1
|
Hassen A, Moawed EA, Bahy R, El Basaty AB, El-Sayed S, Ali AI, Tayel A. Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications. Sci Rep 2024; 14:22942. [PMID: 39358395 PMCID: PMC11447095 DOI: 10.1038/s41598-024-73007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Infections originating from pathogenic microorganisms can significantly impede the natural wound-healing process. To address this obstacle, innovative bio-active nanomaterials have been developed to enhance antibacterial capabilities. This study focuses on the preparation of nanocomposites from thermally reduced graphene oxide and zinc oxide (TRGO/ZnO). The hydrothermal method was employed to synthesize these nanocomposites, and their physicochemical properties were comprehensively characterized using X-ray diffraction analysis (XRD), High-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FT-IR), Raman spectroscopy, UV-vis, and field-emission scanning electron microscopy (FE-SEM) techniques. Subsequently, the potential of TRGO/ZnO nanocomposites as bio-active materials against wound infection-causing bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, was evaluated. Furthermore, the investigated samples show disrupted bacterial biofilm formation. A reactive oxygen species (ROS) assay was conducted to investigate the mechanism of nanocomposite inhibition against bacteria and for further in-vivo determination of antimicrobial activity. The MTT assay was performed to ensure the safety and biocompatibility of nanocomposite. The results suggest that TRGO/ZnO nanocomposites have the potential to serve as effective bio-active nanomaterials for combating pathogenic microorganisms present in wounds.
Collapse
Affiliation(s)
- A Hassen
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt.
| | - E A Moawed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| | - Rehab Bahy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, El Fayoum, 63514, Egypt
| | - A B El Basaty
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Nanotechnoloy Center, Helwan University, Helwan Al Sharqia, Cairo, 11722, Egypt
| | - S El-Sayed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Department of Applied Physics, Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Suwon, 446-701, Republic of Korea
| | - A Tayel
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| |
Collapse
|
2
|
Khalid A, Naeem M, Atrooz O, Mozafari MR, Anari F, Taghavi E, Rashid U, Aziz B. State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques. SURFACES 2024; 7:680-697. [DOI: 10.3390/surfaces7030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Atmospheric pressure microplasma is a simple, cost-effective, efficient, and eco-friendly procedure, which is superior to the traditional nanomaterials synthesis techniques. It generates high yields and allows for a controlled growth rate and morphology of nanomaterials. The silver (Ag) nanomaterials, with their unique physical and chemical properties, exhibit outstanding antibacterial and antifungal properties. Similarly, zinc oxide (ZnO) nanomaterials, known for their low toxicity and relatively lower cost, find wide applications in wound repair, bone healing, and antibacterial and anticancer applications. The use of core–shell nanomaterials in certain situations where some nanoparticles can cause serious harm to host tissues or organs is a testament to their potential. A benign material is coated over the core to reduce toxicity in these cases. This review compares the numerous configurations of microplasma systems used for synthesizing nanomaterials and their use in producing Ag, ZnO, and their core–shell (Ag-ZnO) nanomaterials for biomedical applications. The summary also includes the effect of control parameters, including cathode diameter, gas flow rate, precursor concentration, voltage, and current, on the nanomaterial’s characteristics and applications. In addition, it provides a research gap in the synthesis of Ag, ZnO, and core–shell nanomaterials by this technique, as well as the development and limitations of this technique and the use of these nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Ayesha Khalid
- Department of Physics, Women University of Azad Jammu and Kashmir Bagh, Bagh 12500, Pakistan
| | - Muhammad Naeem
- Department of Physics, Women University of Azad Jammu and Kashmir Bagh, Bagh 12500, Pakistan
| | - Omar Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah 617102, Jordan
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3800, Australia
| | - Fatemeh Anari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3800, Australia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Umair Rashid
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100811, China
| | - Bushra Aziz
- Department of Physics, Women University of Azad Jammu and Kashmir Bagh, Bagh 12500, Pakistan
| |
Collapse
|
3
|
Korany AM, Abdel-Atty NS, Zeinhom MMA, Hassan AHA. Application of gelatin-based zinc oxide nanoparticles bionanocomposite coatings to control Listeria monocytogenes in Talaga cheese and camel meat during refrigerated storage. Food Microbiol 2024; 122:104559. [PMID: 38839223 DOI: 10.1016/j.fm.2024.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.
Collapse
Affiliation(s)
- Ahmed M Korany
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nasser S Abdel-Atty
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed M A Zeinhom
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amal H A Hassan
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
4
|
Palem RR, Kim BJ, Baek I, Choi H, Suneetha M, Shimoga G, Lee SH. In situ fabricated ZnO nanostructures within carboxymethyl cellulose-based ternary hydrogels for wound healing applications. Carbohydr Polym 2024; 334:122020. [PMID: 38553219 DOI: 10.1016/j.carbpol.2024.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Inho Baek
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Hyejong Choi
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Ganesh Shimoga
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
5
|
Cherubini F, Riberti N, Schiavone AM, Davì F, Furlani M, Giuliani A, Barucca G, Cassani MC, Rinaldi D, Montalto L. Production of Composite Zinc Oxide-Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2892. [PMID: 38930261 PMCID: PMC11204736 DOI: 10.3390/ma17122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Three-dimensional printing technologies are becoming increasingly attractive for their versatility; the geometrical customizability and manageability of the final product properties are the key points. This work aims to assess the feasibility of producing radiopaque filaments for fused deposition modeling (FDM), a 3D printing technology, starting with zinc oxide (ZnO) and polylactic acid (PLA) as the raw materials. Indeed, ZnO and PLA are promising materials due to their non-toxic and biocompatible nature. Pellets of PLA and ZnO in the form of nanoparticles were mixed together using ethanol; this homogenous mixture was processed by a commercial extruder, optimizing the process parameters for obtaining mechanically stable samples. Scanning electron microscopy analyses were used to assess, in the extruded samples, the homogenous distribution of the ZnO in the PLA matrix. Moreover, X-ray microtomography revealed a certain homogenous radiopacity; this imaging technique also confirmed the correct distribution of the ZnO in the PLA matrix. Thus, our tests showed that mechanically stable radiopaque filaments, ready for FDM systems, were obtained by homogenously loading the PLA with a maximum ZnO content of 6.5% wt. (nominal). This study produced multiple outcomes. We demonstrated the feasibility of producing radiopaque filaments for additive manufacturing using safe materials. Moreover, each phase of the process is cost-effective and green-oriented; in fact, the homogenous mixture of PLA and ZnO requires only a small amount of ethanol, which evaporates in minutes without any temperature adjustment. Finally, both the extruding and the FDM technologies are the most accessible systems for the additive manufacturing commercial apparatuses.
Collapse
Affiliation(s)
- Francesca Cherubini
- Department of Construction, Civil Engineering and Architecture, Università Politecnica delle Marche, 60100 Ancona, Italy; (F.C.); (F.D.)
| | - Nicole Riberti
- Department of Neurosciences, Imaging and Clinical Sciences, Università Gabriele D’Annunzio Chieti-Pescara, 66100 Chieti, Italy;
| | - Anna Maria Schiavone
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Fabrizio Davì
- Department of Construction, Civil Engineering and Architecture, Università Politecnica delle Marche, 60100 Ancona, Italy; (F.C.); (F.D.)
| | - Michele Furlani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Alessandra Giuliani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Gianni Barucca
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
| | - Daniele Rinaldi
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Luigi Montalto
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| |
Collapse
|
6
|
Streich S, Higuchi J, Opalińska A, Wojnarowicz J, Giovanoli P, Łojkowski W, Buschmann J. Ultrasonic Coating of Poly(D,L-lactic acid)/Poly(lactic-co-glycolic acid) Electrospun Fibers with ZnO Nanoparticles to Increase Angiogenesis in the CAM Assay. Biomedicines 2024; 12:1155. [PMID: 38927362 PMCID: PMC11201106 DOI: 10.3390/biomedicines12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Critical-size bone defects necessitate bone void fillers that should be integrated well and be easily vascularized. One viable option is to use a biocompatible synthetic polymer and sonocoat it with zinc oxide (ZnO) nanoparticles (NPs). However, the ideal NP concentration and size must be assessed because a high dose of ZnO NPs may be toxic. Electrospun PDLLA/PLGA scaffolds were produced with different concentrations (0.5 or 1.0 s of sonocoating) and sizes of ZnO NPs (25 nm and 70 nm). They were characterized by SEM, EDX, ICP-OES, and the water contact angle. Vascularization and integration into the surrounding tissue were assessed with the CAM assay in the living chicken embryo. SEM, EDX, and ICP-OES confirmed the presence of ZnO NPs on polymer fibers. Sonocoated ZnO NPs lowered the WCA compared with the control. Smaller NPs were more pro-angiogenic exhibiting a higher vessel density than the larger NPs. At a lower concentration, less but larger vessels were visible in an environment with a lower cell density. Hence, the favored combination of smaller ZnO NPs at a lower concentration sonocoated on PDLLA/PLGA electrospun meshes leads to an advanced state of tissue integration and vascularization, providing a valuable synthetic bone graft to be used in clinics in the future.
Collapse
Affiliation(s)
- Selina Streich
- Medical Faculty, University of Zurich, Campus Irchel, 8006 Zurich, Switzerland;
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Agnieszka Opalińska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Pietro Giovanoli
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Johanna Buschmann
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
7
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
8
|
Caruso S, Valenti C, Marinucci L, Di Pasquale F, Truppa C, Di Benedetto G, Caruso S, Pagano S. Systematic Review of Zinc's Benefits and Biological Effects on Oral Health. MATERIALS (BASEL, SWITZERLAND) 2024; 17:800. [PMID: 38399049 PMCID: PMC10890596 DOI: 10.3390/ma17040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND This review was based on the following question: "What is the state-of-the-art regarding the effect of zinc exposure in the oral cavity on a population of adults and children, compared to dental products containing materials other than zinc, considering in vivo (clinical trials and observational studies) and in vitro studies?" according to a PICOS strategy format. This study aims to analyze zinc application in dental materials, with different compositions and chemical formulations, considering how mechanical and biological properties may influence its clinical applicability. METHODS In vivo (clinical trials: controlled clinical trials (CCTs) and randomized controlled trials (RCTs); and observational studies: case control and cohort studies) trials or in vitro studies published in English or Italian during the last 10 years on children and adult patients with zinc exposure were included by three different reviewers using the MEDLINE (via PubMed), Scopus, and Web of Science electronic databases. RESULTS Titles and abstracts were evaluated following the eligibility criteria. The full texts of eligible studies were then reviewed against the inclusion/exclusion criteria. Scientific and technical information of the 33 included studies were collected into evidence tables, reporting data on in vivo and in vitro studies. A narrative approach was adopted. CONCLUSIONS Antibacterial activity was found to be the most studied property of zinc, but further investigations are needed to establish adjuvant zinc therapies in patients with oral disease.
Collapse
Affiliation(s)
- Silvia Caruso
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Chiara Valenti
- CISAS “Giuseppe Colombo”, University of Padua, Via Venezia, 15, 35131 Padua, Italy;
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, 06132 Perugia, Italy;
| | - Francesca Di Pasquale
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Claudia Truppa
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Giulia Di Benedetto
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| |
Collapse
|
9
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
10
|
Castro JI, Araujo-Rodríguez DG, Valencia-Llano CH, López Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites under In Vivo Conditions for Biomedical Applications. Pharmaceutics 2023; 15:2196. [PMID: 37765166 PMCID: PMC10535598 DOI: 10.3390/pharmaceutics15092196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.
Collapse
Affiliation(s)
- Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Daniela G. Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
11
|
Sathiyaseelan A, Saravanakumar K, Zhang X, Naveen KV, Wang MH. Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment. Int J Biol Macromol 2023; 237:124129. [PMID: 36958450 DOI: 10.1016/j.ijbiomac.2023.124129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/25/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Drug-resistant microorganisms are defeated using combinational drug delivery systems based on biopolymer chitosan (CS) and metal nanoparticles. Hence, PEGylated zinc oxide nanoparticles (P-ZnO NPs) decorated chitosan-based nanoparticles (CS NPs) were prepared to deliver ampicillin (AMP) for improved antibacterial activity. In comparison to ZnO NPs, P-ZnO NPs exhibit less aggregation and more stable rod morphologies in TEM. The size of the P-ZnO NPs decreased and was engulfed by the spherical CS-AMP NPs. The zeta potential of the CS-AMP-P-ZnO NPs was determined to be -32.93 mV and the hydrodynamic size to be 210.2 nm. Further, DEE and DLE of CS-AMP (2.0:0.2 w/w) showed 79.60 ± 2.62 % and 15.14 ± 2.11 %, respectively. The cumulative AMP release was observed at >50 % at 48 h at pH 5.4 and 7.4. Additionally, when compared to AMP, CS-AMP-P-ZnO NPs had better antibacterial activity against E. coli, due to the alternation of cell membrane permeability by CS and ZnO NPs. Moreover, the hemolytic properties of ZnO NPs were attenuated because of PEGylation and CS. Furthermore, due to the biocompatible effect of CS, CS-AMP-P-ZnO NPs did not exhibit toxicity on cells and chick embryos. Hence, this study concludes that CS-AMP-P-ZnO NPs could be a promising antibacterial agent.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
12
|
Hu J, Atsuta I, Luo Y, Wang X, Jiang Q. Promotional Effect and Molecular Mechanism of Synthesized Zinc Oxide Nanocrystal on Zirconia Abutment Surface for Soft Tissue Sealing. J Dent Res 2023; 102:505-513. [PMID: 36883651 DOI: 10.1177/00220345221150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Studies have confirmed that tooth loss is closely related to systemic diseases, such as obesity, diabetes, cardiovascular diseases, some types of tumors, and Alzheimer's disease. Among many methods for tooth restoration, implant restoration is the most commonly used method. After implantation, long-term stability of implants requires not only good bone bonding but also good soft tissue sealing between implants and surrounding soft tissues. The zirconia abutment is used in clinical implant restoration treatment, but due to the strong biological inertia of zirconia, it is difficult to form stable chemical or biological bonds with surrounding tissues. In this study, we investigated synthesized zinc oxide (ZnO) nanocrystal on the zirconia abutment surface by the hydrothermal method to make it more beneficial for soft tissue early sealing and the molecular mechanism. In vitro experiments found that different hydrothermal treatment temperatures affect the formation of ZnO crystals. The crystal diameter of ZnO changes from micron to nanometer at different temperatures, and the crystal morphology also changes. In vitro, scanning electron microscopy, energy dispersive spectrometry, and real-time polymerase chain reaction results show that ZnO nanocrystal can promote the attachment and proliferation of oral epithelial cells on the surface of zirconia by promoting the binding of laminin 332 and integrin β4, regulating the PI3K/AKT pathway. In vivo, ZnO nanocrystal ultimately promotes the formation of soft tissue seals. Collectively, ZnO nanocrystal can be synthesized on a zirconia surface by hydrothermal treatment. It can help to form a seal between the implant abutment and surrounding soft tissue. This method is beneficial to the long-term stability of the implant and also can be applied to other medical fields.
Collapse
Affiliation(s)
- J Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - I Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Luo
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - X Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Q Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Preda MD, Popa ML, Neacșu IA, Grumezescu AM, Ginghină O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24021629. [PMID: 36675140 PMCID: PMC9862659 DOI: 10.3390/ijms24021629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
There has been a surge in interest in developing protective textiles and clothes to protect wearers from risks such as chemical, biological, heat, UV, pollution, and other environmental factors. Traditional protective textiles have strong water resistance but lack breathability and have a limited capacity to remove water vapor and moisture. Electrospun fibers and membranes have shown enormous promise in developing protective materials and garments. Textiles made up of electrospun fibers and membranes can provide thermal comfort and protection against a wide range of environmental threats. Because of their multifunctional properties, such as semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes, ZnO-based nanomaterials are a subject of increasing interest in the current review. The growing uses of electrospinning in the development of breathable and protective textiles are highlighted in this review.
Collapse
Affiliation(s)
- Manuela Daniela Preda
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Leila Popa
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Octav Ginghină
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila from Bucharest, 37 Dionisie Lupu Street, District 2, 020021 Bucharest, Romania
| |
Collapse
|
14
|
Wiesmann N, Brieger J, Eckrich J. Toxicological Analysis by Assessment of Vascularization and Cell Viability Using the Chicken's Chorioallantoic Membrane (CAM Assay). Methods Mol Biol 2023; 2644:403-421. [PMID: 37142937 DOI: 10.1007/978-1-0716-3052-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The chorioallantoic membrane (CAM) assay is an increasingly popular method using a hen's egg as an experimental organism. Animal models have been established in scientific research for centuries. Yet, awareness of animal welfare in society rises, and the transferability of findings obtained in rodent models to human physiology is challenged. Thus, using fertilized eggs as an alternative platform for animal experimentation might be a promising alternative. The CAM assay is utilized for toxicological analysis by determination of CAM irritation as well as analysis of organ damage and ultimately death of the embryo. Furthermore the CAM provides a micromilieu suited for the implantation of xenografts. Xenogene tissues and tumors grow on the CAM due to a lack of rejection by the immune system and a dense vascular network providing oxygen and nutrients. Multiple analytical methods including in vivo microscopy and various imaging techniques are applicable to this model. Additionally, ethical aspects, a comparatively low financial burden, and low bureaucratic hurdles legitimize the CAM assay.We here describe an in ovo model utilized for xenotransplantation of a human tumor. The model can be used to evaluate the efficacy as well as the toxicity of different therapeutic agents after intravascular injection. Additionally, we present the evaluation of vascularization and viability by intravital microscopy, ultrasonography, and immunohistochemistry.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany.
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
15
|
Albizia lebbeck-mediated ZnO phytosynthesis and their non-antimicrobial and biocompatibility studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kyyak S, Blatt S, Wiesmann N, Smeets R, Kaemmerer PW. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. MATERIALS 2022; 15:ma15113839. [PMID: 35683136 PMCID: PMC9181602 DOI: 10.3390/ma15113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
Introduction: The effective induction of angiogenesis is directly related to the success of bone-substitute materials (BSM) for maxillofacial osseous regeneration. Therefore, the addition of pro-angiogenic properties to a commercially available bovine bone-substitute material in combination with hyaluronic acid (BSM+) was compared to the same bone-substitute material without hyaluronic acid (BSM) in an in-vivo model. Materials and Methods: BSM+ and BSM were incubated for six days on the chorioallantoic membrane (CAM) of fertilized chicken eggs. Microscopically, the number of vessels and branching points, the vessel area and vessel length were evaluated. Subsequently, the total vessel area and brightness integration were assessed after immunohistochemical staining (H&E, alphaSMA). Results: In the BSM+ group, a significantly higher number of vessels (p < 0.001), branching points (p = 0.001), total vessel area (p < 0.001) as well as vessel length (p = 0.001) were found in comparison to the BSM group without hyaluronic acid. Immunohistochemically, a significantly increased total vessel area (p < 0.001 for H&E, p = 0.037 for alphaSMA) and brightness integration (p = 0.047) for BSM+ in comparison to the native material were seen. Conclusions: The combination of a xenogenic bone-substitute material with hyaluronic acid significantly induced angiogenesis in vivo. This might lead to a faster integration and an improved healing in clinical situations.
Collapse
Affiliation(s)
- Solomiya Kyyak
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ralf Smeets
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Peer W. Kaemmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
- Correspondence:
| |
Collapse
|