1
|
Cengiz-Yanardag E, Karakaya I, Ozverel CS. The effect of hydrogen peroxide and subsequent resveratrol application to CAD-CAM blocks on the cell viability of fibroblasts. Odontology 2025; 113:568-576. [PMID: 39207585 DOI: 10.1007/s10266-024-00990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The aim is to assess viability of fibroblasts exposed to 2 CAD-CAM blocks and a nanohybrid resin after application of hydrogen peroxide (HP) and resveratrol with 2 extraction media at 24 h, 48 h, and 72 h. Eighteen specimens were obtained from Lava Ultimate (LU), Vita Enamic (VE), and Grandio (GR). Specimens of each material were divided into 3 groups (material only, bleached, resveratrol applied) for 2 extraction media as artificial saliva (AS) and phosphate buffer saline (PBS) (n = 3). For bleached group, 40% HP was applied to specimens for 20 min twice. For resveratrol group, 0.5 µM resveratrol was applied after bleaching for 10 min. Mouse fibroblast cells were exposed to extracts of each group. The viability of cells was determined with MTT assay at 24 h, 48 h, and 72 h. Cell viability data (%) were analyzed statistically using one-way ANOVA, and post hoc Tukey test. Bleached materials showed the lowest cell viability (PBS; p < 0.01/ AS; p < 0.001). There is no statistically significant difference between resveratrol applied and bleached groups (PBS; p = 0.14/ AS; p = 0.072). Regardless of period of time and procedure, GR showed lower viable cell numbers than LU and VE (p < 0.001). Viable cell numbers were higher at 24 h than at 72 h (p < 0.001). There was no statistically difference between AS and PBS (p > 0.05). For all materials, the application of resveratrol did not affect the cell viability which decreased after bleaching over time. The decrease in nanohybrid resin was more critical than hybrid CAD-CAM blocks. The type of extraction media had no effect on cell viability results.
Collapse
Affiliation(s)
- Esra Cengiz-Yanardag
- Department of Restorative Dentistry, Faculty of Dentistry, Mersin University, Mersin, Turkey.
| | - Izgen Karakaya
- Department of Restorative Dentistry, Faculty of Dentistry, European University of Lefke, Nicosia, Cyprus
| | - Cenk Serhan Ozverel
- Department of Basic Medical Sciences, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| |
Collapse
|
2
|
Alomran WK, Nizami MZI, Xu HHK, Sun J. Evolution of Dental Resin Adhesives-A Comprehensive Review. J Funct Biomater 2025; 16:104. [PMID: 40137383 PMCID: PMC11942969 DOI: 10.3390/jfb16030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
This comprehensive review of dental resin adhesives explores their historical development, key components, recent innovations, and potential future directions, highlighting a dynamic and continually advancing field. From Buonocore's breakthrough acid-etching technique and Bowen's pioneering dental resin invention, successive generations of clinicians and scientists have pushed forward the technological and materials development for secure bonding, while preserving dental tissues. The review discusses the substantial advances in improving adhesive reliability, enabling more conservative treatment approaches. It also delves into enhancing fundamental adhesive components and their synergistic combinations. Recent innovations, including biostable and functional resins, nanotechnology, and bioactive components, address persistent challenges such as durability, antimicrobial efficacy, and therapeutic functionality. Emerging technologies, such as digital dentistry, artificial intelligence, and bioinspired adhesives, portend an exciting and promising future for dental adhesives. This review underscores the critical role of ongoing research in developing biocompatible, multifunctional, and durable adhesives. It aims to support dental professionals and researchers by providing a comprehensive understanding of the dynamic progression of dental adhesives, inspiring continued innovation and excellence in restorative dentistry.
Collapse
Affiliation(s)
- Waad Khalid Alomran
- ADA Forsyth Institute, Cambridge, MA 02142, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA
| | | | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Ferrando Cascales Á, Andreu Murillo A, Ferrando Cascales R, Agustín-Panadero R, Sauro S, Carreras-Presas CM, Hirata R, Lijnev A. Revolutionizing Restorative Dentistry: The Role of Polyethylene Fiber in Biomimetic Dentin Reinforcement-Insights from In Vitro Research. J Funct Biomater 2025; 16:38. [PMID: 39997572 PMCID: PMC11856148 DOI: 10.3390/jfb16020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Recent advancements in biomimetic dentistry have introduced innovative materials designed to better simulate natural dentin. One such material is Ribbond®, long polyethylene fiber. It is particularly effective in absorbing and redistributing masticatory forces in teeth with substantial dentin loss. This review aims to analyze the literature on the biomimetic restorative technique using long polyethylene fiber and assess its benefits and indications relative to traditional cusp coverage restorations. METHODS A search was conducted in the PubMed database until March 2024. The authors selected in vitro studies that studied long polyethylene fiber as a dentin reinforcement. RESULTS From 247 potentially relevant articles, eighteen studies were included in the review. A detailed analysis of the reviewed literature was summarized into three principal sections involving the use of long polyethylene fiber in restorative dentistry. CONCLUSIONS Long polyethylene fibers improve fracture resistance and promote favorable fracture modes, helping to mitigate the shrinkage forces in composite restorations. However, their clinical significance over traditional cusp coverage is unclear.
Collapse
Affiliation(s)
- Álvaro Ferrando Cascales
- Department of Biomaterials Engineering, Faculty of Medicine, Universidad Católica de Murcia, UCAM, Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain; (R.F.C.); (A.L.)
| | - Andrea Andreu Murillo
- Faculty of Medicine, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain;
| | - Raúl Ferrando Cascales
- Department of Biomaterials Engineering, Faculty of Medicine, Universidad Católica de Murcia, UCAM, Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain; (R.F.C.); (A.L.)
| | - Rubén Agustín-Panadero
- Prosthodontic and Occlusion Unit, Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain;
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, University CEU Cardenal Herrera, C/Santiago Ramón y Cajal, s/n, Alfara del Patriarca, 46115 Valencia, Spain
- Department of Therapeutic Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Carmen Martín Carreras-Presas
- Head of Esthetic Dentistry Program, School of Denstistry, Faculty of Biomedical Sciencies, Universidad Europea de Madrid, Tajo Street w/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Ronaldo Hirata
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY 10010, USA;
| | - Artiom Lijnev
- Department of Biomaterials Engineering, Faculty of Medicine, Universidad Católica de Murcia, UCAM, Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain; (R.F.C.); (A.L.)
| |
Collapse
|
4
|
Baghani Z, Karrabi M, Assarzadeh H. Dentition Type as a Determinant of Microbial Load Reduction by Antimicrobial Photodynamic Therapy in Deep Dentin Caries: A Systematic Review and Meta-analysis. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2024; 25:296-308. [PMID: 39713109 PMCID: PMC11662176 DOI: 10.30476/dentjods.2023.98616.2098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/24/2024]
Abstract
Statement of the Problem Antimicrobial photodynamic therapy (aPDT) is a protocol proposed for reduction of bacterial load in deep dentin caries in primary and permanent dentitions. However, considering the difference in the morphology of dentinal tubules in primary and permanent teeth, the effect of this treatment may be different on the two dentition types. Purpose This systematic review and meta-analysis aimed to assess the effect of type of dentition as a determinant of microbial load reduction by aPDT in deep dentin caries. Materials and Method An electronic search was conducted in Scopus, Web of Science, Cochrane, Medline, and Embase databases, from the first record until April 30, 2022. After article screening by three reviewers, seven studies were included in this meta-analysis. The mean log of Streptococcus mutans (S. mutans) count, Lactobacillus spp. count, and the entire bacteria in the cavity before and after aPDT was calculated with 95% confidence interval (CI), and compared between the two groups of primary and permanent teeth by the random effect model. The I2 test was applied to assess the heterogeneity of the findings. Publication bias was evaluated by visual examination of the funnel-plot symmetry. Results Of 7 retrieved articles, analysis of 3 studies on permanent teeth showed that aPDT caused a significant reduction in total bacterial count in the cavity [SMD: 0.64, 95% CI:(0.31, 0.96), p= 0.0001), S. mutans count [SMD: 0.92, 95% CI:(0.58, 1.25), p< 0.0001], and Lactobacillus spp. [SMD: 1.1, 95% CI:(0.76, 1.45), p< 0.00001)]. Analysis of the remaining 4 studies on primary teeth indicated that aPDT had a significant effect only on S. mutans count [SMD: 0.60, 95% CI:(0.23, 0.97), p= 0.001), and its effect on total bacterial count of the cavity [SMD: 0. 90, 95% CI:(-0.02, 1.82), p= 0.05] and Lactobacillus spp. [SMD: 0.18, 95% CI:(-0.29, 0.64), p= 0.45)] was not significant. Conclusion The results showed that aPDT could serve as an effective adjunct for reduction of microbial load in permanent teeth.
Collapse
Affiliation(s)
- Zahra Baghani
- Dept. of Periodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Malihe Karrabi
- Dept. of Prosthodotics, Faculty of Dentistry Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Assarzadeh
- Dept. of Prosthodotics, Faculty of Dentistry Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
5
|
Fatima Balderrama I, Schafer S, El Shatanofy M, Bergamo ETP, Mirsky NA, Nayak VV, Marcantonio Junior E, Alifarag AM, Coelho PG, Witek L. Biomimetic Tissue Engineering Strategies for Craniofacial Applications. Biomimetics (Basel) 2024; 9:636. [PMID: 39451842 PMCID: PMC11506466 DOI: 10.3390/biomimetics9100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Biomimetics is the science of imitating nature's designs and processes to create innovative solutions for various fields, including dentistry and craniofacial reconstruction. In these areas, biomimetics involves drawing inspiration from living organisms/systems to develop new materials, techniques, and devices that closely resemble natural tissue structures and enhance functionality. This field has successfully demonstrated its potential to revolutionize craniofacial procedures, significantly improving patient outcomes. In dentistry, biomimetics offers exciting possibilities for the advancement of new dental materials, restorative techniques, and regenerative potential. By analyzing the structure/composition of natural teeth and the surrounding tissues, researchers have developed restorative materials that mimic the properties of teeth, as well as regenerative techniques that might assist in repairing enamel, dentin, pulp, cementum, periodontal ligament, and bone. In craniofacial reconstruction, biomimetics plays a vital role in developing innovative solutions for facial trauma, congenital defects, and various conditions affecting the maxillofacial region. By studying the intricate composition and mechanical properties of the skull and facial bones, clinicians and engineers have been able to replicate natural structures leveraging computer-aided design and manufacturing (CAD/CAM) and 3D printing. This has allowed for the creation of patient-specific scaffolds, implants, and prostheses that accurately fit a patient's anatomy. This review highlights the current evidence on the application of biomimetics in the fields of dentistry and craniofacial reconstruction.
Collapse
Affiliation(s)
- Isis Fatima Balderrama
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
| | - Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Muhammad El Shatanofy
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Edmara T. P. Bergamo
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Prosthodontics, NYU Dentistry, New York, NY 10010, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| | - Adham M. Alifarag
- Department of General Surgery, Temple University Hospital System, Philadelphia, PA 19140, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Mahfouz Omer SM, El-Desouky SS, El-Saady Badawy R, Hadwa SM, Ali Abdel Latif RM. Qualitative surface roughness of lithium disilicate endo-crown for pulpotomized primary molars. Sci Rep 2024; 14:18640. [PMID: 39128909 PMCID: PMC11317511 DOI: 10.1038/s41598-024-68689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Rehabilitation of pulpotomized primary molars with an appropriate restoration is essential for recovering function and safeguarding the durability of the treatment. This study aimed to assess and compare the surface roughness of stainless steel (ST) crowns, zirconia (ZR) crowns, fiberglass (FG) crowns, and lithium disilicate (LD) endo-crowns as a restoration for pulpotomized primary molars also, evaluating the surface roughness of their antagonists. Sixty pulpotomized primary mandibular first molars were used for qualitative surface roughness evaluation and divided into four groups (n = 15/group) according to the crown type (group-ST, group-ZR, group-FG, group-LD). While the other sixty sound, unprepared primary maxillary first molars were used for evaluation of their surface roughness against the tested crowns. Specimens' preparation and cementation were carried out according to each crown type and manufacturer's instructions. The surface roughness was done using a two-body wear test. The data were statistically analyzed. All tested crowns showed an increased change in surface roughness, except group-ZR, which had the least change in surface roughness after mechanical wear with no statistically significant difference(P = 0.681). All crown types significantly increased the surface roughness of their antagonists after mechanical wear, except group-ST which showed insignificant affection (p ≥ 0.05). Zirconia crowns and lithium disilicate endo-crowns had the least change in surface roughness compared to other groups while SSCs showed the least tooth loss in the antagonist enamel.
Collapse
Affiliation(s)
- Shaimaa M Mahfouz Omer
- Pediatric Dentistry, Preventive Dentistry, and Dental Public Health Department, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Shaimaa S El-Desouky
- Pediatric Dentistry, Oral Health and Preventive Dentistry Department, Faculty of Dentistry, Tanta University, Tanta, Egypt.
| | - Rania El-Saady Badawy
- Dental Biomaterials Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Shimaa M Hadwa
- Pediatric Dentistry, Oral Health and Preventive Dentistry Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Reham M Ali Abdel Latif
- Pediatric Dentistry, Preventive Dentistry, and Dental Public Health Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Panda S, Das A, Agnihotri Y, Das S, Bhagat E. Management of a Persistent Radicular Cyst in the Maxillary Right Lateral Incisor: A Case Report. Cureus 2024; 16:e66421. [PMID: 39246979 PMCID: PMC11380107 DOI: 10.7759/cureus.66421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
A 32-year-old male patient presented with a chief complaint of ongoing endodontic treatment and swelling in the hard palate, specifically in the rugae region. On examination, a soft, non-tender, non-fluctuant swelling was observed between teeth #11 and #12, accompanied by radiographic evidence of periapical radiolucency and perforation. Cone beam computed tomography (CBCT) scans confirmed a well-defined radiolucency in the affected region, indicative of a radicular cyst. Root canal treatment was completed with mineral trioxide aggregate (MTA) obturation during the second visit. An apicoectomy was performed to remove the cystic content, followed by the placement of bone graft material, a platelet-rich fibrin (PRF) membrane, and sutures to facilitate bone regeneration. This comprehensive approach aimed to resolve the periapical pathology and promote tissue healing around the affected tooth.
Collapse
Affiliation(s)
- Shaswatee Panda
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College & Hospital, Bhubaneswar, IND
| | - Abhisek Das
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College & Hospital, Bhubaneswar, IND
| | - Yoshaskam Agnihotri
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College & Hospital, Bhubaneswar, IND
| | - Sambarta Das
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College & Hospital, Bhubaneswar, IND
| | - Esha Bhagat
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College & Hospital, Bhubaneswar, IND
| |
Collapse
|
8
|
Dos Santos Menezes L, Navarro da Rocha D, Nonato RC, Costa AR, Morales AR, Correr-Sobrinho L, Correr AB, Neves JG. Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering. Proc Inst Mech Eng H 2024; 238:793-802. [PMID: 38902971 DOI: 10.1177/09544119241256715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The objective of this study was to synthesize and characterize porous Cellulose Acetate (CA) scaffolds using the electrospinning technique and functionalize the surface of the scaffolds obtained through the dip-coating method with a Hydroxyapatite (HA) nanocomposite and varying concentrations of graphene oxide (GO) for application in tissue engineering regeneration techniques. The scaffolds were divided into four distinct groups based on their composition: 1) CA scaffolds; 2) CAHAC scaffolds; 3) CAHAGOC 1.0% scaffolds; 4) CAHAGOC 1.5% scaffolds. Scaffold analyses were conducted using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis, Variance (two-way) was used, followed by Tukey's post-test (α = 0.05). The XRD results revealed the predominant presence of CaP phases in the CAHAC, CAHAGOC 1.0%, and CAHAGOC 1.5% groups, emphasizing the presence of HA in the scaffolds. FTIR demonstrated characteristics of cellulose and PO4 bands in the groups containing HA, confirming the presence of CaP in the synthesized materials, as also indicated by XRD. Raman spectroscopy showed the presence of D and G bands, consistent with GO, confirming the successful incorporation of the HAGO nanocomposite into the scaffolds. The micrographs displayed overlapping electrospun fibers, forming the three-dimensional structure in the produced scaffolds. It was possible to observe hydroxyapatite crystals filling some of these pores, creating a suitable structure for cell adhesion, proliferation, and nutrition, as corroborated by the results of in vitro tests. All scaffolds exhibited high cell viability, with significant cell proliferation. Even after 48 h, there was a slight reduction in the number of cells, but a noteworthy increase in cell proliferation was evident in the CAHAGOC 1.5% group after 48 h (p < 0.05). In conclusion, it can be affirmed that the produced scaffolds demonstrated physical and biological characteristics and properties capable of promoting cell adhesion and proliferation. Therefore, they represent significant potential for application in tissue engineering, offering a new perspective regarding techniques and biomaterials applied in regenerative therapies.
Collapse
Affiliation(s)
- Luan Dos Santos Menezes
- Department of Restorative Dentistry - Dental Materials Area, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Sao Paulo, Brazil
| | | | - Renato Carajelescov Nonato
- Department of Materials Engineering, School of Chemical Engineering, Universidade de Campinas, Campinas, Brazil
| | - Ana Rosa Costa
- Department of Restorative Dentistry - Dental Materials Area, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Sao Paulo, Brazil
| | - Ana Rita Morales
- Department of Materials Engineering, School of Chemical Engineering, Universidade de Campinas, Campinas, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry - Dental Materials Area, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Sao Paulo, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry - Dental Materials Area, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Sao Paulo, Brazil
| | - José Guilherme Neves
- Department of Restorative Dentistry - Dental Materials Area, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
9
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
10
|
Jadhav GR, Mittal P, Shinde S, Al-Qarni MA, Al-Obaid M, Abullais SS, Cicciù M, Minervini G. Biomimetic approach to strengthen the incisal fracture composite build-up: an in vitro study. BMC Oral Health 2024; 24:42. [PMID: 38191343 PMCID: PMC10773035 DOI: 10.1186/s12903-023-03679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Incisal composite build-up shows a high failure susceptibility. The incorporation of fiber-reinforced composite (FRC) during composite restoration could improve its strength. Hence the study was planned to compare the effect of various positions of FRC on the strength of composite resin incisal build-ups. METHODS In maxillary incisors (n = 90), 3 mm of the incisal edge was cut and teeth were categorized into three groups based on the location and number of fibers used during incisal composite build-up - Group I: composite resin; Group II: composite resin and a single fiber palatally and Group III: composite resin along with two fibers palatally. RESULTS The data showed that group II had the maximum load-bearing values followed by group I and group III. CONCLUSION Within the confines of our study, it can be concluded that the addition of FRC to the conventional incisal composite build-up increased the overall strength restoration. Such composite restoration reinforced with a single fiber on the palatal side showed the highest load-bearing capacity compared to two fibers reinforced and unreinforced composites. The common mode of failure in group I was in composite resin, in two fibers reinforced at fibers-composite junction, and in one fiber reinforced composite was in the remaining part of the tooth.
Collapse
Affiliation(s)
| | - Priya Mittal
- Department of Conservative Dentistry and Endodontics, Swargiya Dadasaheb Kalmegh Smruti Dental College & Hospital, Nagpur, India.
| | - Siddharth Shinde
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Mohammed A Al-Qarni
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, 61471, Saudi Arabia
| | - Mohammed Al-Obaid
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, 61471, Saudi Arabia
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, King Khalid University, 61421, Abha, KSA, Saudi Arabia
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy.
| |
Collapse
|
11
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Omerkić Dautović D, Hodžić B, Omerkić S. Application of Stem Cells in Dentistry: A Review Article. IFMBE PROCEEDINGS 2024:726-745. [DOI: 10.1007/978-3-031-49068-2_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Le Ferrand H, Goh BT, Teoh SH. Nacre-like ceramic composites: Properties, functions and fabrication in the context of dental restorations. Acta Biomater 2024; 173:66-79. [PMID: 38016510 DOI: 10.1016/j.actbio.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Dental restorations are in increasing demand, yet their success rate strongly decreases after 5-10 years post-implantation, attributed in part to mismatching properties with the surrounding buccal environment that causes failures and wear. Among current research to address this issue, biomimetic approaches are promising. Nacre-like ceramic composites are particularly interesting because they combine multiple antagonistic properties making them more resistant to failure in harsh environment than other materials. With the rapid progress in 3D printing producing nacre-like structures has open up new opportunities not yet realised. In this paper, nacre-like composites of various compositions are reviewed in the context of hypothetical biomimetic dental restorations. Their structural, functional and biological properties are compared with those of dentin, enamel, and bone to determine which composition would be the most suitable for each of the 3 mineralized regions found in teeth. The role of complex microstructures and mineral orientations are discussed as well as 3D printing methods that allow the design and fabrication of such complex architectures. Finally, usage of these processes and anticipated prospects for next generation biomimetic dental replacements are discussed to suggest future research directions in this area. STATEMENT OF SIGNIFICANCE: With the current ageing population, dental health is a major issue and current dental restorations still have shortcomings. For the next generation of dental restorations, more biomimetic approaches would be desirable to increase their durability. Among current materials, nacre-like ceramic composites are interesting because they can approach the various structural properties found in the different parts of our teeth. Furthermore, it is also possible to embed self-sensing functionalities to enable monitoring of oral health. Finally, new recent 3D printing technologies now permit the fabrication of complex shapes with local compositions and local microstructures. With this current status of the research, we anticipate new dental restorations designs and highlight the remaining gaps and issues to address.
Collapse
Affiliation(s)
- Hortense Le Ferrand
- School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 Singapore; Singapore 3D Printing Centre, 50 Nanyang Avenue, Nanyang Technological University, 639798 Singapore.
| | - Bee Tin Goh
- National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, 5 Second Hospital Avenue, 168938, Singapore
| | - Swee-Hin Teoh
- Centre for Advanced Medical Engineering, School of Materials Science and Engineering, Hunan University, China
| |
Collapse
|
14
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
15
|
Tomova Z, Zhekov Y, Alexandrov G, Vlahova A, Vasileva E. Application of CAD/CAM technologies and materials for prosthetic restoration of severely damaged teeth-clinical cases. Aust Dent J 2023; 68:294-302. [PMID: 37681572 DOI: 10.1111/adj.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
In cases of severely damaged teeth with limited coronal tooth structure and remaining hard dental tissues subgingivally, a custom-made post-and-core restoration is required. Teeth with non-circular canal space also require this type of restoration because the build-up with pre-fabricated posts could lead to thick cement layer. The development of CAD/CAM technologies widens the range of the materials that can be used for prosthetic restorations. Along with base dental alloys, newly developed materials may be applied. The aim of the article is to present four clinical cases of severely damaged teeth which utilize different materials and different production techniques for custom post-and-core fabrication. In the first clinical case, a metal post-and-core restoration was fabricated by direct metal laser sintering. In the second clinical case, digital technologies were used to produce a 3D-printed resin prototype for further investing and casting from base metal dental alloy. In the third clinical case, fibre-reinforced composite was used for fabrication of the custom post-and-core by milling. In the fourth clinical case, the restoration is produced by milling of lithium disilicate ceramics IPS emax CAD (Ivoclar Vivadent, Lichtenstein). The bond between the fibre-reinforced composite post-and-core and the hard dental tissues offered possibility to compensate-to some extent-the shape of the preparation which was not optimal. CAD/CAM technologies applied in these clinical cases provided combination of high accuracy of fitting with good stability and individual shape of the restorations. © 2023 Australian Dental Association.
Collapse
Affiliation(s)
- Z Tomova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Y Zhekov
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - G Alexandrov
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - A Vlahova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - E Vasileva
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
16
|
Inchingolo AM, Inchingolo AD, Viapiano F, Ciocia AM, Ferrara I, Netti A, Dipalma G, Palermo A, Inchingolo F. Treatment Approaches to Molar Incisor Hypomineralization: A Systematic Review. J Clin Med 2023; 12:7194. [PMID: 38002806 PMCID: PMC10671994 DOI: 10.3390/jcm12227194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
AIM This systematic review aimed to comprehensively evaluate the available literature on treating molar incisor hypomineralization (MIH) or enamel hypomineralization published between 2013 and 2023, focusing on identifying relevant studies and their characteristics. MATERIALS AND METHODS The search process encompassed reputable academic databases, including PubMed, Scopus, Cochrane Library, and Web of Science, using a precise keyword strategy ("((molar incisor hypomineralization) OR (enamel hypomineralization)) AND (treatment)"). A total of 637 articles were initially retrieved, followed by a strict selection process adhering to PRISMA guidelines. The inclusion criteria encompassed Randomized Control Trials (RCTs), case series with more than five clinical cases (CSs), studies involving human participants, availability as free full-text or accessible with university credentials, and English-language publications. Exclusion criteria included systematic or literature reviews, editorials, single-case reports, studies conducted in vitro, those involving animals, paid articles, and non-English-language publications. RESULTS The search yielded 864 articles, of which 23 met the stringent inclusion criteria after a meticulous selection process. These studies will serve as the basis for a comprehensive analysis of MIH treatment approaches. The systematic review ensures the quality and relevance of the chosen studies for a detailed assessment of MIH treatment strategies. CONCLUSIONS This systematic review will provide valuable insights into the characteristics of selected studies, patient profiles, and available treatment options for molar incisor hypomineralization, contributing to a better understanding of this dental condition's management.
Collapse
Affiliation(s)
- Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Irene Ferrara
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Anna Netti
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (F.V.); (A.M.C.); (I.F.); (A.N.)
| |
Collapse
|
17
|
Malik S, Waheed Y. Emerging Applications of Nanotechnology in Dentistry. Dent J (Basel) 2023; 11:266. [PMID: 37999030 PMCID: PMC10670129 DOI: 10.3390/dj11110266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Dentistry is a branch of healthcare where nanobiotechnology is reverberating in multiple ways to produce beneficial outcomes. The purpose of this review is to bring into the awareness of the readers the various practical dimensions of the nano-dental complex (nanodentistry) in healthcare and how novelties linked with the field are revolutionizing dentistry. A methodological approach was adopted to collect the latest data on nanotechnology and dentistry from sources, including PubMed, Google Scholar, Scopus, and official websites like the WHO. Nanodentistry is an emerging field in dentistry that involves the use of nanomaterials, nanorobots, and nanotechnology to diagnose, treat, and prevent dental diseases. The results summarize the descriptive analyses of the uses of nanodentistry within orthodontics, preventive dentistry, prosthodontics, restorative dentistry, periodontics, dental surgeries, dental restoration technologies, and other areas of dentistry. The future directions of nano-industries and nano-healthcare have been included to link them with the oral healthcare sector, treatment plans, and improved medical services which could be explored in the future for advanced healthcare regulation. The major limitations to the use of dental nanoproducts are their cost-effectiveness and accessibility, especially in financially constrained countries. These data will help the readers to experience a detailed analysis and comprehensive covering of the diverse achievements of nanodentistry with past analyses, present scenarios, and future implications.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan;
| | - Yasir Waheed
- Office of Research Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
18
|
Seoane H, Chasqueira F, Azul AM, Polido M, Delgado AHS. Impact of Shelf-Life Simulation on a Self-Adhesive Composite: Polymerization Kinetics, Chemical and Color Stability. THE JOURNAL OF ADHESIVE DENTISTRY 2023; 25:167-176. [PMID: 37724938 PMCID: PMC11734270 DOI: 10.3290/j.jad.b4368821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE To determine the polymerization kinetics and color stability of a self-adhesive and conventional resin composite after accelerated shelf-life simulation. MATERIALS AND METHODS Two composites were tested - universal Filtek Z250 (3M Oral Care) and self-adhesive Constic (DMG). They were stored for 2 months in an incubator to simulate an Arrhenius aging model (60°C) and tested at 5 different time points. Polymerization kinetics (n = 3) were studied using an attenuated total reflectance technique (ATR), through continuous FTIR spectral acquisition (20 min). Spectra were obtained before, during and after 20 s of light curing. With the spectral data, qualitative analysis was performed yielding chemical stability, and quantitative data including extrapolated degree of conversion (DCmax) and polymerization rate (Rpmax) were assessed. To evaluate color stability (n = 3), a spectrophotometer was used to record CIELAB color parameters. Inferential statistics, including repeated measures two-way ANOVA were carried out at a significance level of 5%. RESULTS The composites did not appear to undergo significant chemical changes after 2 months of accelerated aging. There was a significant impact of aging on the mean DCmax (p < 0.001). Similarly, a reduction in Rpmax, measured for both composites, was also noted (ANOVA; Z = 203.7; p < 0.001). The two-way ANOVA confirmed that the composite had no influence on the color stability (F = 0.94; p = 0.34), while aging did (p = 0.013). CONCLUSION Minimal changes in absorbance levels were noted for both composites, without overly affecting their chemical composition. The presence of an acidic monomer did not seem to potentiate the degradation of the self-adhesive composite. This composite even showed greater color stability after aging.
Collapse
Affiliation(s)
- Helena Seoane
- Dentist, Egas Moniz School of Health and Science, Monte de Caparica, Almada, Portugal. Performed the experiments, wrote the manuscript
| | - Filipa Chasqueira
- Lecturer, Egas Moniz Center for Interdisciplinary Research (CiiEM), Monte de Caparica, Almada, Portugal. Formal analysis, reviewed and edited the manuscript
| | - Ana Mano Azul
- Professor, Egas Moniz School of Health and Science, Monte de Caparica, Almada, Portugal. Resources, supervision and conception, reviewed the manuscript
| | - Mário Polido
- Professor, Egas Moniz School of Health and Science, Monte de Caparica, Almada, Portugal. Resources, supervision and conception, reviewed the manuscript
| | - António HS Delgado
- Lecturer, Egas Moniz School of Health and Science, Monte de Caparica, Almada, Portugal; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Hampstead, UK. Conception, statistical analysis, wrote and edited the manuscript
| |
Collapse
|
19
|
Aram A, Hong H, Song C, Bass M, Platt JA, Chutinan S. Physical Properties and Clinical Performance of Short Fiber Reinforced Resin-based Composite in Posterior Dentition: Systematic Review and Meta-analysis. Oper Dent 2023; 48:E119-E136. [PMID: 37655625 DOI: 10.2341/22-003-lit] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE This study compares the physical properties and clinical performance of short fiber reinforced composites (SFRC) to those of particulate-filled resin-based composites (PFRC) for class I and II direct restorations in permanent dentition. METHODS Systematic review and meta-analysis was conducted using PubMed, Embase (Elsevier), and Dentistry and Oral Sciences Source (EBSCO) databases. The outcomes evaluated were physical properties including flexural strength, flexural modulus, elastic modulus, microhardness, shrinkage, fracture toughness, degree of conversion, and depth of cure. Clinical performance was evaluated with a systematic review. RESULTS The meta-analyses favored SFRC for flexural strength and fracture toughness compared to every PFRC subgroup, with a high quality of evidence. For all other properties, the meta-analyses favored SFRC to overall PFRC, with some non-significant differences with certain PFRC subgroups. The most recent clinical trial showed SFRC performed similarly to PFRC, however older studies suggest inferior surface texture and discoloration of SFRC compared to PFRC. CONCLUSION This study can aid dental professionals in clinical decision making, supporting that SFRC offers improved physical properties, especially fracture resistance and flexural strength, compared to PFRC.
Collapse
Affiliation(s)
- A Aram
- Ariana Aram, DMD, Harvard School of Dental Medicine, Boston, MA, USA
| | - H Hong
- Houlin Hong, MPH, Department of Community Health and Social Sciences, CUNY School of Public Health and Health Policy, New York, NY, USA
| | - C Song
- Crystal Song, BS, Harvard School of Dental Medicine, Boston, MA, USA
| | - M Bass
- Michelle Bass, PhD, MSI, AHIP, Pennsylvania Hospital Library, Pennsylvania Hospital, Philadelphia, PA, USA
| | - J A Platt
- Jeffrey A Platt, DDS, MS, Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - S Chutinan
- *Supattriya Chutinan, DDS, MSD, Department of Restorative Dentistry and Biomaterials Science, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Zahran M, Abo El-Farag S, Soltan H, Attia A. Fracture load of ultrathin occlusal veneers: Effect of thickness and surface conditioning. J Mech Behav Biomed Mater 2023; 145:106030. [PMID: 37473575 DOI: 10.1016/j.jmbbm.2023.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This in-vitro study is planned to analyze the effect of different thicknesses of ceramic occlusal veneers and different surface treatments on fracture resistance. MATERIALS AND METHODS A total of 48 sound mandibular molars are anatomically prepared from the occlusal surface with two different thicknesses (1.0 and 0.5 mm). CAD/CAM zirconia-reinforced glass ceramic blocks (Vita Suprinity) are used for fabricating occlusal veneers. The teeth are randomly divided into two primary groups A and B (n=24) according to occlusal veneer thickness. Each group is subdivided according to surface conditioning into three equal subgroups (n=8)-subgroup HF: etching with hydrofluoric acid and ceramic primer application; subgroup APF: etching with acidulated phosphate fluoride and ceramic primer application; subgroup EP: conditioning with etch and prime only. Dual-cure adhesive resin cement (Multilink Automix) is utilized to adhesively bond the veneers. All specimens are subjected to 240,000 cycles of dynamic load aging prior to the fracture resistance test. The fracture resistance is measured in Newton (N). The Failure mode patterns are analyzed and categorized using a scanning electron microscope (SEM). The results are analyzed using a two-way ANOVA with Bonferroni's Post-Hoc test, followed by a one-way ANOVA for each factor. That is in addition to one-way ANOVA for surface treatment under each thickness, each followed by Bonferroni's Post-Hoc test. Then, a T-test is used to compare the two thicknesses under each surface treatment. All tests are set at 0.05 significance level. RESULTS The two-way ANOVA test revealed that restoration thickness and surface treatment both significantly affect the fracture resistance values (p<0.05). The highest fracture resistance mean (2672±216N) is obtained from HF at 1.0 mm thickness, while the lowest mean (2104±299N) is obtained from APF at 0.5 mm thickness. CONCLUSION All test groups, regardless of thickness, demonstrated fracture resistance values that exceeded both normal and parafunctional bite forces. The veneers that bonded after hydrofluoric acid etching followed by ceramic primer application showed more favourable fracture patterns.
Collapse
Affiliation(s)
- Maged Zahran
- Department of Fixed Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt.
| | - Shaimaa Abo El-Farag
- Department of Fixed Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt.
| | - Hassan Soltan
- Production and Mechanical Design Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed Attia
- Department of Fixed Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
21
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
22
|
Dias S, Dias J, Pereira R, Silveira J, Mata A, Marques D. Different Methods for Assessing Tooth Colour-In Vitro Study. Biomimetics (Basel) 2023; 8:384. [PMID: 37754135 PMCID: PMC10526998 DOI: 10.3390/biomimetics8050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Colour assessment using digital methods can yield varying results, and it is important for clinicians to recognize the potential variability intra and inter-device. This study aimed to compare the L*a*b* values of VITA Classical (VC) and VITA Toothguide 3D-MASTER (VM) guides using two methods, SpectroShade (SS) and eLAB. Thirty-four measurements per tab were performed by a single operator across three batches of each guide. Intraclass correlation coefficients (ICC) between batches were calculated. Values <0.5, 0.5-0.75, 0.75-0.9, and >0.90 were classified as poor, moderate, good, and excellent reliability, respectively. Results were reported as mean and standard deviation of the L*a*b* values and respective colour differences (ΔE00) for each tab and method. Statistical analyses were performed with an independent t-test, α = 0.05. ICC values between batches were excellent for all L*a*b*, except for a* component in eLAB. There were statistically significant differences between methods in most L*a*b* values. The intra-device mean ΔE00 was 0.5 ± 0.6 for VC, 0.5 ± 0.8 for VM in SS, 1.1 ± 0.8 for VC, 1.1 ± 0.9 for VM in eLAB. The mean ΔE00 inter-device was 4.9 ± 1.7 for VC, 5.0 ± 1.7 for VM. Both methods demonstrated good internal consistency, with high ICC values and low intra-device colour differences, but exhibited high variability between methods, higher for a* the component.
Collapse
Affiliation(s)
- Susana Dias
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
| | - Joana Dias
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
| | - Ruben Pereira
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
| | - João Silveira
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
- LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal
| | - António Mata
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
- LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal
| | - Duarte Marques
- Oral Biology and Biochemistry Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal; (S.D.); (J.D.); (R.P.); (J.S.); (A.M.)
- LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal
- Postgraduate Programme in Prosthodontics, Faculdade de Medicina Dentária, Universidade de Lisboa, 1950-044 Lisboa, Portugal
| |
Collapse
|
23
|
Urkande NK, Mankar N, Nikhade PP, Chandak M. Beyond Tradition: Non-surgical Endodontics and Vital Pulp Therapy as a Dynamic Combination. Cureus 2023; 15:e44134. [PMID: 37753005 PMCID: PMC10518373 DOI: 10.7759/cureus.44134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Symptomatic irreversible pulpitis and apical periodontitis in mature permanent teeth present challenges in their management. Traditional treatment approaches, such as root canal therapy or tooth extraction, may compromise tooth structure and oral function. This review article explores the combination of non-surgical endodontic treatment and vital pulp therapy as an alternative approach for these conditions. The purpose is to examine this combined approach's effectiveness, benefits, challenges, and limitations. The objectives include reviewing the literature, evaluating clinical outcomes, discussing potential benefits, and providing recommendations for clinical practice. The combination approach aims to preserve tooth structure, promote healing, and reduce postoperative complications. The article discusses the rationale for combining the two techniques, presents evidence supporting their efficacy, and outlines the techniques and protocols involved. Clinical outcomes, case studies, potential challenges, and comparative analysis with traditional approaches are also explored. Future directions and research recommendations highlight areas for further investigation, innovations, and the development of clinical guidelines. In conclusion, the combination of non-surgical endodontic treatment and vital pulp therapy offers a valuable strategy for managing mature permanent mandibular molars with symptomatic irreversible pulpitis and apical periodontitis. Further research and advancements are needed to refine the treatment protocol and expand the evidence base, and clinicians should stay updated to provide optimal care and improve patient outcomes.
Collapse
Affiliation(s)
- Neha K Urkande
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College And Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nikhil Mankar
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College And Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pradnya P Nikhade
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College And Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manoj Chandak
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College And Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
24
|
Martins RG, Castro TSD, Dib LL, Gehrke SA, Mesquita AMM. Influence of Restorative Material on the Distribution of Loads to the Bone in Hybrid Abutment Crowns-In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1188. [PMID: 37512000 PMCID: PMC10384236 DOI: 10.3390/medicina59071188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Background: The objective of this study was to evaluate the load transmitted to the peri-implant bone by seven different restorative materials in single-unit rehabilitations with morse taper implants using a strain gauge. Materials: In a polyurethane block that simulated type III bone, a morse taper platform implant was installed (3.5 × 11 mm) in the center and 1 mm below the test base surface, and four strain gauges were installed around the implant, simulating the mesial, distal, buccal and lingual positions. Seven similar hybrid abutment crowns were crafted to simulate a lower premolar using different materials: 1-PMMA; 2-glass ceramic over resin matrix; 3-PEEK + lithium disilicate; 4-metal-ceramic; 5-lithium disilicate; 6-zirconia + feldspathic; 7-monolithic zirconia. All groups underwent axial and oblique loads (45 degrees) of 150 N from a universal testing machine. Five measurements (n = 5) were performed with each material and for each load type; the microdeformation data underwent statistical analysis. The data were obtained in microdeformation (με), and the significance level was set at p ≤ 0.05. Results: There was no statistically significant difference in the evaluation among the materials under either the axial load or the oblique load at 45 degrees. In turn, in the comparison between axial load and oblique load, there was a difference in load for all materials. Conclusion: The restorative material did not influence the load transmitted to the bone. Furthermore, the load transmitted to the bone was greater when it occurred obliquely at 45° regardless of the material used. In conclusion, it appeared that the different elastic modulus of each material did not influence the load transmission to the peri-implant bone.
Collapse
Affiliation(s)
| | | | - Luciano Lauria Dib
- Department of Implantology, Paulista University-UNIP, São Paulo 04026-002, Brazil
| | | | | |
Collapse
|
25
|
Yu J, Li Y, Liu X, Huang H, Wang Y, Zhang Q, Li Q, Cao CY. EDTA-functionalized silica nanoparticles as a conditioning agent for dentin bonding using etch-and-rinse technique. J Dent 2023; 134:104528. [PMID: 37105434 DOI: 10.1016/j.jdent.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE This study investigated the possibility of using ethylenediaminetetraacetic acid functionalized silica nanoparticles (EDTA-SiO2) as a dentin-conditioning agent using etch-and-rinse technique to promote the durability of dentin bonding. METHODS The SiO2-EDTA were synthesized by N- [(3- trimethoxysilyl) propyl] ethylenediamine triacetic acid (EDTA-TMS) and SiO2 (50 nm), then characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The capacity of SiO2-EDTA to chelate calcium ions from dentin was examined by inductively coupled plasma-optic emission spectrometry (ICP-OES). The dentin surfaces conditioned with SiO2-EDTA were detected by field emission scanning electron microscopy (SEM), TEM and microhardness testing. For dentin bonding, dentin surfaces were adopted wet- or dry-bonding technique and bonded with adhesive (AdperTM Single Bond2) and applied composite resin (Filtek Z350) on them. The durability of dentin bonding was evaluated by mircotensile bond strength test, in-situ zymography and nanoleakage testing. RESULTS FTIR, TGA and XPS results showed that SiO2-EDTA contained N element and carboxyl groups. SEM, TEM and microhardness results indicated that SiO2-EDTA group created extrafibrillar demineralization and retained more intrafibrillar minerals within dentin surface. In the dentin bonding experiment, SiO2-EDTA group achieved acceptable bond strength, and reduced the activity of matrix metalloproteinase and nanoleakage along bonding interface. CONCLUSION It was possible to generate a feasible dentin conditioning agent (SiO2-EDTA), which could create dentin extrafibrillar demineralization and improve dentin bond durability. CLINICAL SIGNIFICANCE This study introduces a new dentin conditioning scheme based on SiO2-EDTA to create extrafibrillar demineralization for dentin bonding. This strategy has the potential to be used in clinic to promote the life of restoration bonding.
Collapse
Affiliation(s)
- Jianan Yu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yuexiang Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xinyuan Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Haowen Huang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yu Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
26
|
Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, Mallineni S, Sajja R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering (Basel) 2023; 10:327. [PMID: 36978718 PMCID: PMC10044905 DOI: 10.3390/bioengineering10030327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas of nanotechnology. They are often used in the dental industry because they prevent bacteria from making nanoparticles, oxides, and biofilms. They also stop the metabolism of bacteria. Silver nanoparticles (AgNPs) are a type of zero-dimensional material with different shapes. Dentistry has to keep up with changing patient needs and new technology. Silver nanoparticles (AgNPs) can be used in dentistry for disinfection and preventing infections in the oral cavity. One of the most interesting metallic nanoparticles used in biomedical applications is silver nanoparticles (AgNPs). The dental field has found promising uses for silver nanoparticles (AgNPs) in the elimination of plaque and tartar, as well as the elimination of bacterial and fungal infections in the mouth. The incorporation of AgNPs into dental materials has been shown to significantly enhance patients' oral health, leading to their widespread use. This review focuses on AgNP synthesis, chemical properties, biocompatibility, uses in various dental fields, and biomaterials used in dentistry. With an emphasis on aspects related to the inclusion of silver nanoparticles, this descriptive review paper also intends to address the recent developments of AgNPs in dentistry.
Collapse
Affiliation(s)
- Sreekanth Kumar Mallineni
- Pediatric Dentistry, Dr. Sulaiman Al Habib Hospital, Ar Rayyan, Riyadh 14212, Saudi Arabia
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Srinivasulu Sakhamuri
- Department of Conservative Dentistry & Endodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| | - Sree Lalita Kotha
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Fatmah Nasser Almotawah
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sahana Mallineni
- Department of Periodontology, Krishna Institute of Medical Sciences, Nellore 523001, Andhra Pradesh, India
| | - Rishitha Sajja
- Clinical Data Management, Global Data Management and Centralized Monitoring, Global Development Operations, Bristol Myers Squibb, Pennington, NJ 07922, USA
| |
Collapse
|
27
|
Singer L, Fouda A, Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry: review article. BMC Oral Health 2023; 23:105. [PMID: 36797710 PMCID: PMC9936671 DOI: 10.1186/s12903-023-02808-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Biomimetics is a branch of science that explores the technical beauty of nature. The concept of biomimetics has been brilliantly applied in famous applications such as the design of the Eiffel Tower that has been inspired from the trabecular structure of bone. In dentistry, the purpose of using biomimetic concepts and protocols is to conserve tooth structure and vitality, increase the longevity of restorative dental treatments, and eliminate future retreatment cycles. Biomimetic dental materials are inherently biocompatible with excellent physico-chemical properties. They have been successfully applied in different dental fields with the advantages of enhanced strength, sealing, regenerative and antibacterial abilities. Moreover, many biomimetic materials were proven to overcome significant limitations of earlier available generation counterpart. Therefore, this review aims to spot the light on some recent developments in the emerging field of biomimetics especially in restorative and regenerative dentistry. Different approaches of restoration, remineralisation and regeneration of teeth are also discussed in this review. In addition, various biomimetic dental restorative materials and tissue engineering materials are discussed.
Collapse
Affiliation(s)
- Lamia Singer
- Oral Technology, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany. .,Department of Orthodontics, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany.
| | - Ahmed Fouda
- grid.15090.3d0000 0000 8786 803XOral Technology, University Hospital Bonn, 53111 Bonn, North Rhine-Westphalia Germany ,grid.33003.330000 0000 9889 5690Department of Fixed Prosthodontics, Suez Canal University, Ismailia, Egypt
| | - Christoph Bourauel
- grid.15090.3d0000 0000 8786 803XOral Technology, University Hospital Bonn, 53111 Bonn, North Rhine-Westphalia Germany
| |
Collapse
|
28
|
Souza AP, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan/Hydroxyapatite-graphene oxide porous scaffold associated with mesenchymal stem cells for dentin-pulp complex regeneration. J Biomater Appl 2023; 37:1605-1616. [PMID: 36740600 DOI: 10.1177/08853282231155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this paper was to synthesize and characterize polymeric scaffolds of Chitosan/Xanthan/Hydroxyapatite-Graphene Oxide nanocomposite associated with mesenchymal stem cells for regenerative dentistry application. The chitosan-xanthan gum (CX) complex was associated with Hydroxyapatite-Graphene Oxide (HA-GO) nanocomposite with different Graphene Oxides (GO) concentration (0.5 wt%; 1.0 wt%; 1.5 wt%). The scaffolds characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and contact angle. The mechanical properties were assessed by compressive strength. The in vitro bioactivity and the in vitro cytotoxicity test (MTT test) were analyzed as well. The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by ANOVA two-way, followed by Tukey's test (α = 0.05). Compressive strength and contact angle data were statistically analyzed by one-way ANOVA, followed by Tukey's test (α = 0.05). XRD showed the presence of Hydroxyapatite (HA) peaks in the structures CXHA, CXHAGO 0.5%,1.0% and 1.5%. FT-IR showed amino and carboxylic bands characteristic of CX. Raman spectroscopy analysis evidenced a high quality of the GO. In the TGA it was observed the mass loss associated with the CX degradation by depolymerization. SEM analysis showed pores in the scaffolds, in addition to HA incorporated and adhered to the polymer. Contact angle test showed that scaffolds have a hydrophilic characteristic, with the CX group the highest contact angle and CXHA the lowest (p < 0.05). 1.0 wt% GO significantly increased the compressive strength compared to other compositions. In the bioactivity test, the apatite crystals precipitation on the scaffold surface was observed. MTT test showed high cell viability in CXHAGO 1.0% and CXHAGO 1.5% scaffold. CXHAGO scaffolds are promising for regenerative dentistry application because they have morphological characteristics, mechanical and biological properties favorable for the regeneration process.
Collapse
Affiliation(s)
- Alana Pc Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil.,Department of Bioengineering, 28132R-Crio Criogenia S.A., Campinas, SP, Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, 28132University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| |
Collapse
|
29
|
Mechanical and Biomimetic Characteristics of Bulk-Fill Resin Dental Composites Following Exposure in a Simulated Acidic Oral Environment. Biomimetics (Basel) 2023; 8:biomimetics8010019. [PMID: 36648805 PMCID: PMC9844310 DOI: 10.3390/biomimetics8010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
During the last 10 years, various companies have marketed different "bulk-fill" resin dental composites for the restoration of posterior stress-bearing teeth; however, the impact of acidic conditions on these relatively newer materials has not been thoroughly investigated. Therefore, an attempt was made to evaluate the effect of acidic beverages on the mechanical biomimetic characteristics of four bulk-fill and one conventional nanohybrid resin-based dental composites (RBCs). The specimens of each RBC were stored in two acidic beverages namely 'Orange Juice' and 'Coca-Cola', whereas 'dry' and 'distilled water' storage of specimens served as controls. After 1 week of storage, flexural and surface hardness properties of specimens were determined using a universal testing machine and Vickers hardness tester, respectively. In general, the 'Coca-Cola' beverage caused the greatest degradation of flexural strength, flexural modulus, and surface hardness characteristics in all RBCs in contrast to the 'dry', 'distilled water' controls and 'Orange Juice' storage conditions. However, the overall mechanical biomimetic performance of nanohybrid RBCs was relatively better than all other bulk-fill RBCs and may, therefore, be considered a suitable candidate for the restoration of posterior stress-bearing permanent dentition.
Collapse
|
30
|
Poggio C, Gallo S. Frontiers in Restorative Dentistry Biomaterials and Endodontic Instruments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020475. [PMID: 36676211 PMCID: PMC9867087 DOI: 10.3390/ma16020475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Restorative dentistry deals with the prevention, diagnosis, and treatment of pathological conditions affecting the teeth, to restore their function and aesthetics [...].
Collapse
Affiliation(s)
- Claudio Poggio
- Unit of Restorative Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
31
|
Muacevic A, Adler JR, Ikhar A, Reche A, Paul P. Evolution of Biomimetic Approaches for Regenerative and Restorative Dentistry. Cureus 2023; 15:e33936. [PMID: 36819376 PMCID: PMC9937676 DOI: 10.7759/cureus.33936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Biomimetics refers to human-made processes, substances, systems, or devices that imitate nature. The art and science of designing and building biomimetic apparatus are called biomimetics. This method can be widely used in dentistry to restore the structure and function of normal tooth structure. Traditional approaches to treating damaged and decayed teeth require more aggressive preparation to place a "strong," stiff restoration. The emphasis was made on the strength of the restoration as well as its function and mechanical properties, despite several disadvantages like tooth fracture, making future treatment more difficult and invasive. This review paper will seek to provide a clear explanation of its scope, different fields of biomimetic dentistry, and materials used in biomimetics that improve the strength of the tooth.
Collapse
|
32
|
Dave B, Mehta S, Sutaria S, Sutariya P. Analysis of width/length ratio in maxillary anterior teeth among Gujarati young individuals: A cross-sectional study. ADVANCES IN HUMAN BIOLOGY 2023. [DOI: 10.4103/aihb.aihb_186_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
33
|
Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Biomimetic Approaches in Clinical Endodontics. Biomimetics (Basel) 2022; 7:biomimetics7040229. [PMID: 36546929 PMCID: PMC9775094 DOI: 10.3390/biomimetics7040229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, biomimetic concepts have been widely adopted in various biomedical fields, including clinical dentistry. Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. Currently, new trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region. The aim of this paper is to thoroughly review and discuss various pulp-regenerative approaches and materials used in regenerative endodontics which may highlight the current trends and future research prospects in this particular area.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
- Correspondence: ; Tel.: +92-333-2818500
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | | | - Ricardo E. Oñate-Sánchez
- Department of Special Care in Dentistry, Hospital Morales Meseguer, IMIB-Arrixaca, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
34
|
Elgezawi M, Haridy R, Abdalla MA, Heck K, Draenert M, Kaisarly D. Current Strategies to Control Recurrent and Residual Caries with Resin Composite Restorations: Operator- and Material-Related Factors. J Clin Med 2022; 11:jcm11216591. [PMID: 36362817 PMCID: PMC9657252 DOI: 10.3390/jcm11216591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
This review addresses the rationale of recurrent and/or residual caries associated with resin composite restorations alongside current strategies and evidence-based recommendations to arrest residual caries and restrain recurrent caries. The PubMed and MEDLINE databases were searched for composite-associated recurrent/residual caries focusing on predisposing factors related to materials and operator’s skills; patient-related factors were out of scope. Recurrent caries and fractures are the main reasons for the failure of resin composites. Recurrent and residual caries are evaluated differently with no exact distinguishment, especially for wall lesions. Recurrent caries correlates to patient factors, the operator’s skills of cavity preparation, and material selection and insertion. Material-related factors are significant. Strong evidence validates the minimally invasive management of deep caries, with concerns regarding residual infected dentin. Promising technologies promote resin composites with antibacterial and remineralizing potentials. Insertion techniques influence adaptation, marginal seal, and proximal contact tightness. A reliable diagnostic method for recurrent or residual caries is urgently required. Ongoing endeavors cannot eliminate recurrent caries or precisely validate residual caries. The operator’s responsibility to precisely diagnose original caries and remaining tooth structure, consider oral environmental conditions, accurately prepare cavities, and select and apply restorative materials are integral aspects. Recurrent caries around composites requires a triad of attention where the operator’s skills are cornerstones.
Collapse
Affiliation(s)
- Moataz Elgezawi
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo 4240310, Egypt
| | - Moamen A. Abdalla
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Katrin Heck
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Miriam Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| |
Collapse
|
35
|
Kranz S, Heyder M, Mueller S, Guellmar A, Krafft C, Nietzsche S, Tschirpke C, Herold V, Sigusch B, Reise M. Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7173. [PMID: 36295240 PMCID: PMC9610234 DOI: 10.3390/ma15207173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: Decalcified enamel and dentin surfaces can be regenerated with non-fluoride-containing biomimetic systems. This study aimed to investigate the effect of a zinc carbonate-hydroxyapatite-containing dentifrice on artificially demineralized enamel and dentin surfaces. (2) Methods: Human enamel and dentin discs were prepared and subjected to surface demineralization with 30% orthophosphoric acid for 60 s. Subsequently, in the test group (n = 20), the discs were treated three times a day for 3 min with a zinc carbonate-hydroxyapatite-containing toothpaste (biorepair®). Afterwards, all samples were gently rinsed with PBS (5 s) and stored in artificial saliva until next use. Samples from the control group (n = 20) received no dentifrice-treatment and were stored in artificial saliva, exclusively. After 15 days of daily treatment, specimens were subjected to Raman spectroscopy, energy-dispersive X-ray micro-analysis (EDX), white-light interferometry, and profilometry. (3) Results: Raman spectroscopy and white-light interferometry revealed no significant differences compared to the untreated controls. EDX analysis showed calcium phosphate and silicon dioxide precipitations on treated dentin samples. In addition, treated dentin surfaces showed significant reduced roughness values. (4) Conclusions: Treatment with biorepair® did not affect enamel surfaces as proposed. Minor mineral precipitation and a reduction in surface roughness were detected among dentin surfaces only.
Collapse
Affiliation(s)
- Stefan Kranz
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Stephan Mueller
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - André Guellmar
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
| | - Sandor Nietzsche
- Center of Electron Microscopy, Jena University Hospital, Friedrich-Schiller University, 07743 Jena, Germany
| | - Caroline Tschirpke
- Otto Schott Institute of Materials Research, Friedrich-Schiller University, 07743 Jena, Germany
| | - Volker Herold
- Otto Schott Institute of Materials Research, Friedrich-Schiller University, 07743 Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Markus Reise
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| |
Collapse
|
36
|
Seredin P, Goloshchapov D, Kashkarov V, Khydyakov Y, Nesterov D, Ippolitov I, Ippolitov Y, Vongsvivut J. Development of a Hybrid Biomimetic Enamel-Biocomposite Interface and a Study of Its Molecular Features Using Synchrotron Submicron ATR-FTIR Microspectroscopy and Multivariate Analysis Techniques. Int J Mol Sci 2022; 23:11699. [PMID: 36233001 PMCID: PMC9569639 DOI: 10.3390/ijms231911699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy. The results obtained indicate the possibility of forming a bonding that mimics the properties of natural tissue with controlled molecular properties in the hybrid layer. The diffusion of the amino acid booster conditioner component, the calcium alkali, and the modified adhesive with nanocrystalline carbonate-substituted hydroxyapatite in the hybrid interface region creates a structure that should stabilize the reconstituted crystalline enamel layer. The developed technology can form the basis for an individualized, personalized approach to dental enamel restorations.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Yury Khydyakov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Nesterov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty Ltd.), 800 Blackburn Rd, Clayton, VIC 3168, Australia
| |
Collapse
|
37
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
38
|
Ghosh S, Yi HG. A Review on Bioinks and their Application in Plant Bioprinting. Int J Bioprint 2022; 8:612. [PMID: 36404783 PMCID: PMC9668583 DOI: 10.18063/ijb.v8i4.612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the characterization and fabrication methods concerning new bioinks have received much attention, largely because the absence of bioprintable materials has been identified as one of the most rudimentary challenges for rapid advancement in the field of three-dimensional (3D) printing. Bioinks for printing mammalian organs have been rapidly produced, but bioinks in the field of plant science remain sparse. Thus, 3D fabrication of plant parts is still in its infancy due to the lack of appropriate bioink materials, and aside from that, the difficulty in recreating sophisticated microarchitectures that accurately and safely mimic natural biological activities is a concern. Therefore, this review article is designed to emphasize the significance of bioinks and their applications in plant bioprinting.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
39
|
Sangsuwan P, Chotigeat W, Tannukit S, Kedjarune-Leggat U. Long-Term Effect of Modified Glass Ionomer Cement with Mimicked Biological Property of Recombinant Translationally Controlled Protein. Polymers (Basel) 2022; 14:polym14163341. [PMID: 36015596 PMCID: PMC9412370 DOI: 10.3390/polym14163341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
This study modified glass ionomer cement (GIC) by adding mimicked biological molecules to reduce cell death. GIC was modified to BIOGIC by adding chitosan and bovine serum albumin for enhancing protein release. The BIOGIC was supplemented with tricalcium phosphate (TCP) and recombinant translationally controlled tumor protein (TCTP) to improve its biological properties. Four groups of materials, GIC, BIOGIC, BIOGIC+TCP, and BIOGIC + TCP + TCTP, were examined by XRD and SEM-EDX. TCTP released from the specimens was determined by an ELISA method. Human dental pulp stem cells (hDPSCs) were harvested and analyzed by MTT assay, apoptosis, gene expression, and cell differentiation. All groups had the same crystallization characteristic peaks of La2O3. The elemental compositions composed of La, Si, and Al are the main inorganic components. The results show that BIOGIC + TCP + TCTP presented significantly higher percentages of cell viability than other groups on day 1 to day 23 (p < 0.05), but were not different after day 24 to day 41 and had reduced cell apoptosis including BAX, TPT1, BCL-2, and Caspase-3. The BIOGIC + TCP + TCTP demonstrated higher odontoblast mineralization and differentiation markers including ALP activity, DSPP, DMP-1, ALP, BMP-2, and OPN. It enhanced cell proliferation and differentiation as well as mineralization with down-regulation of genes related to apoptosis compared with other groups.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Correspondence:
| |
Collapse
|
40
|
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. COATINGS 2022. [DOI: 10.3390/coatings12081094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Collapse
|
41
|
Strategies of Bioceramics, Bioactive Glasses in Endodontics: Future Perspectives of Restorative Dentistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2530156. [PMID: 35941984 PMCID: PMC9356887 DOI: 10.1155/2022/2530156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Prevalently, there is a primary strategy to cure caries using restorative materials notably bioceramics. Existing synthetic materials stimulate natural tooth structure with acceptable interfacial bonding and esthetic and biomechanical qualities with better durability. Several bioceramics have been introduced and investigated for their potentialities as restorative materials. Biomineralization of tooth initiates repair and regeneration of natural dental tissue and reinstating the integrity of periodontium. In the evolution of bioceramics in the aspects of different essential composition for dental application, recent technology and modern strategies revolutionize the restorative dentistry. Bioglass is one among the important bioceramics as a restorative material, and by regulating the properties of the material, it is possible to construct improved formulation towards restoration. This article reviews the current revolution of endodontics, existing restorative materials, and technologies to be achieve for engineering materials with the better design.
Collapse
|
42
|
Elraggal A, Afifi R, Abdelraheem I. Effect of erosive media on microhardness and fracture toughness of CAD-CAM dental materials. BMC Oral Health 2022; 22:191. [PMID: 35590294 PMCID: PMC9118722 DOI: 10.1186/s12903-022-02230-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Erosive acids might create surface flaws and deteriorate the mechanical properties of CAD-CAM materials. This invitro study aimed to investigate the effect of simulated gastric HCl and extrinsic erosive acids on surface microhardness and fracture toughness of CAD-CAM materials. Methods 400 bar-shaped specimens (17×4×2 mm3) were prepared from 4 different CAD-CAM dental materials (n = 100/group); monolithic zirconia (Ceramill Zolid HT+, Amanngirbach, Austria), lithium disilicate ceramic (IPS e.max CAD, Ivoclar Vivadent, Liechtenstein), nanohybrid resin composite (Grandio Blocs, VOCO) and polymer-infiltrated glass network (Vita Enamic, VITA Zahnfabrik). Specimens from each material type were further subdivided into 5 groups (n = 20) according to the erosive media applied (simulated gastric HCl, white wine, Coca-Cola®, orange juice, and artificial saliva that served as a control). Specimens were immersed for 24 h in an incubator at 37 ℃, then ultrasonically cleaned in distilled water and air-dried. Half of the specimens were tested for Vickers microhardness (VHN) at parameters of 500 gf for 10 s, while the rest of the specimens underwent 3-point flexure till fracture. Fractured surfaces were examined under a scanning electron microscope (SEM) for fracture toughness (KIC) calculation using the quantitative fractographic analysis method. Data collected were statistically analyzed using two-way analysis of variance (α = 0.05) after verification of data normality and homogeneity of variances. Results Erosive media created surface flaws that lowered the surface microhardness of the material and initiated the fracture pattern under different loads according to material type. The material type was a more predominant factor than erosive media that affected either the microhardness or the fracture toughness of CAD-CAM dental materials. The highest VHN and KIC values were found among Ceramill Zolid HT+ groups followed by IPS e.max CAD and Grandio Blocs regardless of the erosive media employed. Erosive media significantly reduced the VHN and KIC in Vita Enamic specimens compared to the rest of the material types. Conclusion All CAD-CAM materials used, except Vita Enamic, showed high resistance against the erosive acids indicating higher longevity of the material in patients frequently exposed to either extrinsic or intrinsic acid.
Collapse
Affiliation(s)
- Alaaeldin Elraggal
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion street, Alexandria, Egypt.
| | - Rania Afifi
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion street, Alexandria, Egypt
| | - Islam Abdelraheem
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion street, Alexandria, Egypt
| |
Collapse
|
43
|
Veček NN, Par M, Sever EK, Miletić I, Krmek SJ. The Effect of a Green Smoothie on Microhardness, Profile Roughness and Color Change of Dental Restorative Materials. Polymers (Basel) 2022; 14:polym14102067. [PMID: 35631949 PMCID: PMC9145769 DOI: 10.3390/polym14102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Acidic drinks are known to exert negative effects on the surface properties of dental restorative materials. However, the effect of increasingly popular green smoothie drinks has not been addressed so far. The present study investigated the effect of cyclic immersions (5 min daily over 30 days) in a green smoothie drink on the surface properties of contemporary dental restorative materials, including resin composites, an alkasite, and a glass hybrid. Vickers microhardness, profile roughness, and perceptible color change in the CIE L* a* b* color space were evaluated as clinically relevant properties of the material surface. After 30-day green smoothie immersion, microhardness values either decreased by 8–28% (for resin composites) or increased by up to 91% (for glass hybrid). The increase in profile roughness (Ra parameter) of smoothie-immersed specimens was 7–26 times higher compared to the control group. The perceptible color change (ΔE*) in the smoothie group was 3–8 times higher compared to the control group. Overall, this study demonstrated that daily exposure of dental restorations made from resin composites, alkasites, and glass hybrid materials to a green smoothie drink can significantly accelerate material degradation, which is reflected as surface softening, as well as higher roughness and higher perceptible color change.
Collapse
Affiliation(s)
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
- Correspondence:
| | - Eva Klarić Sever
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| | - Ivana Miletić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| | - Silvana Jukić Krmek
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| |
Collapse
|
44
|
Correia BL, Gomes ATPC, Noites R, Ferreira JMF, Duarte AS. New and Efficient Bioactive Glass Compositions for Controlling Endodontic Pathogens. NANOMATERIALS 2022; 12:nano12091577. [PMID: 35564288 PMCID: PMC9105659 DOI: 10.3390/nano12091577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Endodontic treatment aims to conserve teeth through removing infected tissue, disinfecting, and filling/sealing the root canal. One of the most important treatment steps is the removal of microorganisms to avoid reinfection and consequent tooth loss. Due to increased resistance to intracanal medications, new alternative procedures are needed. Thus, an intracanal medication is suggested using three bioactive glass (BG) compositions (BG1, BG2, and BG3) produced by the sol–gel method, with different molar contents of bactericidal oxides. The BGs were morphologically and physically characterized. Their ability to inhibit the growth of two oral pathogens responsible for the failure of endodontic treatments (E. faecalis and C. albicans) was also studied. The results suggest that BG2 and BG3 can inhibit the growth of E. faecalis after 48 h of incubation, and all BG samples have a significant effect on C. albicans survival.
Collapse
Affiliation(s)
- Bruna L. Correia
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana T. P. C. Gomes
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - Rita Noites
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana S. Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
- Correspondence: ; Tel.: +351-232-419-500
| |
Collapse
|
45
|
The Molecular and Mechanical Characteristics of Biomimetic Composite Dental Materials Composed of Nanocrystalline Hydroxyapatite and Light-Cured Adhesive. Biomimetics (Basel) 2022; 7:biomimetics7020035. [PMID: 35466252 PMCID: PMC9036251 DOI: 10.3390/biomimetics7020035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
The application of biomimetic strategies and nanotechnologies (nanodentology) has led to numerous innovations and provided a considerable impetus by creating a new class of modern adhesion restoration materials, including different nanofillers. An analysis of the molecular properties of biomimetic adhesives was performed in this work to find the optimal composition that provides high polymerisation and mechanical hardness. Nanocrystalline carbonate-substituted calcium hydroxyapatite (nano-cHAp) was used as the filler of the light-cured adhesive Bis-GMA (bisphenol A-glycidyl methacrylate). The characteristics of this substance correspond to the apatite of human enamel and dentin, as well as to the biogenic source of calcium: avian eggshells. The introduction and distribution of nano-cHAp fillers in the adhesive matrix resulted in changes in chemical bonding, which were observed using Fourier transform infrared (FTIR) spectroscopy. As a result of the chemical bonding, the Vickers hardness (VH) and the degree of conversion under photopolymerisation of the nano-cHAp/Bis-GMA adhesive increased for the specified concentration of nanofiller. This result could contribute to the application of the developed biomimetic adhesives and the clinical success of restorations.
Collapse
|
46
|
Tokunaga J, Ikeda H, Nagamatsu Y, Awano S, Shimizu H. Wear of Polymer-Infiltrated Ceramic Network Materials against Enamel. MATERIALS 2022; 15:ma15072435. [PMID: 35407767 PMCID: PMC8999962 DOI: 10.3390/ma15072435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Polymer-infiltrated ceramic network materials (PICNs) have high mechanical compatibility with human enamel. However, the wear properties of PICN against natural human enamel have not yet been clarified. We investigated the in vitro two-body wear behaviors of PICNs and an enamel antagonist. Two PICNs were used: Experimental PICN (EXP) prepared via the infiltration of methacrylate-based resin into the porous silica ceramic network and commercial Vita Enamic (ENA). Two commercial dental ceramics, lithium disilicate glass (LDS) and zirconia (ZIR), were also characterized, and their wear performance was compared to PICNs. The samples were subjected to Vickers hardness tests and two-body wear tests that involve the samples being cyclically impacted by enamel antagonists underwater at 37 °C. The results reveal that the Vickers hardness of EXP (301 ± 36) was closest to that of enamel (317 ± 17). The volumetric wear losses of EXP and ENA were similar to those of LDS but higher than that of zirconia. The volumetric wear loss of the enamel antagonist impacted against EXP was moderate among the examined samples. These results suggest that EXP has wear behavior similar to that of enamel. Therefore, PICNs are mechanically comparable to enamel in terms of hardness and wear and are excellent tooth-restoration materials.
Collapse
Affiliation(s)
- Jumpei Tokunaga
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (J.T.); (Y.N.); (H.S.)
- Division of Clinical Education Development and Research, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan;
| | - Hiroshi Ikeda
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (J.T.); (Y.N.); (H.S.)
- Correspondence:
| | - Yuki Nagamatsu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (J.T.); (Y.N.); (H.S.)
| | - Shuji Awano
- Division of Clinical Education Development and Research, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan;
| | - Hiroshi Shimizu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (J.T.); (Y.N.); (H.S.)
| |
Collapse
|
47
|
Mansoor A, Khan MT, Mehmood M, Khurshid Z, Ali MI, Jamal A. Synthesis and Characterization of Titanium Oxide Nanoparticles with a Novel Biogenic Process for Dental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1078. [PMID: 35407196 PMCID: PMC9000351 DOI: 10.3390/nano12071078] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The prevalence of dental caries has been largely consonant over time despite the enhancement in dental technologies. This study aims to produce novel GIC restorative material by incorporating TiO2 nanoparticles synthesized by Bacillus subtilis for the treatment of dental caries. The TiO2 nanoparticles were prepared by inoculating a fresh culture of Bacillus subtilis into a nutrient broth for 24 h, which was then characterized by XRD, DRS, FTIR, AFM, SEM, TEM and EDX. These TiO2 nanoparticles were incorporated in GIC restorative material at different concentrations (0-10% TiO2 -GIC) and were tested for their mechanical properties in a universal testing machine. The XRD analysis revealed synthesis of anatase and rutile-phased TiO2 nanoparticles with a particle size of 70.17 nm that was further confirmed by SEM and TEM analysis. The EDX spectrum indicated prominent peaks of titanium and oxygen with no impurities in the prepared material. Treatment with 5% TiO2 -GIC proved to be most effective for the treatment of dental caries with no observable cytotoxic effect. An increase in the compressive strength of TiO2 nanoparticle-reinforced GIC was observed as the concentration of the TiO2 nanoparticles was increased up to 5%; subsequently, the compressive strength was lowered. An increase in the flexural strength was observed in GIC containing 0%, 3% and 5% TiO2 nanoparticles sequentially. Based on the results, it can be concluded that Bacillus subtilis-derived TiO2 nanoparticles have excellent potential for developing next generation of restorative materials for dental issues.
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.M.); (M.I.A.)
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Mazhar Mehmood
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Hofuf 31982, Saudi Arabia;
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.M.); (M.I.A.)
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.M.); (M.I.A.)
| |
Collapse
|
48
|
Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063690. [PMID: 35329377 PMCID: PMC8955500 DOI: 10.3390/ijerph19063690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Autogenous tooth graft is an innovative and ingenious technique that employs a stepwise approach and utilizes human teeth as an autogenous source of bone graft. The structure of teeth closely resembles bone, both physically and biochemically, and can be efficiently used for the process as it depicts properties of osteoinduction and osteoconduction. Autogenous tooth bone has characteristics similar to bone grafts in terms of healing potential, physical properties, and clinical outcome. Autogenous tooth graft has shown reasonable promise as a graft material for the regeneration of maxillary and mandibular defects. Autogenous tooth bone graft finds its principal application in sinus and ridge augmentations and for socket preservation before implant placement. Additionally, it can be used successfully for alveolar cleft patients and patients with limited periodontal defects. The overall complication rates reported for autogenous tooth grafts are comparable to other graft sources. However, although long-term results are still underway, it is still recommended as a grafting option for limited defects in the cranio-facial region.
Collapse
|
49
|
Tokunaga J, Ikeda H, Nagamatsu Y, Awano S, Shimizu H. Castable polymer-infiltrated ceramic network composite for training model tooth with compatible machinability to human enamel. Dent Mater J 2022; 41:520-526. [PMID: 35264545 DOI: 10.4012/dmj.2021-299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to develop a novel polymer-infiltrated ceramic network (PICN) composite fabricated via a slip-casting method for a dental training model tooth with machinability compatible to human enamel. A PICN model tooth comprised of silica/acrylic-resin was fabricated via the slip-casting method. A commercial resin-based model tooth and human enamel were used as the control sample. The samples were evaluated based on Vickers hardness, inorganic contents, density, and machinability. The machinability was characterized by a grinding amount obtained from the grinding test using a device equipped with a dental micromotor handpiece with a diamond bur. The properties of the PICN model tooth yielded a silica content of 84.7% and a density of 1.99 g/cm3, and its Vickers hardness (312) was comparable with that of enamel (348). The grinding amount was comparable with that of enamel. The castable PICN model tooth was compatible to enamel in terms of hardness and machinability.
Collapse
Affiliation(s)
- Jumpei Tokunaga
- Division of Clinical Education Development and Research, Department of Oral Functions, Kyushu Dental University.,Division of Biomaterials, Department of Oral Functions, Kyushu Dental University
| | - Hiroshi Ikeda
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University
| | - Yuki Nagamatsu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University
| | - Shuji Awano
- Division of Clinical Education Development and Research, Department of Oral Functions, Kyushu Dental University
| | - Hiroshi Shimizu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University
| |
Collapse
|
50
|
S C, R RC, R R, D D, Balakumar S. Unravelling the effects of ibuprofen-acetaminophen infused copper-bioglass towards the creation of root canal sealant. Biomed Mater 2022; 17. [PMID: 35259739 DOI: 10.1088/1748-605x/ac5b83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
Impact towards the tuneable characteristics of bioactive glasses (BAG) has been explored; as there is no root canal sealant till date with ideal characteristics competent enough to manoeuvre the perplexing root canal architecture. Combeite, calcite and traces of cuprorivaite crystalline phases were validated for material formation, in which Cu 2P [XPS] peak authenticating the presence of copper in bioglass network (Cu-BAG). Spherical and platelet-like morphologies were observed and the grain size of Cu-BAG (~100 nm) was lesser as compared to BAG (~ 1 µm). These particle distributions impacted the porosity, and dominant non-bridging oxygens in Cu-BAG influences ionic dissolution, which subsequently enhanced the mineralization. These bioactive materials were loaded with acetaminophen and ibuprofen, corresponding organic moieties was confirmed through FT-IR. These drugs loaded bioactive materials exhibited tremendous anti-inflammatory and anti-microbial behavior with better sealing ability. Drug loaded bioglass paste filled in biomechanically prepared root canal was estimated for sealing potential, mineralization, micro leakage, and fracture resistance properties. Hydroxyl apatite growth was noted on the sealants, flower like protuberance confirmed the sealing potential of the prepared material. Bioglass exhibited promising characteristics required in a root canal sealant. This investigation is a step further towards tailoring the properties of bioactive materials as promising candidates in root canal obturation and thereof.
Collapse
Affiliation(s)
- Chitra S
- Saveetha University Saveetha Dental College, Department of Biomaterials, Saveetha Dental College and Hospitals, Chennai, Chennai, Tamil Nadu, 600077, INDIA
| | - Riju Chandran R
- University of Madras - Guindy Campus, National Centre for Nanoscience and Nanotechnology,, University of Madras,, Chennai, Chennai, Tamil Nadu, 600025, INDIA
| | - Ramya R
- Saveetha University Saveetha Dental College, Department of Oral Pathology, Chennai, Tamil Nadu, 600077, INDIA
| | - Durgalakshmi D
- Anna University Chennai, Department of Medical Physics, Chennai, Tamil Nadu, 600025, INDIA
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Chennai, Tamil Nadu, 600025, INDIA
| |
Collapse
|