1
|
Abu-Rmailah N, Moscovici L, Riegraf C, Atias H, Buchinger S, Reifferscheid G, Belkin S. Enhanced Detection of Estrogen-like Compounds by Genetically Engineered Yeast Sensor Strains. BIOSENSORS 2024; 14:193. [PMID: 38667186 PMCID: PMC11048378 DOI: 10.3390/bios14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.
Collapse
Affiliation(s)
- Nidaa Abu-Rmailah
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Liat Moscovici
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Carolin Riegraf
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Hadas Atias
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| |
Collapse
|
2
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Wilson ID, Poole CF. Planar chromatography - Current practice and future prospects. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123553. [PMID: 36495686 DOI: 10.1016/j.jchromb.2022.123553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Planar chromatography, in the form of thin-layer or high-performance thin-layer chromatography (TLC, HPTLC), continues to provide a robust and widely used separation technique. It is unrivaled as a simple and rapid qualitative method for mixture analysis, or for finding bioactive components in mixtures. The format of TLC/HPTLC also provides a unique method for preserving the separation, enabling further investigation of components of interest (including quantification/structure determination) separated in both time and space from the original analysis. The current practice of planar chromatography and areas of development of the technology are reviewed and promising future directions in the use of TLC/HPTLC are outlined.
Collapse
Affiliation(s)
- Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Wahid E, Ocheja OB, Marsili E, Guaragnella C, Guaragnella N. Biological and technical challenges for implementation of yeast-based biosensors. Microb Biotechnol 2022; 16:54-66. [PMID: 36416008 PMCID: PMC9803330 DOI: 10.1111/1751-7915.14183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biosensors are low-cost and low-maintenance alternatives to conventional analytical techniques for biomedical, industrial and environmental applications. Biosensors based on whole microorganisms can be genetically engineered to attain high sensitivity and specificity for the detection of selected analytes. While bacteria-based biosensors have been extensively reported, there is a recent interest in yeast-based biosensors, combining the microbial with the eukaryotic advantages, including possession of specific receptors, stability and high robustness. Here, we describe recently reported yeast-based biosensors highlighting their biological and technical features together with their status of development, that is, laboratory or prototype. Notably, most yeast-based biosensors are still in the early developmental stage, with only a few prototypes tested for real applications. Open challenges, including systematic use of advanced molecular and biotechnological tools, bioprospecting, and implementation of yeast-based biosensors in electrochemical setup, are discussed to find possible solutions for overcoming bottlenecks and promote real-world application of yeast-based biosensors.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingboChina
| | - Cataldo Guaragnella
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| |
Collapse
|
5
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Dual-expression system for blue fluorescent protein optimization. Sci Rep 2022; 12:10190. [PMID: 35715437 PMCID: PMC9206027 DOI: 10.1038/s41598-022-13214-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Spectrally diverse fluorescent proteins (FPs) provide straightforward means for multiplexed imaging of biological systems. Among FPs fitting standard color channels, blue FPs (BFPs) are characterized by lower brightness compared to other spectral counterparts. Furthermore, available BFPs were not systematically characterized for imaging in cultured mammalian cells and common model organisms. Here we introduce a pair of new BFPs, named Electra1 and Electra2, developed through hierarchical screening in bacterial and mammalian cells using a novel dual-expression vector. We performed systematic benchmarking of Electras against state-of-art BFPs in cultured mammalian cells and demonstrated their utility as fluorescent tags for structural proteins. The Electras variants were validated for multicolor neuroimaging in Caenorhabditis elegans, zebrafish larvae, and mice in comparison with one of the best in the class BFP mTagBFP2 using one-photon and two-photon microscopy. The developed BFPs are suitable for multicolor imaging of cultured cells and model organisms in vivo. We believe that the described dual-expression vector has a great potential to be adopted by protein engineers for directed molecular evolution of FPs.
Collapse
|
8
|
Simon E, Duffek A, Stahl C, Frey M, Scheurer M, Tuerk J, Gehrmann L, Könemann S, Swart K, Behnisch P, Olbrich D, Brion F, Aït-Aïssa S, Pasanen-Kase R, Werner I, Vermeirssen ELM. Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac - Effect-based methods for monitoring frameworks. ENVIRONMENT INTERNATIONAL 2022; 159:107033. [PMID: 34979407 DOI: 10.1016/j.envint.2021.107033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.
Collapse
Affiliation(s)
- Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland.
| | - Anja Duffek
- German Environment Agency (UBA), Berlin, Germany
| | - Cordula Stahl
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Manfred Frey
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kees Swart
- BioDetection Systems B.V., Amsterdam, the Netherlands
| | - Peter Behnisch
- National Institute of Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, Verneuil-en-Halatte, France
| | - Daniel Olbrich
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - Franҫois Brion
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Selim Aït-Aïssa
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | | |
Collapse
|
9
|
Morlock GE. High-performance thin-layer chromatography combined with effect-directed assays and high-resolution mass spectrometry as an emerging hyphenated technology: A tutorial review. Anal Chim Acta 2021; 1180:338644. [DOI: 10.1016/j.aca.2021.338644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
|
10
|
Jochums M, Kochale K, Teutenberg T, Türk J, Bergstedt U. Vorteile von Open‐Source‐Ansätzen bei der Etablierung einer automatisierten wirkungsbezogenen Analytik. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Max Jochums
- Institut für Energie- und Umwelttechnik e.V. (IUTA) Abteilung Forschungsanalytik & Miniaturisierung Bliersheimer Straße 58–60 47229 Duisburg Deutschland
| | - Kjell Kochale
- Institut für Energie- und Umwelttechnik e.V. (IUTA) Abteilung Forschungsanalytik & Miniaturisierung Bliersheimer Straße 58–60 47229 Duisburg Deutschland
| | - Thorsten Teutenberg
- Institut für Energie- und Umwelttechnik e.V. (IUTA) Abteilung Forschungsanalytik & Miniaturisierung Bliersheimer Straße 58–60 47229 Duisburg Deutschland
| | - Jochen Türk
- Institut für Energie- und Umwelttechnik e.V. (IUTA) Abteilung Umwelthygiene & Spurenstoffe Bliersheimer Straße 58–60 47229 Duisburg Deutschland
| | - Uta Bergstedt
- Hochschule Niederrhein Fachbereich Chemie Abteilung Biotechnologie Adlerstraße 32 47798 Krefeld Deutschland
| |
Collapse
|