1
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
2
|
Juyal A, Bisht S, Singh MF. Smart solutions in hypertension diagnosis and management: a deep dive into artificial intelligence and modern wearables for blood pressure monitoring. Blood Press Monit 2024; 29:260-271. [PMID: 38958493 DOI: 10.1097/mbp.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hypertension, a widespread cardiovascular issue, presents a major global health challenge. Traditional diagnosis and treatment methods involve periodic blood pressure monitoring and prescribing antihypertensive drugs. Smart technology integration in healthcare offers promising results in optimizing the diagnosis and treatment of various conditions. We investigate its role in improving hypertension diagnosis and treatment effectiveness using machine learning algorithms for early and accurate detection. Intelligent models trained on diverse datasets (encompassing physiological parameters, lifestyle factors, and genetic information) to detect subtle hypertension risk patterns. Adaptive algorithms analyze patient-specific data, optimizing treatment plans based on medication responses and lifestyle habits. This personalized approach ensures effective, minimally invasive interventions tailored to each patient. Wearables and smart sensors provide real-time health insights for proactive treatment adjustments and early complication detection.
Collapse
Affiliation(s)
- Anubhuti Juyal
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh
| | - Shradha Bisht
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh
| | - Mamta F Singh
- Department of Pharmacology, College of Pharmacy, COER University, Roorkee, Uttarakhand, India
| |
Collapse
|
3
|
Javaid Z, Iqbal MA, Javeed S, Maidin SS, Morsy K, Shati AA, Choi JR. Reviewing advances in nanophotonic biosensors. Front Chem 2024; 12:1449161. [PMID: 39318420 PMCID: PMC11420028 DOI: 10.3389/fchem.2024.1449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Biosensing, a promising branch of exploiting nanophotonic devices, enables meticulous detection of subwavelength light, which helps to analyze and manipulate light-matter interaction. The improved sensitivity of recent high-quality nanophotonic biosensors has enabled enhanced bioanalytical precision in detection. Considering the potential of nanophotonics in biosensing, this article summarizes recent advances in fabricating nanophotonic and optical biosensors, focusing on their sensing function and capacity. We typically classify these types of biosensors into five categories: phase-driven, resonant dielectric nanostructures, plasmonic nanostructures, surface-enhanced spectroscopies, and evanescent-field, and review the importance of enhancing sensor performance and efficacy by addressing some major concerns in nanophotonic biosensing, such as overcoming the difficulties in controlling biological specimens and lowering their costs for ease of access. We also address the possibility of updating these technologies for immediate implementation and their impact on enhancing safety and health.
Collapse
Affiliation(s)
- Zunaira Javaid
- Department of Biochemistry, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Saher Javeed
- Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Siti Sarah Maidin
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A. Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Torchi A, Ghamgui H, Cherif S. Basic strategies for monitoring lipase activity: A review. Anal Biochem 2024; 696:115659. [PMID: 39244002 DOI: 10.1016/j.ab.2024.115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipases are involved in the basic metabolism of many organisms from simple microorganisms to mammals. Moreover, these versatile biocatalysts can catalyze various types of reactions, such as esterification, interesterification, aminolysis, hydrolysis, and many important classic organic reactions under mild conditions, which play critical roles in industrial catalysis, drug discovery, and medical diagnosis of diseases. The heterogeneous nature of this catalysis requires intimate contact between them and lipid emulsion droplets. The lipolytic activity of production isolates could be determined by monitoring the release of fatty acids. Therefore, adequate monitoring of the reaction medium is critical to gain mechanistic knowledge of lipid hydrolysis in response to changes in process conditions. This review paper provides an overview of the principles underlying different strategies for monitoring lipid hydrolysis. The strengths and limitations of each method are analyzed to provide practical guidance for future research.
Collapse
Affiliation(s)
- Ayda Torchi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| | - Hanen Ghamgui
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia.
| | - Slim Cherif
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| |
Collapse
|
5
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
6
|
Wasilewski T, Kamysz W, Gębicki J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. BIOSENSORS 2024; 14:356. [PMID: 39056632 PMCID: PMC11274923 DOI: 10.3390/bios14070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The steady progress in consumer electronics, together with improvement in microflow techniques, nanotechnology, and data processing, has led to implementation of cost-effective, user-friendly portable devices, which play the role of not only gadgets but also diagnostic tools. Moreover, numerous smart devices monitor patients' health, and some of them are applied in point-of-care (PoC) tests as a reliable source of evaluation of a patient's condition. Current diagnostic practices are still based on laboratory tests, preceded by the collection of biological samples, which are then tested in clinical conditions by trained personnel with specialistic equipment. In practice, collecting passive/active physiological and behavioral data from patients in real time and feeding them to artificial intelligence (AI) models can significantly improve the decision process regarding diagnosis and treatment procedures via the omission of conventional sampling and diagnostic procedures while also excluding the role of pathologists. A combination of conventional and novel methods of digital and traditional biomarker detection with portable, autonomous, and miniaturized devices can revolutionize medical diagnostics in the coming years. This article focuses on a comparison of traditional clinical practices with modern diagnostic techniques based on AI and machine learning (ML). The presented technologies will bypass laboratories and start being commercialized, which should lead to improvement or substitution of current diagnostic tools. Their application in PoC settings or as a consumer technology accessible to every patient appears to be a real possibility. Research in this field is expected to intensify in the coming years. Technological advancements in sensors and biosensors are anticipated to enable the continuous real-time analysis of various omics fields, fostering early disease detection and intervention strategies. The integration of AI with digital health platforms would enable predictive analysis and personalized healthcare, emphasizing the importance of interdisciplinary collaboration in related scientific fields.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
7
|
Williams A, Aguilar MR, Pattiya Arachchillage KGG, Chandra S, Rangan S, Ghosal Gupta S, Artes Vivancos JM. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10296-10312. [PMID: 39027730 PMCID: PMC11253101 DOI: 10.1021/acssuschemeng.3c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Climate change is a profound crisis that affects every aspect of life, including public health. Changes in environmental conditions can promote the spread of pathogens and the development of new mutants and strains. Early detection is essential in managing and controlling this spread and improving overall health outcomes. This perspective article introduces basic biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano biosensors, and single-molecule biosensors, as important sustainability and public health preventive tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore, the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the paradigm shift needed to achieve them, and some potential applications.
Collapse
Affiliation(s)
- Ajoke Williams
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Mauricio R. Aguilar
- Departament
de Química Inorgànica i Orgànica, Diagonal 645, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Subrata Chandra
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Srijith Rangan
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sonakshi Ghosal Gupta
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Juan M. Artes Vivancos
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
8
|
Lopez Carrasco I, Cuniberti G, Opitz J, Beshchasna N. Evaluation of Transducer Elements Based on Different Material Configurations for Aptamer-Based Electrochemical Biosensors. BIOSENSORS 2024; 14:341. [PMID: 39056617 PMCID: PMC11274616 DOI: 10.3390/bios14070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The selection of an appropriate transducer is a key element in biosensor development. Currently, a wide variety of substrates and working electrode materials utilizing different fabrication techniques are used in the field of biosensors. In the frame of this study, the following three specific material configurations with gold-finish layers were investigated regarding their efficacy to be used as electrochemical (EC) biosensors: (I) a silicone-based sensor substrate with a layer configuration of 50 nm SiO/50 nm SiN/100 nm Au/30-50 nm WTi/140 nm SiO/bulk Si); (II) polyethylene naphthalate (PEN) with a gold inkjet-printed layer; and (III) polyethylene terephthalate (PET) with a screen-printed gold layer. Electrodes were characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate their performance as electrochemical transducers in an aptamer-based biosensor for the detection of cardiac troponin I using the redox molecule hexacyanoferrade/hexacyaniferrade (K3[Fe (CN)6]/K4[Fe (CN)6]. Baseline signals were obtained from clean electrodes after a specific cleaning procedure and after functionalization with the thiolate cardiac troponin I aptamers "Tro4" and "Tro6". With the goal of improving the PEN-based and PET-based performance, sintered PEN-based samples and PET-based samples with a carbon or silver layer under the gold were studied. The effect of a high number of immobilized aptamers will be tested in further work using the PEN-based sample. In this study, the charge-transfer resistance (Rct), anodic peak height (Ipa), cathodic peak height (Ipc) and peak separation (∆E) were determined. The PEN-based electrodes demonstrated better biosensor properties such as lower initial Rct values, a greater change in Rct after the immobilization of the Tro4 aptamer on its surface, higher Ipc and Ipa values and lower ∆E, which correlated with a higher number of immobilized aptamers compared with the other two types of samples functionalized using the same procedure.
Collapse
Affiliation(s)
- Ivan Lopez Carrasco
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Gianaurelio Cuniberti
- Faculty of Mechanical Science and Engineering, Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Jörg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| |
Collapse
|
9
|
Vazquez-Gutierrez I, Reyes-López MA, Ochoa SA, Cruz-Córdova A, Hernández-Castro R, Orduña-Díaz A, Xicohtencatl-Cortes J. Specific Detection of Uropathogenic Escherichia coli via Fourier Transform Infrared Spectroscopy Using an Optical Biosensor. ACS OMEGA 2024; 9:27528-27536. [PMID: 38947791 PMCID: PMC11209919 DOI: 10.1021/acsomega.4c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
Urinary tract infections (UTIs) are caused mainly by uropathogenic Escherichia coli (UPEC), accounting for both uncomplicated (75%) and complicated (65%) UTIs. Detecting UPEC in a specific, rapid, and timely manner is essential for eradication, and optical biosensors may be useful tools for detecting UPEC. Recently, biosensors have been developed for the selective detection of antigen-antibody-specific interactions. In this study, a methodology based on the principle of an optical biosensor was developed to identify specific biomolecules, such as the PapG protein, which is located at the tip of P fimbriae and promotes the interaction of UPEC with the uroepithelium of the human kidney during a UTI. For biosensor construction, recombinant PapG protein was generated and polyclonal anti-PapG antibodies were obtained. The biosensor was fabricated in silicon supports because its surface and anchor biomolecules can be modified through its various properties. The fabrication process was carried out using self-assembled monolayers (SAMs) and an immobilized bioreceptor (anti-PapG) to detect the PapG protein. Each stage of biosensor development was evaluated by Fourier transform infrared (FTIR) spectroscopy. The infrared spectra showed bands corresponding to the C-H, C=O, and amide II bonds, revealing the presence of the PapG protein. Then, the spectra of the second derivative were obtained from 1600 to 1700 cm-1 to specifically determine the interactions that occur in the secondary structures between the biological recognition element (anti-PapG antibodies) and the analyte (PapG protein) complex. The analyzed secondary structure showed β-sheets and β-turns during the detection of the PapG protein. Our data suggest that the PapG protein can be detected through an optical biosensor and that the biosensor exhibited high specificity for the detection of UPEC strains. Furthermore, these studies provide initial support for the development of more specific biosensors that can be applied in the future for the detection of clinical UPEC samples associated with ITUs.
Collapse
Affiliation(s)
- Isabel
G. Vazquez-Gutierrez
- Centro
de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Mexico 90700, Tlaxcala, México
- Centro
de Biotecnología Genómica, Instituto Politécnico Nacional, Mexico 88710, Tamaulipas, México
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Miguel A. Reyes-López
- Centro
de Biotecnología Genómica, Instituto Politécnico Nacional, Mexico 88710, Tamaulipas, México
| | - Sara A. Ochoa
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Ariadnna Cruz-Córdova
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Rigoberto Hernández-Castro
- Departamento
de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel
Gea González”, Mexico 14000, CDMX, México
| | - Abdú Orduña-Díaz
- Centro
de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Mexico 90700, Tlaxcala, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| |
Collapse
|
10
|
Monavari SM, Memarian N. A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer. Sci Rep 2024; 14:10826. [PMID: 38734799 DOI: 10.1038/s41598-024-61677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.
Collapse
Affiliation(s)
| | - Nafiseh Memarian
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
| |
Collapse
|
11
|
Battisti A. Editorial for Special Issue on Biosensors for Biomedical and Environmental Applications. MICROMACHINES 2024; 15:607. [PMID: 38793180 PMCID: PMC11123321 DOI: 10.3390/mi15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
A sensor is typically defined as a device able to transform a physical quantity of interest into a different kind of signal that can be easily measured and recorded [...].
Collapse
|
12
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
13
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
14
|
Teniou A, Rhouati A, Marty JL. Recent Advances in Biosensors for Diagnosis of Autoimmune Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1510. [PMID: 38475046 DOI: 10.3390/s24051510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the last decade, autoimmune diseases (ADs) have undergone a significant increase because of genetic and/or environmental factors; therefore, their simple and fast diagnosis is of high importance. The conventional diagnostic techniques for ADs require tedious sample preparation, sophisticated instruments, a dedicated laboratory, and qualified personnel. For these reasons, biosensors could represent a useful alternative to these methods. Biosensors are considered to be promising tools that can be used in clinical analysis for an early diagnosis due to their high sensitivity, simplicity, low cost, possible miniaturization (POCT), and potential ability for real-time analysis. In this review, recently developed biosensors for the detection of autoimmune disease biomarkers are discussed. In the first part, we focus on the main AD biomarkers and the current methods of their detection. Then, we discuss the principles and different types of biosensors. Finally, we overview the characteristics of biosensors based on different bioreceptors reported in the literature.
Collapse
Affiliation(s)
- Ahlem Teniou
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Jean-Louis Marty
- Laboratoire BAE, Université de Perpignan through Domitia, 66860 Perpignan, France
| |
Collapse
|
15
|
Rabiee N, Ahmadi S, Rahimizadeh K, Chen S, Veedu RN. Metallic nanostructure-based aptasensors for robust detection of proteins. NANOSCALE ADVANCES 2024; 6:747-776. [PMID: 38298588 PMCID: PMC10825927 DOI: 10.1039/d3na00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| |
Collapse
|
16
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
18
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
19
|
Wagner P, Bakhshi Sichani S, Khorshid M, Lieberzeit P, Losada-Pérez P, Yongabi D. Bioanalytical sensors using the heat-transfer method HTM and related techniques. TECHNISCHES MESSEN : TM 2023; 90:761-785. [PMID: 38046181 PMCID: PMC10690833 DOI: 10.1515/teme-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 12/05/2023]
Abstract
This review provides an overview on bio- and chemosensors based on a thermal transducer platform that monitors the thermal interface resistance R th between a solid chip and the supernatant liquid. The R th parameter responds in a surprisingly strong way to molecular-scale changes at the solid-liquid interface, which can be measured thermometrically, using for instance thermocouples in combination with a controllable heat source. In 2012, the effect was first observed during on-chip denaturation experiments on complementary and mismatched DNA duplexes that differ in their melting temperature. Since then, the concept is addressed as heat-transfer method, in short HTM, and numerous applications of the basic sensing principle were identified. Functionalizing the chip with bioreceptors such as molecularly imprinted polymers makes it possible to detect neurotransmitters, inflammation markers, viruses, and environmental pollutants. In combination with aptamer-type receptors, it is also possible to detect proteins at low concentrations. Changing the receptors to surface-imprinted polymers has opened up new possibilities for quantitative bacterial detection and identification in complex matrices. In receptor-free variants, HTM was successfully used to characterize lipid vesicles and eukaryotic cells (yeast strains, cancer cell lines), the latter showing spontaneous detachment under influence of the temperature gradient inherent to HTM. We will also address modifications to the original HTM technique such as M-HTM, inverted HTM, thermal wave transport analysis TWTA, and the hot-wire principle. The article concludes with an assessment of the possibilities and current limitations of the method, together with a technological forecast.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Soroush Bakhshi Sichani
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090Wien, Austria
| | - Patricia Losada-Pérez
- Physique Expérimentale Thermique et de la Matière Molle, Université Libre de Bruxelles, Campus de la Plaine – CP 223, Boulevard du Triomphe, ACC.2, B-1050Bruxelles, Belgium
| | - Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| |
Collapse
|
20
|
Palavicini G. Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9053. [PMID: 38005442 PMCID: PMC10675666 DOI: 10.3390/s23229053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Technology has progressed and allows people to go further in multiple fields related to social issues. Medicine cannot be the exception, especially nowadays, when the COVID-19 pandemic has accelerated the use of technology to continue living meaningfully, but mainly in giving consideration to people who remain confined at home with health issues. Our research question is: how can artificial intelligence (AI) translated into technological devices be used to identify health issues, improve people's health, or prevent severe patient damage? Our work hypothesis is that technology has improved so much during the last decades that Medicine cannot remain apart from this progress. It must integrate technology into treatments so proper communication between intelligent devices and human bodies could better prevent health issues and even correct those already manifested. Consequently, we will answer: what has been the progress of Medicine using intelligent sensor-based devices? Which of those devices are the most used in medical practices? Which is the most benefited population, and what do physicians currently use this technology for? Could sensor-based monitoring and disease diagnosis represent a difference in how the medical praxis takes place nowadays, favouring prevention as opposed to healing?
Collapse
Affiliation(s)
- Gabriela Palavicini
- Department of Media and Digital Culture, Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 01389, Mexico
| |
Collapse
|
21
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2023:10.1007/s12033-023-00926-5. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
22
|
Lorenzo-Villegas DL, Gohil NV, Lamo P, Gurajala S, Bagiu IC, Vulcanescu DD, Horhat FG, Sorop VB, Diaconu M, Sorop MI, Oprisoni A, Horhat RM, Susan M, MohanaSundaram A. Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms. Life (Basel) 2023; 13:2099. [PMID: 37895480 PMCID: PMC10608220 DOI: 10.3390/life13102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Candida is the largest genus of medically significant fungi. Although most of its members are commensals, residing harmlessly in human bodies, some are opportunistic and dangerously invasive. These have the ability to cause severe nosocomial candidiasis and candidemia that affect the viscera and bloodstream. A prompt diagnosis will lead to a successful treatment modality. The smart solution of biosensing technologies for rapid and precise detection of Candida species has made remarkable progress. The development of point-of-care (POC) biosensor devices involves sensor precision down to pico-/femtogram level, cost-effectiveness, portability, rapidity, and user-friendliness. However, futuristic diagnostics will depend on exploiting technologies such as multiplexing for high-throughput screening, CRISPR, artificial intelligence (AI), neural networks, the Internet of Things (IoT), and cloud computing of medical databases. This review gives an insight into different biosensor technologies designed for the detection of medically significant Candida species, especially Candida albicans and C. auris, and their applications in the medical setting.
Collapse
Affiliation(s)
| | - Namra Vinay Gohil
- Department of Internal Medicne, Medical College Baroda, Vadodara 390001, India;
- Department of Internal Medicne, SSG Hospital Vadodara, Gotri, Vadodara 390021, India
| | - Paula Lamo
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.D.)
| | - Mircea Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Razvan Mihai Horhat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - ArunSundar MohanaSundaram
- School of Pharmacy, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India;
| |
Collapse
|
23
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
24
|
Pliego-Sandoval JE, Díaz-Barbosa A, Reyes-Nava LA, Angeles Camacho-Ruiz M, Iñiguez-Muñoz LE, Pinto-Pérez O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. BIOSENSORS 2023; 13:826. [PMID: 37622912 PMCID: PMC10452911 DOI: 10.3390/bios13080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using p-nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules.
Collapse
Affiliation(s)
- Jorge E. Pliego-Sandoval
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Arturo Díaz-Barbosa
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Luis A. Reyes-Nava
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - María Angeles Camacho-Ruiz
- Centro Universitario del Norte, Laboratorio de Investigación en Biotecnología, Universidad de Guadalajara, Colotlán 46200, Jalisco, Mexico;
| | - Laura Elena Iñiguez-Muñoz
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Osmar Pinto-Pérez
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| |
Collapse
|
25
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
26
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
27
|
Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines 2023; 11:biomedicines11041051. [PMID: 37189669 DOI: 10.3390/biomedicines11041051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biosensing and microfluidics technologies are transforming diagnostic medicine by accurately detecting biomolecules in biological samples. Urine is a promising biological fluid for diagnostics due to its noninvasive collection and wide range of diagnostic biomarkers. Point-of-care urinalysis, which integrates biosensing and microfluidics, has the potential to bring affordable and rapid diagnostics into the home to continuing monitoring, but challenges still remain. As such, this review aims to provide an overview of biomarkers that are or could be used to diagnose and monitor diseases, including cancer, cardiovascular diseases, kidney diseases, and neurodegenerative disorders, such as Alzheimer’s disease. Additionally, the different materials and techniques for the fabrication of microfluidic structures along with the biosensing technologies often used to detect and quantify biological molecules and organisms are reviewed. Ultimately, this review discusses the current state of point-of-care urinalysis devices and highlights the potential of these technologies to improve patient outcomes. Traditional point-of-care urinalysis devices require the manual collection of urine, which may be unpleasant, cumbersome, or prone to errors. To overcome this issue, the toilet itself can be used as an alternative specimen collection and urinalysis device. This review then presents several smart toilet systems and incorporated sanitary devices for this purpose.
Collapse
|
28
|
Thome C, Hoertdoerfer WS, Bendorf JR, Lee JG, Shields CW. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. NANO LETTERS 2023; 23:2379-2387. [PMID: 36881680 PMCID: PMC10038089 DOI: 10.1021/acs.nanolett.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Collapse
Affiliation(s)
- Cooper
P. Thome
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Wren S. Hoertdoerfer
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Julia R. Bendorf
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jin Gyun Lee
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
29
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
30
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
31
|
Hassan RYA. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197539. [PMID: 36236638 PMCID: PMC9573286 DOI: 10.3390/s22197539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 05/17/2023]
Abstract
Modern life quality is strongly supported by the advances made in biosensors, which has been attributed to their crucial and viable contribution in point-of-care (POC) technology developments. POC devices are exploited for the fast tracing of disease progression, rapid analysis of water, and food quality assessment. Blood glucose meters, home pregnancy strips, and COVID-19 rapid tests all represent common examples of successful biosensors. Biosensors can provide great specificity due to the incorporation of selective bio-recognition elements and portability at significantly reduced costs. Electrochemical biosensor platforms are one of the most advantageous of these platforms because they offer many merits, such as being cheap, selective, specific, rapid, and portable. Furthermore, they can be incorporated into smartphones and various analytical approaches in order to increase their sensitivity and many other properties. As a very broad and interdisciplinary area of research and development, biosensors include all disciplines and backgrounds from materials science, chemistry, physics, medicine, microbiology/biology, and engineering. Accordingly, in this state-of-the-art article, historical background alongside the long journey of biosensing construction and development, starting from the Clark oxygen electrode until reaching highly advanced wearable stretchable biosensing devices, are discussed. Consequently, selected examples among the miscellaneous applications of nanobiosensors (such as microbial detection, cancer diagnosis, toxicity analysis, food quality-control assurance, point of care, and health prognosis) are described. Eventually, future perspectives for intelligent biosensor commercialization and exploitation in real-life that is going to be supported by machine learning and artificial intelligence (AI) are stated.
Collapse
Affiliation(s)
- Rabeay Y. A. Hassan
- Applied Organic Chemistry Department, National Research Centre Dokki, Cairo 12622, Egypt; ; Tel.: +20-11292-16152
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
32
|
Cicha I, Priefer R, Severino P, Souto EB, Jain S. Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications. Biomolecules 2022; 12:biom12091198. [PMID: 36139035 PMCID: PMC9496590 DOI: 10.3390/biom12091198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Biosensor-integrated drug delivery systems are innovative devices in the health area, enabling continuous monitoring and drug administration. The use of smart polymer, bioMEMS, and electrochemical sensors have been extensively studied for these systems, especially for chronic diseases such as diabetes mellitus, cancer and cardiovascular diseases as well as advances in regenerative medicine. Basically, the technology involves sensors designed for the continuous analysis of biological molecules followed by drug release in response to specific signals. The advantages include high sensitivity and fast drug release. In this work, the main advances of biosensor-integrated drug delivery systems as new biomedical materials to improve the patients’ quality of life with chronic diseases are discussed.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, Boston University, Boston, MA 02115, USA
| | - Patrícia Severino
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
- Institute of Technology and Research, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (E.B.S.); (S.J.)
| | - Sona Jain
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
- Correspondence: (E.B.S.); (S.J.)
| |
Collapse
|