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Samra YA, Zaidi Y, Rajpurohit P, Raghavan R, Cai L, Kaddour-Djebbar I, Tawfik A. Warburg Effect as a Novel Mechanism for Homocysteine-Induced Features of Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24021071. [PMID: 36674587 PMCID: PMC9865636 DOI: 10.3390/ijms24021071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness. Recent studies have reported impaired glycolysis in AMD patients with a high lactate/pyruvate ratio. Elevated homocysteine (Hcy) (Hyperhomocysteinemia, HHcy) was observed in several clinical studies, reporting an association between HHcy and AMD. We established the effect of HHcy on barrier function, retinal pigment epithelium (RPE) structure, and induced choroidal neovascularization (CNV) in mice. We hypothesize that HHcy contributes to AMD by inducing a metabolic switch in the mitochondria, in which cells predominantly produce energy by the high rate of glycolysis, or "Warburg", effect. Increased glycolysis results in an increased production of lactate, cellular acidity, activation of angiogenesis, RPE barrier dysfunction, and CNV. Evaluation of cellular energy production under HHcy was assessed by seahorse analysis, immunofluorescence, and western blot experiments. The seahorse analysis evaluated the extracellular acidification rate (ECAR) as indicative of glycolysis. HHcy showed a significant increase in ECAR both in vivo using (Cystathionine β-synthase) cbs+/- and cbs-/- mice retinas and in vitro (Hcy-treated ARPE-19) compared to wild-type mice and RPE cells. Moreover, HHcy up-regulated glycolytic enzyme (Glucose transporter-1 (GlUT-1), lactate dehydrogenase (LDH), and hexokinase 1 (HK1)) in Hcy-treated ARPE-19 and primary RPE cells isolated from cbs+/+, cbs+/-, and cbs-/- mice retinas. Inhibition of GLUT-1 or blocking of N-methyl-D-aspartate receptors (NMDAR) reduced glycolysis in Hcy-treated RPE and improved albumin leakage and CNV induction in Hcy-injected mice eyes. The current study suggests that HHcy causes a metabolic switch in the RPE cells from mitochondrial respiration to glycolysis during AMD and confirms the involvement of NMDAR in this process. Therefore, targeting Glycolysis or NMDAR could be a novel therapeutic target for AMD.
Collapse
Affiliation(s)
- Yara A. Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raju Raghavan
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lun Cai
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA
- Correspondence: ; Tel.: +1-248-370-2398; Fax: +1-248-370-4211
| |
Collapse
|
8
|
Tsang YL, Kao CL, Lin SCA, Li CJ. Mitochondrial Dysfunction and Oxidative Stress in Aging and Disease. Biomedicines 2022; 10:2872. [PMID: 36359391 PMCID: PMC9687620 DOI: 10.3390/biomedicines10112872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
Mitochondria are considered to have a significant influence on aging due to their critical role in the regulation of bioenergetics, oxidative stress, and cell death [...].
Collapse
Affiliation(s)
- Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Chiu-Li Kao
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 926, Taiwan
| | - Shu-Chuan Amy Lin
- Department of Nursing, National Yang Ming Chiao Tung University Hospital, Yilan 260, Taiwan
- Nursing School, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
9
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
10
|
Locatelli F, Minutolo R, De Nicola L, Del Vecchio L. Evolving Strategies in the Treatment of Anaemia in Chronic Kidney Disease: The HIF-Prolyl Hydroxylase Inhibitors. Drugs 2022; 82:1565-1589. [PMID: 36350500 PMCID: PMC9645314 DOI: 10.1007/s40265-022-01783-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease (CKD) affects approximately 10% of the worldwide population; anaemia is a frequent complication. Inadequate erythropoietin production and absolute or functional iron deficiency are the major causes. Accordingly, the current treatment is based on iron and erythropoiesis stimulating agents (ESAs). Available therapy has dramatically improved the management of anaemia and the quality of life. However, safety concerns were raised over ESA use, especially when aiming to reach near-to-normal haemoglobin levels with high doses. Moreover, many patients show hypo-responsiveness to ESA. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) inhibitors (HIF-PHIs) were developed for the oral treatment of anaemia in CKD to overcome these concerns. They simulate the body's exposure to moderate hypoxia, stimulating the production of endogenous erythropoietin. Some molecules are already approved for clinical use in some countries. Data from clinical trials showed non-inferiority in anaemia correction compared to ESA or superiority for placebo. Hypoxia-inducible factor-prolyl hydroxylase domain inhibitors may also have additional advantages in inflamed patients, improving iron utilisation and mobilisation and decreasing LDL-cholesterol. Overall, non-inferiority was also shown in major cardiovascular events, except for one molecule in the non-dialysis population. This was an unexpected finding, considering the lower erythropoietin levels reached using these drugs due to their peculiar mechanism of action. More data and longer follow-ups are necessary to better clarifying safety issues and further investigate the variety of pathways activated by HIF, which could have either positive or negative effects and could differentiate HIF-PHIs from ESAs.
Collapse
Affiliation(s)
- Francesco Locatelli
- Past Director of the Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, via Fratelli Cairoli 60, 23900, Lecco, Italy.
| | - Roberto Minutolo
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University L. Vanvitelli, Naples, Italy
| | - Luca De Nicola
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University L. Vanvitelli, Naples, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant' Anna Hospital, ASST Lariana, Como, Italy
| |
Collapse
|
11
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
12
|
Wang Y, Cao Z, Wei Q, Ma K, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022; 147:342-355. [PMID: 35580827 DOI: 10.1016/j.actbio.2022.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Endothelial malfunction is responsible for impaired angiogenesis in diabetic patients, thereby causing the delayed healing progress of diabetic wounds. Exosomes or extracellular vesicles (EVs) have emerged as potential therapeutic vectors carrying drug cargoes to diseased cells. In the present study, EVs were reported as a new treatment for diabetic wounds by delivering VH298 into endothelial cells. Firstly, EVs derived from epidermal stem cells (ESCs) were loaded with VH298 (VH-EVs), and the characteristics of VH-EVs were identified. VH-EVs showed promotive action on the function of human umbilical vein endothelial cells (HUVECs) in vitro by activating HIF-1α signaling pathway. VH-EVs were also found to have a therapeutic effect on wound healing and angiogenesis in vivo. We further fabricated gelatin methacryloyl (GelMA) hydrogel for sustained release of VH-EVs, which possessed high biocompatibility and proper mechanical properties. In diabetic mice, GelMA hydrogel containing VH-EVs (Gel-VH-EVs) effectively promoted wound healing by locally enhancing blood supply and angiogenesis. The underlying mechanism for enhanced angiogenesis was possibly associated with the activation of HIF-1α/VEGFA signaling pathway. Collectively, our findings suggest a promising EV-based strategy for the VH298 delivery to endothelial cells and provide a new bioactive dressing for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: The angiogenic dysfunction is the main cause of diabetic wound unhealing. Extracellular vesicles (EVs) have been reported to be helpful but their efficacy is limited for angiogenesis in cutaneous regeneration. VH298 holds great promise to improve angiogenesis by stabilizing HIF-1α which is reported at low level in diabetic wounds. Here, we loaded EVs with VH298 (VH-EVs) to exert an on-target enhancement of proangiogenic capacity in diabetic wound. Then, we applied a photo-crosslinkable hydrogel, gelatin methacryloyl (GelMA) containing VH-EVs (Gel-VH-EVs) as a convenient biomaterial and an adaptable scaffold for sustained releasing VH-EVs. The results showed significant therapeutic effect of Gel-VH-EVs on skin defect repair. Our findings suggest a promising EVs-based drug delivery strategy and a new functional wound dressing for patients.
Collapse
Affiliation(s)
- Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianlong Su
- School of Medicine, NanKai University, Tianjin, 300074, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| |
Collapse
|
13
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|