1
|
Le Foll B, Tang VM, Rueda S, Trick LV, Boileau I. Cannabis use disorder: from neurobiology to treatment. J Clin Invest 2024; 134:e172887. [PMID: 39403927 PMCID: PMC11473150 DOI: 10.1172/jci172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Collapse
Affiliation(s)
- Bernard Le Foll
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victor M. Tang
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Sergio Rueda
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Leanne V. Trick
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Isabelle Boileau
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Brain Health Imaging Centre, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Carbone GA, Imperatori C, Adenzato M, Presti AL, Farina B, Ardito RB. Is parental overcontrol a specific form of child maltreatment? Insights from a resting state EEG connectivity study. CHILD ABUSE & NEGLECT 2024; 155:106962. [PMID: 39068738 DOI: 10.1016/j.chiabu.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Recent studies suggest that parental overcontrol could be considered a specific form of childhood trauma (CT). Although previous research has shown that CT alters the functional and structural architecture of large-scale networks in the brain, the neural basis associated with parental overcontrol has not been sufficiently explored. Therefore, the main aim of the current study was to investigate the relationship between parental overcontrol and electroencephalography (EEG) triple network (TN) functional connectivity during the resting state (RS) condition in a non-clinical sample (N = 71; 39 females, mean age 23.94 ± 5.89 SD). METHODS EEG was recorded during 5 min of RS with eyes closed. All participants were asked to self-report maternal and paternal overcontrol, CT and general psychopathology. All EEG analyses were performed using the exact low-resolution electromagnetic tomography software (eLORETA). RESULTS Our results showed a significant positive correlation between maternal overcontrol and theta connectivity between the salience network and the central executive network. This connectivity pattern was independently associated with maternal overcontrol even when controlling for relevant confounding variables, including the severity of CT and the general level of psychopathology. This neurophysiological pattern may reflect a predisposition to detect and respond to potentially threatening stimuli in the environment, which is typically associated with excessive overcontrol. CONCLUSIONS Our findings support the hypothesis that parental overcontrol should be considered a form of CT in all respects independent of the forms traditionally studied in the literature (i.e., emotional abuse, physical abuse, sexual abuse, and physical and emotional neglect).
Collapse
Affiliation(s)
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy.
| | | | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Rita B Ardito
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Li J, Xu H. Abnormal structural covariance networks in young adults with recent cannabis use. Addict Behav 2024; 155:108029. [PMID: 38593597 DOI: 10.1016/j.addbeh.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Recent cannabis use (RCU) exerts adverse effects on the brain. However, the effect of RCU on structural covariance networks (SCNs) is still unclear. This retrospective cross-sectional study aimed to explore the effects of RCU on SCNs in young adults in terms of whole cerebral cortical thickness (CT) and cortical surface area (CSA). METHODS A total of 117 participants taking tetrahydrocannabinol (RCU group) and 896 participants not using cannabis (control group) were included in this study. All participants underwent MRI scanning following urinalysis screening, after which FreeSurfer 5.3 was used to calculate the CT and CSA, and SCNs matrices were constructed by Brain Connectivity Toolbox. Subsequently, the global and nodal network measures of the SCNs were computed based on these matrices. A nonparametric permutation test was used to investigate the group differences by Matlab. RESULTS Regarding global network measures of CT, young adults with RCU exhibited altered small-worldness (P = 0.020) and clustering coefficient (P = 0.031) compared to controls, whereas there were no significant group differences in terms of SCNs constructed with CSA. Additionally, SCNs based on CT and CSA displayed abnormal nodal degree, nodal efficiency, and nodal betweenness centrality in vital brain regions of the triple network, including the dorsolateral and ventrolateral prefrontal cortex, and anterior cingulate cortex. CONCLUSION The effects of RCU on brain structure in young adults can be detected by SCNs, in which structural abnormalities in the triple network are dominant, indicating that RCU can be detrimental to brain function.
Collapse
Affiliation(s)
- Jiahao Li
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China; Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou 325007, China.
| |
Collapse
|
4
|
Filosa M, De Rossi E, Carbone GA, Farina B, Massullo C, Panno A, Adenzato M, Ardito RB, Imperatori C. Altered connectivity between the central executive network and the salience network in delusion-prone individuals: A resting state eLORETA report. Neurosci Lett 2024; 825:137686. [PMID: 38364996 DOI: 10.1016/j.neulet.2024.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Although the Triple Network (TN) model has been proposed as a valid neurophysiological framework for conceptualizing delusion-like experiences, the neurodynamics of TN in relation to delusion proneness have been relatively understudied in nonclinical samples so far. Therefore, the main aim of the current study was to investigate the functional connectivity of resting state electroencephalography (EEG) in subjects with high levels of delusion proneness. Twenty-one delusion-prone (DP) individuals and thirty-seven non-delusion prone (N-DP) individuals were included in the study. The exact Low-Resolution Electromagnetic Tomography (eLORETA) software was used for all EEG analyses. Compared to N-DP participants, DP individuals showed an increas of theta connectivity (T = 3.618; p = 0.045) between the Salience Network (i.e., the left anterior insula) and the Central Executive Network (i.e., the left posterior parietal cortex). Increased theta connectivity was also positively correlated with the frequency of delusional experiences (rho = 0.317; p = 0.015). Our results suggest that increased theta connectivity between the Salience Network and the Central Executive Network may underline brain correlates of altered resting state salience detection, information processing, and cognitive control processes typical of delusional thinking.
Collapse
Affiliation(s)
- Margherita Filosa
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | - Elena De Rossi
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | | | - Benedetto Farina
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | - Chiara Massullo
- Experimental Psychology Laboratory, Department of Education, Roma Tre University, Italy
| | - Angelo Panno
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | | | - Rita B Ardito
- Department of Psychology, University of Turin, Italy
| | - Claudio Imperatori
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| |
Collapse
|
5
|
Lee SH, Shnitko TA, Hsu LM, Broadwater MA, Sardinas M, Wang TWW, Robinson DL, Vetreno RP, Crews FT, Shih YYI. Acute alcohol induces greater dose-dependent increase in the lateral cortical network functional connectivity in adult than adolescent rats. ADDICTION NEUROSCIENCE 2023; 7:100105. [PMID: 37576436 PMCID: PMC10421607 DOI: 10.1016/j.addicn.2023.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alcohol misuse and, particularly adolescent drinking, is a major public health concern. While evidence suggests that adolescent alcohol use affects frontal brain regions that are important for cognitive control over behavior little is known about how acute alcohol exposure alters large-scale brain networks and how sex and age may moderate such effects. Here, we employ a recently developed functional magnetic resonance imaging (fMRI) protocol to acquire rat brain functional connectivity data and use an established analytical pipeline to examine the effect of sex, age, and alcohol dose on connectivity within and between three major rodent brain networks: defaul mode, salience, and lateral cortical network. We identify the intra- and inter-network connectivity differences and establish moderation models to reveal significant influences of age on acute alcohol-induced lateral cortical network connectivity. Through this work, we make brain-wide isotropic fMRI data with acute alcohol challenge publicly available, with the hope to facilitate future discovery of brain regions/circuits that are causally relevant to the impact of acute alcohol use.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Mabelle Sardinas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Marvi N, Haddadnia J, Fayyazi Bordbar MR. An automated drug dependence detection system based on EEG. Comput Biol Med 2023; 158:106853. [PMID: 37030264 DOI: 10.1016/j.compbiomed.2023.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser. METHODS EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification. RESULTS The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score. CONCLUSIONS AND SIGNIFICANCE The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
Collapse
|
7
|
Syed SA, Schnakenberg Martin AM, Cortes-Briones JA, Skosnik PD. The Relationship Between Cannabinoids and Neural Oscillations: How Cannabis Disrupts Sensation, Perception, and Cognition. Clin EEG Neurosci 2022:15500594221138280. [PMID: 36426543 DOI: 10.1177/15500594221138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Disruptions in neural oscillations are believed to be one critical mechanism by which cannabinoids, such as delta-9-tetrahyrdrocannabinol (THC; the primary psychoactive constituent of cannabis), perturbs brain function. Here we briefly review the role of synchronized neural activity, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) frequency range, in sensation, perception, and cognition. This is followed by a review of clinical studies utilizing electroencephalography (EEG) which have demonstrated that both chronic and acute cannabinoid exposure disrupts neural oscillations in humans. We also offer a hypothetical framework through which endocannabinoids modulate neural synchrony at the network level. This also includes speculation on how both chronic and acute cannabinoids disrupt functionally relevant neural oscillations by altering the fine tuning of oscillations and the inhibitory/excitatory balance of neural circuits. Finally, we highlight important clinical implications of such oscillatory disruptions, such as the potential relationship between cannabis use, altered neural synchrony, and disruptions in sensation, perception, and cognition, which are perturbed in disorders such as schizophrenia.
Collapse
Affiliation(s)
- Shariful A Syed
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ashley M Schnakenberg Martin
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jose A Cortes-Briones
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
8
|
Liu Y, Chen Y, Fraga-González G, Szpak V, Laverman J, Wiers RW, Richard Ridderinkhof K. Resting-state EEG, Substance use and Abstinence After Chronic use: A Systematic Review. Clin EEG Neurosci 2022; 53:344-366. [PMID: 35142589 DOI: 10.1177/15500594221076347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Resting-state EEG reflects intrinsic brain activity and its alteration represents changes in cognition that are related to neuropathology. Thereby, it provides a way of revealing the neurocognitive mechanisms underpinning chronic substance use. In addition, it is documented that some neurocognitive functions can recover following sustained abstinence. We present a systematic review to synthesize how chronic substance use is associated with resting-state EEG alterations and whether these spontaneously recover from abstinence. A literature search in Medline, PsycINFO, Embase, CINAHL, Web of Science, and Scopus resulted in 4088 articles, of which 57 were included for evaluation. It covered the substance of alcohol (18), tobacco (14), cannabis (8), cocaine (6), opioids (4), methamphetamine (4), and ecstasy (4). EEG analysis methods included spectral power, functional connectivity, and network analyses. It was found that long-term substance use with or without substance use disorder diagnosis was associated with broad intrinsic neural activity alterations, which were usually expressed as neural hyperactivation and decreased neural communication between brain regions. Some studies found the use of alcohol, tobacco, cocaine, cannabis, and methamphetamine was positively correlated with these changes. These alterations can partly recover from abstinence, which differed between drugs and may reflect their neurotoxic degree. Moderating factors that may explain results inconsistency are discussed. In sum, resting-state EEG may act as a potential biomarker of neurotoxic effects of chronic substance use. Recovery effects awaits replication in larger samples with prolonged abstinence. Balanced sex ratio, enlarged sample size, advanced EEG analysis methods, and transparent reporting are recommended for future studies.
Collapse
Affiliation(s)
- Yang Liu
- 12544Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Yujie Chen
- 12544Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Gorka Fraga-González
- 27217Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Veronica Szpak
- 1234Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Judith Laverman
- 1234Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Reinout W Wiers
- 1234Addiction Development and Psychopathology (ADAPT)-Lab, Department of Psychology and Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
9
|
Sbaihat H, Rajkumar R, Ramkiran S, Assi AAN, Felder J, Shah NJ, Veselinović T, Neuner I. Test-retest stability of spontaneous brain activity and functional connectivity in the core resting-state networks assessed with ultrahigh field 7-Tesla resting-state functional magnetic resonance imaging. Hum Brain Mapp 2022; 43:2026-2040. [PMID: 35044722 PMCID: PMC8933332 DOI: 10.1002/hbm.25771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting‐state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh‐field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters—amplitude of low‐frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long‐range connectivity)—in three RS networks, previously shown to play an important role in several psychiatric diseases—the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF‐MRI points to its applicability as a potentially useful tool in the search for disease‐relevant biomarkers.
Collapse
Affiliation(s)
- Hasan Sbaihat
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Abed Al-Nasser Assi
- Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine
| | - Jörg Felder
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Medical Imaging, Arab-American University Palestine (AAUP), Jenin, Palestine
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-11, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine, INM-4, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany
| |
Collapse
|
10
|
Carbone GA, Imperatori C, Bersani FS, Massullo C, Orlando EM, Farina B. Dissociative-Traumatic Dimension and Triple Network: An EEG Functional Connectivity Study in a Sample of University Students. Psychopathology 2022; 55:28-36. [PMID: 34788760 DOI: 10.1159/000519563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
AIMS We investigated the association among triple network electroencephalographic (EEG) functional connectivity, dissociative symptoms, and childhood trauma (CT) in a sample of university students. SAMPLING AND METHODS Seventy-six participants (30 males and 46 females; mean age 22.12 ± 2.35) completed self-report measures investigating dissociative symptoms, CT, and depressive symptoms. Participants also performed an eyes-closed resting-state EEG recording. EEG analyses were conducted through the exact low-resolution electromagnetic tomography (eLORETA) software. RESULTS A 2-step cluster analysis revealed 2 groups: participants (N = 23) with high dissociative-traumatic dimension symptoms (DTD+) and participants (N = 53) with low DTD symptoms (DTD-). Compared to DTD- subjects, DTD+ participants showed decreased theta connectivity between the salience network (SN) and central executive network (CEN), specifically between the right anterior insula and the left posterior parietal cortex. No significant correlation was detected between EEG data and clinical variables. CONCLUSION Our results raise the possibility of a dysfunctional connectivity pattern occurring between the SN and CEN in individuals with high DTD symptoms. Such connectivity pattern might reflect the neuropsychophysiological disintegration related to pathological dissociation.
Collapse
Affiliation(s)
- Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | | | - Chiara Massullo
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Egle Maria Orlando
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| |
Collapse
|
11
|
Dynamics of task-induced modulation of spontaneous brain activity and functional connectivity in the triple resting-state networks assessed using the visual oddball paradigm. PLoS One 2021; 16:e0246709. [PMID: 34735449 PMCID: PMC8568109 DOI: 10.1371/journal.pone.0246709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
The default mode network (DMN), the salience network (SN), and the central executive network (CEN) are considered as the core resting-state brain networks (RSN) due to their involvement in a wide range of cognitive tasks. Despite the large body of knowledge related to their regional spontaneous activity (RSA) and functional connectivity (FC) of these networks, less is known about the dynamics of the task-associated modulation on these parameters and the task-induced interaction between these three networks. We have investigated the effects of the visual-oddball paradigm on three fMRI measures (amplitude of low-frequency fluctuations for RSA, regional homogeneity for local FC, and degree centrality for global FC) in these three core RSN. A rest-task-rest paradigm was used and the RSNs were identified using independent component analysis (ICA) on the resting-state data. The observed patterns of change differed noticeably between the networks and were tightly associated with the task-related brain activity and the distinct involvement of the networks in the performance of the single subtasks. Furthermore, the inter-network analysis showed an increased synchronization of CEN with the DMN and the SN immediately after the task, but not between the DMN and SN. Higher pre-task inter-network synchronization between the DMN and the CEN was associated with shorter reaction times and thus better performance. Our results provide some additional insights into the dynamics within and between the triple RSN. Further investigations are required in order to understand better their functional importance and interplay.
Collapse
|
12
|
Filbey FM, Beaton D, Prashad S. The contributions of the endocannabinoid system and stress on the neural processing of reward stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110183. [PMID: 33221340 PMCID: PMC8204292 DOI: 10.1016/j.pnpbp.2020.110183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
The brain's endocannabinoid system plays a crucial role in reward processes by mediating appetitive learning and encoding the reinforcing properties of substances. Evidence also suggests that endocannabinoids are an important constituent of neuronal substrates involved in emotional responses to stress. Thus, it is critical to understand how the endocannabinoid system and stress may affect reward processes given their importance in substance use disorders. We examined the relationship between factors that regulate endocannabinoid system signaling (i.e., cannabinoid receptor genes and prolonged cannabis exposure) and stress on fMRI BOLD response to reward cues using multivariate statistical analysis. We found that proxies for endocannabinoid system signaling (i.e., endocannabinoid genes and chronic exposure to cannabis) and stress have differential effects on neural response to cannabis cues. Specifically, a single nucleotide polymorphism (SNP) variant in the cannabinoid receptor 1 (CNR1) gene, early life stress, and current perceived stress modulated reward responsivity in long-term, heavy cannabis users, while a variant in the fatty acid amide hydrolase (FAAH) gene and current perceived stress modulated cue-elicited response in non-using controls. These associations were related to distinct neural responses to cannabis-related cues compared to natural reward cues. Understanding the contributions of endocannabinoid system factors and stress that lead to downstream effects on neural mechanisms underlying sensitivity to rewards, such as cannabis, will contribute towards a better understanding of endocannabinoid-targeted therapies as well as individual risks for cannabis use disorder.
Collapse
Affiliation(s)
- F M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA.
| | - D Beaton
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - S Prashad
- Department of Kinesiology and Educational Psychology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
13
|
Cannabis: Neuropsychiatry and Its Effects on Brain and Behavior. Brain Sci 2020; 10:brainsci10110834. [PMID: 33182671 PMCID: PMC7696812 DOI: 10.3390/brainsci10110834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
|
14
|
Imperatori C, Panno A, Giacchini M, Massullo C, Carbone GA, Clerici M, Farina B, Dakanalis A. Electroencephalographic correlates of body shape concerns: an eLORETA functional connectivity study. Cogn Neurodyn 2020; 14:723-729. [PMID: 33014184 DOI: 10.1007/s11571-020-09618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
The main aim of the present study was to investigate the association between body shape concerns and electroencephalography (EEG) functional connectivity within body image network in a sample of university students (N = 68). EEG was recorded during 5 min of resting state. All participants were asked to complete self-report measures assessing certain psychopathological dimensions (i.e., body shape concerns, depression, anxiety, obsessive-compulsive symptoms). EEG analyses were conducted by means of the exact low-resolution electromagnetic tomography software (eLORETA). Our results showed that body shape concerns were positively associated with increased gamma functional connectivity between the left and right prefrontal cortex (PFC). Furthermore, our data revealed that this EEG pattern was independently associated with body shape concerns after controlling for potential socio-demographic and clinical confounding variables. This finding seems to suggest that increased EEG gamma connectivity between the left and right PFC might be a relevant neurophysiological alteration involved in the development and/or maintenance of dysfunctional concerns about one's body.
Collapse
Affiliation(s)
- Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Angelo Panno
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Marta Giacchini
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Chiara Massullo
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Massimo Clerici
- Department of Psychiatry, San Gerardo Hospital, ASST Monza, Via G. B. Pergolesi 33, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Cadore 48, 20900 Monza, Italy
| | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, Cadore 48, 20900 Monza, Italy
| |
Collapse
|
15
|
Dysregulated brain salience within a triple network model in high trait anxiety individuals: A pilot EEG functional connectivity study. Int J Psychophysiol 2020; 157:61-69. [PMID: 32976888 DOI: 10.1016/j.ijpsycho.2020.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 12/30/2022]
Abstract
Although previous studies have reported the association between large-scale brain networks alterations and pathological anxiety, abnormalities in the dynamic interaction among the triple network model in anxiety disorders and, especially, in trait anxiety is still poorly explored. Thus, the main aim of the current study was to investigate triple network functional dynamics in subjects with high trait anxiety during resting state (RS) through electroencephalography (EEG) connectivity. Twenty-three individuals with high-trait-anxiety (HTA) and forty-five participants with low-trait-anxiety (LTA) were enrolled. EEG analyses were conducted by means of the exact Low-Resolution Electromagnetic Tomography software (eLORETA). Compared to LTA participants, HTA subjects showed a decrease of alpha connectivity within the salience network (SN), between the dorsal anterior cingulate cortex (dACC) and both left and right anterior insula (AI). Furthermore, SN functional connectivity strength was negatively correlated with higher trait anxiety, even when controlling for potential confounding variables (e.g., depressive and obsessive-compulsive symptoms). Taken together, our results point out a specific functional connectivity pattern in HTA individuals, which consists in a dysfunctional communication within the SN, specifically in the AI-dACC pathway. This functional pattern could underline, at rest, saliency detection and brain correlates of altereted emotion regulation and cognitive control processes typically involved in anxiety.
Collapse
|