1
|
Xu G, Zhou M, Wang J, Mao D, Sun W. The effect of sensory manipulation on the static balance control and prefrontal cortex activation in older adults with mild cognitive impairment: a functional near-infrared spectroscopy (fNIRS) study. BMC Geriatr 2024; 24:1020. [PMID: 39702053 DOI: 10.1186/s12877-024-05624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND This study aimed to investigate the modulatory role of prefrontal cortex (PFC) activity in older adults with mild cognitive impairment (MCI) when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during sensory manipulation of a balance task. The research sheds light on the neural regulatory mechanisms of the brain related to balance control in individuals with MCI. METHODS 21 older adults with MCI (male/female: 9/12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (male/female: 10/9, age: 70.16 ± 4.54 years) as the control group. Participants were required to perform balance tests under four standing conditions: standing on a solid surface with eyes open, standing on a foam surface with eyes open, standing on a solid surface with eyes closed, and standing on a foam surface with eyes closed. Functional Near-Infrared Spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively. RESULTS Under the eyes open condition, significant Group*Surface interaction effects were found in the mean velocity of the COP (MVELO), the mean velocity in the medial-lateral (ML) direction (MVELOml) and the 95% confidence ellipse area of the COP (95%AREA-CE). Additionally, significant Group*Surface interaction effect was found in the left orbitofrontal cortex (L-OFC). The significant group effects were detected for three ROI regions, namely the left ventrolateral prefrontal cortex (L-VLPFC), the left dorsolateral prefrontal cortex (L-DLPFC), the right dorsolateral prefrontal cortex (R-DLPFC). Under the eyes closed condition, the significant Group*Surface interaction effects were found in root mean square (RMS), the RMS in the ML direction (RMSml) and the 95%AREA-CE. Additionally, significant group effects were detected for five ROI regions, namely R-VLPFC, the left frontopolar cortex (L-FPC), L-DLPFC, R-DLPFC and R-OFC. CONCLUSION Our study emphasizes the role of the PFC in maintaining standing balance control among older adults with MCI, particularly during complex sensory conditions, and provides direct evidence for the role of the PFC during balance control of a clinically relevant measure of balance. TRIAL REGISTRATION ChiCTR2100044221, 12/03/2021.
Collapse
Affiliation(s)
- Guocai Xu
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Mian Zhou
- Rehabilitation Medicine Department, Weishan People's Hospital, Jining, Shandong, China
| | - Jiangna Wang
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Dewei Mao
- Division of Physical Education, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Kim HI, Jo S, Kwon M, Park JE, Han JW, Kim KW. Association of Compensatory Mechanisms in Prefrontal Cortex and Impaired Anatomical Correlates in Semantic Verbal Fluency: A Functional Near-Infrared Spectroscopy Study. Psychiatry Investig 2024; 21:1065-1075. [PMID: 39255965 PMCID: PMC11513872 DOI: 10.30773/pi.2023.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE Semantic verbal fluency (SVF) engages cognitive functions such as executive function, mental flexibility, and semantic memory. Left frontal and temporal lobes, particularly the left inferior frontal gyrus (IFG), are crucial for SVF. This study investigates SVF and associated neural processing in older adults with mild SVF impairment and the relationship between structural abnormalities in the left IFG and functional activation during SVF in those individuals. METHODS Fifty-four elderly individuals with modest level of mild cognitive impairment whose global cognition were preserved to normal but exhibited mild SVF impairment were participated. Prefrontal oxyhemoglobin (HbO2) activation and frontal cortical thickness were collected from the participants using functional near-infrared spectroscopy (fNIRS) and brain MRI, respectively. We calculated the β coefficient of HbO2 activation induced by tasks, and performed correlation analysis between SVF induced HbO2 activation and cortical thickness in frontal areas. RESULTS We observed increased prefrontal activation during SVF task compared to the resting and control task. The activation distinct to SVF was identified in the midline superior and left superior prefrontal regions (p<0.05). Correlation analysis revealed an inverse relationship between SVF-specific activation and cortical thickness in the left IFG, particularly in pars triangularis (r(54)=-0.304, p=0.025). CONCLUSION The study contributes to understanding the relationship between reduced cortical thickness in left IFG and increased functional activity in cognitively normal individuals with mild SVF impairment, providing implications on potential compensatory mechanisms for cognitive preservation.
Collapse
Affiliation(s)
- Hae-In Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sungman Jo
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minjeong Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ku PH, Yang YR, Yeh NC, Li PY, Lu CF, Wang RY. Prefrontal activity and heart rate variability during cognitive tasks may show different changes in young and older adults with and without mild cognitive impairment. Front Aging Neurosci 2024; 16:1392304. [PMID: 38863782 PMCID: PMC11166260 DOI: 10.3389/fnagi.2024.1392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background Age-related decline in cognitive function is often linked to changed prefrontal cortex (PFC) activity and heart rate variability (HRV). Mild cognitive impairment (MCI), a transitional stage between normal aging and dementia, might have further degeneration beyond aging. This study aimed to investigate the differences between young and older adults with or without MCI in cognitive functions, task-induced PFC activation and HRV changes. Methods Thirty-one healthy young adults (YA), 44 older adults (OA), and 28 older adults with MCI (OA-MCI) were enrolled and compared in this cross-sectional study. Each participant received a one-time assessment including cognitive and executive functions, as well as the simultaneous recording of PFC activity and HRV during a cognitive task paradigm. Results We observed age-related decrease in global cognitive functions, executive functions, HRV, and increase in PFC activity. The MCI further deteriorated the global cognitive and executive performances, but not the HRV or the prefrontal activation. Conclusion Older people showed lower performances in general cognitive function and executive function, compensatory increase of PFC activity, and reduced HRV. Older people with MCI had further deterioration in cognitive performance, but not in PFC activation and HRV.
Collapse
Affiliation(s)
- Pei-Hsin Ku
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Chen Yeh
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Li
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Raffegeau TE, Brinkerhoff SA, Clark M, McBride AD, Mark Williams A, Fino PC, Fawver B. Walking (and talking) the plank: dual-task performance costs in a virtual balance-threatening environment. Exp Brain Res 2024; 242:1237-1250. [PMID: 38536454 PMCID: PMC11078829 DOI: 10.1007/s00221-024-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024]
Abstract
We evaluated the effects of engaging in extemporaneous speech in healthy young adults while they walked in a virtual environment meant to elicit low or high levels of mobility-related anxiety. We expected that mobility-related anxiety imposed by a simulated balance threat (i.e., virtual elevation) would impair walking behavior and lead to greater dual-task costs. Altogether, 15 adults (age = 25.6 ± 4.7 yrs, 7 women) walked at their self-selected speed within a VR environment that simulated a low (ground) and high elevation (15 m) setting while speaking extemporaneously (dual-task) or not speaking (single-task). Likert-scale ratings of cognitive and somatic anxiety, confidence, and mental effort were evaluated and gait speed, step length, and step width, as well as the variability of each, was calculated for every trial. Silent speech pauses (> 150 ms) were determined from audio recordings to infer the cognitive costs of extemporaneous speech planning at low and high virtual elevation. Results indicated that the presence of a balance threat and the inclusion of a concurrent speech task both perturbed gait kinematics, but the virtual height illusion led to increased anxiety and mental effort and a decrease in confidence. The extemporaneous speech pauses were longer on average when walking, but no effects of virtual elevation were reported. Trends toward interaction effects arose in self-reported responses, with participants reporting more comfort walking at virtual heights if they engaged in extemporaneous speech. Walking at virtual elevation and while talking may have independent and significant effects on gait; both effects were robust and did not support an interaction when combined (i.e., walking and talking at virtual heights). The nature of extemporaneous speech may have distracted participants from the detrimental effects of walking in anxiety-inducing settings.
Collapse
Affiliation(s)
- Tiphanie E Raffegeau
- George Mason University, School of Kinesiology, 10890 George Mason Circle, Katherine Johnson Hall 201G, MSN 4E5, Manassas, VA, 20110, USA.
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA.
| | - Sarah A Brinkerhoff
- George Mason University, School of Kinesiology, 10890 George Mason Circle, Katherine Johnson Hall 201G, MSN 4E5, Manassas, VA, 20110, USA
| | - Mindie Clark
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
- Department of Health and Human Performance, Rocky Mountain College, Billings, MT, USA
| | - Ashlee D McBride
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - A Mark Williams
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
- Institute for Human and Machine Cognition, Human Health, Resilience and Performance, Pensacola, FL, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - Bradley Fawver
- Walter Reed Army Institute of Research-West, Joint Base Lewis-McChord, Tacoma, WA, USA
| |
Collapse
|
5
|
Lau CI, Liu MN, Cheng FY, Wang HC, Walsh V, Liao YY. Can transcranial direct current stimulation combined with interactive computerized cognitive training boost cognition and gait performance in older adults with mild cognitive impairment? a randomized controlled trial. J Neuroeng Rehabil 2024; 21:26. [PMID: 38365761 PMCID: PMC10874043 DOI: 10.1186/s12984-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Older adults with Mild Cognitive Impairment (MCI) are often subject to cognitive and gait deficits. Interactive Computerized Cognitive Training (ICCT) may improve cognitive function; however, the effect of such training on gait performance is limited. Transcranial Direct Current Stimulation (tDCS) improves cognition and gait performance. It remains unclear whether combining tDCS with ICCT produces an enhanced synergistic effect on cognition and complex gait performance relative to ICCT alone. This study aimed to compare the effects of tDCS combined with ICCT on cognition and gait performance in older adults with MCI. METHOD Twenty-one older adults with MCI were randomly assigned to groups receiving either anodal tDCS and ICCT ( tDCS + ICCT ) or sham tDCS and ICCT ( sham + ICCT ). Participants played Nintendo Switch cognitive games for 40 min per session, simultaneously receiving either anodal or sham tDCS over the left dorsolateral prefrontal cortex for the first 20 min. Cognitive and gait assessments were performed before and after 15 training sessions. RESULTS The global cognition, executive function, and working-memory scores improved in both groups, but there were no significant interaction effects on cognitive outcomes. Additionally, the group × time interactions indicated that tDCS + ICCT significantly enhanced dual-task gait performance in terms of gait speed (p = 0.045), variability (p = 0.016), and dual-task cost (p = 0.039) compared to sham + ICCT. CONCLUSION The combined effect of tDCS and ICCT on cognition was not superior to that of ICCT alone; however, it had a significant impact on dual-task gait performance. Administering tDCS as an adjunct to ICCT may thus provide additional benefits for older adults with MCI. TRIAL REGISTRATION This trial was registered at http://www. CLINICALTRIALS in.th/ (TCTR 20,220,328,009).
Collapse
Affiliation(s)
- Chi Ieong Lau
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fang-Yu Cheng
- Institute of Long-Term Care, MacKay Medical College, New Taipei, Taiwan
| | - Han-Cheng Wang
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| |
Collapse
|
6
|
Xu G, Zhou M, Chen Y, Song Q, Sun W, Wang J. Brain activation during standing balance control in dual-task paradigm and its correlation among older adults with mild cognitive impairment: a fNIRS study. BMC Geriatr 2024; 24:144. [PMID: 38341561 PMCID: PMC10859010 DOI: 10.1186/s12877-024-04772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND This study aimed to compare the balance ability and functional brain oxygenation in the prefrontal cortex (PFC) among older adults with mild cognitive impairment (MCI) under single and dual tasks, and also investigate their relationship. Neural regulatory mechanisms of the brain in the MCI were shed light on in balance control conditions. METHODS 21 older adults with MCI (female = 12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (female = 9, age: 70.16 ± 4.54 years) as the control group. Participants completed balance control of single task and dual task respectively. Functional near-infrared spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively. RESULTS The significant Group*Task interaction effect was found in maximal displacement of the COP in the medial-lateral (ML) direction (D-ml), 95% confidence ellipse area (95%AREA), root mean square (RMS), the RMS in the ML direction (RMS-ml), the RMS in the anterior-posterior (AP) direction (RMS-ap), sway path (SP), the sway path in the ML direction (SP-ml), and the sway path in the AP direction (SP-ap). The significant group effect was detected for five regions of interest (ROI), namely the left Brodmann area (BA) 45 (L45), the right BA45 (R45), the right BA10 (R10), the left BA46 (L46), and the right BA11 (R11). Under single task, maximal displacement of the COP in the AP direction (D-ap), RMS, and RMS-ap were significantly negatively correlated with R45, L45, and R11 respectively. Under dual task, both RMS and 95%AREA were correlated positively with L45, and both L10 and R10 were positively correlated with RMS-ap. CONCLUSION The MCI demonstrated worse balance control ability as compared to healthy older adults. The greater activation of PFC under dual tasks in MCI may be considered a compensatory strategy for maintaining the standing balance. The brain activation was negatively correlated with balance ability under single task, and positively under dual task. TRIAL REGISTRATION ChiCTR2100044221 , 12/03/2021.
Collapse
Affiliation(s)
- Guocai Xu
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Mian Zhou
- Rehabilitation Medicine Department, Weishan People's Hospital, Jining, Shandong, China
| | - Yan Chen
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Jiangna Wang
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Herrejon IA, Jackson TB, Hicks TH, Bernard JA. Functional Connectivity Differences in Distinct Dentato-Cortical Networks in Alzheimer's Disease and Mild Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578249. [PMID: 38352603 PMCID: PMC10862898 DOI: 10.1101/2024.02.02.578249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recent research has implicated the cerebellum in Alzheimer's disease (AD), and cerebrocerebellar network connectivity is emerging as a possible contributor to symptom severity. The cerebellar dentate nucleus (DN) has parallel motor and non-motor sub-regions that project to motor and frontal regions of the cerebral cortex, respectively. These distinct dentato-cortical networks have been delineated in the non-human primate and human brain. Importantly, cerebellar regions prone to atrophy in AD are functionally connected to atrophied regions of the cerebral cortex, suggesting that dysfunction perhaps occurs at a network level. Investigating functional connectivity (FC) alterations of the DN is a crucial step in understanding the cerebellum in AD and in mild cognitive impairment (MCI). Inclusion of this latter group stands to provide insights into cerebellar contributions prior to diagnosis of AD. The present study investigated FC differences in dorsal (dDN) and ventral (vDN) DN networks in MCI and AD relative to cognitively normal participants (CN) and relationships between FC and behavior. Our results showed patterns indicating both higher and lower functional connectivity in both dDN and vDN in AD compared to CN. However, connectivity in the AD group was lower when compared to MCI. We argue that these findings suggest that the patterns of higher FC in AD may act as a compensatory mechanism. Additionally, we found associations between the individual networks and behavior. There were significant interactions between dDN connectivity and motor symptoms. However, both DN seeds were associated with cognitive task performance. Together, these results indicate that cerebellar DN networks are impacted in AD, and this may impact behavior. In concert with the growing body of literature implicating the cerebellum in AD, our work further underscores the importance of investigations of this region. We speculate that much like in psychiatric diseases such as schizophrenia, cerebellar dysfunction results in negative impacts on thought and the organization therein. Further, this is consistent with recent arguments that the cerebellum provides crucial scaffolding for cognitive function in aging. Together, our findings stand to inform future clinical work in the diagnosis and understanding of this disease.
Collapse
Affiliation(s)
- Ivan A. Herrejon
- Department of Psychological and Brain Sciences Texas A&M University
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences Texas A&M University
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences Texas A&M University
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences Texas A&M University
- Texas A&M Institute for Neuroscience Texas A&M University
| | | |
Collapse
|
8
|
Lee Y, Jung J, Kim H, Lee S. Comparison of the Influence of Dual-Task Activities on Prefrontal Activation and Gait Variables in Older Adults with Mild Cognitive Impairment during Straight and Curved Walking. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:235. [PMID: 38399523 PMCID: PMC10890268 DOI: 10.3390/medicina60020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Mild cognitive impairment (MCI) is an early stage of dementia in which everyday tasks can be maintained; however, notable challenges may occur in memory, focus, and problem-solving skills. Therefore, motor-cognitive dual-task training is warranted to prevent cognitive decline and improve cognition in aging populations. This study aimed to determine the influence of such dual-task activities during straight and curved walking on the activities of the prefrontal cortex and associated gait variables in older adults with MCI. Materials and Methods: Twenty-seven older adults aged ≥65 years and identified as having MCI based on their scores (18-23) on the Korean Mini-Mental State Examination were enrolled. The participants performed four task scenarios in random order: walking straight, walking straight with a cognitive task, walking curved, and walking curved with a cognitive task. The activation of the prefrontal cortex, which is manifested by a change in the level of oxyhemoglobin, was measured using functional near-infrared spectroscopy. The gait speed and step count were recorded during the task performance. Results: Significant differences were observed in prefrontal cortex activation and gait variables (p < 0.05). Specifically, a substantial increase was observed in prefrontal cortex activation during a dual task compared with that during a resting-state (p < 0.013). Additionally, significant variations were noted in the gait speed and step count (p < 0.05). Conclusions: This study directly demonstrates the impact of motor-cognitive dual-task training on prefrontal cortex activation in older adults with MCI, suggesting the importance of including such interventions in enhancing cognitive function.
Collapse
Affiliation(s)
- Yumin Lee
- Department of Physical Therapy, Graduate School, Sahmyook University, 815 Hwarang-ro, Seoul 01795, Republic of Korea;
| | - Jihye Jung
- Institute of SMART Rehabilitation, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea;
| | - Hyunjoong Kim
- Neuromusculoskeletal Science Laboratory, 15 Gangnam-daero 84-gil, Seoul 06232, Republic of Korea;
| | - Seungwon Lee
- Institute of SMART Rehabilitation, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea;
- Department of Physical Therapy, Sahmyook University, 815 Hwarang-ro, Seoul 01795, Republic of Korea
| |
Collapse
|
9
|
Ma D, Izzetoglu M, Holtzer R, Jiao X. Deep Learning Based Walking Tasks Classification in Older Adults Using fNIRS. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3437-3447. [PMID: 37594868 PMCID: PMC11044905 DOI: 10.1109/tnsre.2023.3306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Decline in gait features is common in older adults and an indicator of increased risk of disability, morbidity, and mortality. Under dual task walking (DTW) conditions, further degradation in the performance of both the gait and the secondary cognitive task were found in older adults which were significantly correlated to falls history. Cortical control of gait, specifically in the pre-frontal cortex (PFC) as measured by functional near infrared spectroscopy (fNIRS), during DTW in older adults has recently been studied. However, the automatic classification of differences in cognitive activations under single and dual task gait conditions has not been extensively studied yet. In this paper, by considering single task walking (STW) as a lower attentional walking state and DTW as a higher attentional walking state, we aimed to formulate this as an automatic detection of low and high attentional walking states and leverage deep learning methods to perform their classification. We conduct analysis on the data samples which reveals the characteristics on the difference between HbO2 and Hb values that are subsequently used as additional features. We perform feature engineering to formulate the fNIRS features as a 3-channel image and apply various image processing techniques for data augmentation to enhance the performance of deep learning models. Experimental results show that pre-trained deep learning models that are fine-tuned using the collected fNIRS dataset together with gender and cognitive status information can achieve around 81% classification accuracy which is about 10% higher than the traditional machine learning algorithms. We present additional sensitivity metrics such as confusion matrix, precision and F1 score, as well as accuracy on two-way classification between condition pairings. We further performed an extensive ablation study to evaluate factors such as the voxel locations, channels of input images, zero-paddings and pre-training of deep learning model on their contribution or impact to the classification task. Results showed that using pre-trained model, all the voxel locations, and HbO2 - Hb as the third channel of the input image can achieve the best classification accuracy.
Collapse
|
10
|
Lapanan K, Kantha P, Nantachai G, Hemrungrojn S, Maes M. The prefrontal cortex hemodynamic responses to dual-task paradigms in older adults: A systematic review and meta-analysis. Heliyon 2023; 9:e17812. [PMID: 37519646 PMCID: PMC10372207 DOI: 10.1016/j.heliyon.2023.e17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Functional near-infrared spectroscopy (fNIRS) is a method to measure cerebral hemodynamics. Determining the changes in prefrontal cortex (PFC) hemodynamics during dual-task paradigms is essential in explaining alterations in physical activities, especially in older adults. Aims To systematically review and meta-analyze the effects of dual-task paradigms on PFC hemodynamics in older adults. Methods The search was conducted in PubMed, Scopus, and Web of Science from inception until March 2023 to identify studies on the effects of dual-task paradigms on PFC hemodynamics. The meta-analysis included variables of cerebral hemodynamics, such as oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR). The heterogeneity of the included studies was determined using the I2 statistic. Additionally, subgroup analysis was conducted to compare the effects of different types of cognitive tasks. Results A total of 37 studies were included in the systematic review, 25 studies comprising 2224 older adults were included in the meta-analysis. Our findings showed that inhibitory control and working memory tasks significantly increased HbO2 in the PFC by 0.53 (p < 0.01, 95% CI = 0.37 to 0.70) and 0.13 (p < 0.01, 95% CI = 0.08 to 0.18) μmol/L, respectively. Overall, HbO2 was significantly increased during dual-task paradigms by 0.36 μmol/L (P < 0.01, 95% CI = 0.27 to 0.45). Moreover, dual-task paradigms also decreased HbR in the PFC by 0.04 (P < 0.01, 95% CI = -0.07 to -0.01). Specifically, HbR decreased by 0.08 during inhibitory control tasks (p < 0.01, 95% CI = -0.13 to -0.02), but did not change during working memory tasks. Conclusion Cognitive tasks related to inhibitory control required greater cognitive demands, indicating higher pfc activation during dual-task paradigms in older adults. for clinical implications, the increase in pfc oxygenated hemoglobin and decrease in pfc deoxygenated hemoglobin may help explain why older adults are more likely to fall during daily activities.
Collapse
Affiliation(s)
- Kulvara Lapanan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phunsuk Kantha
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Somdet Phra Sangharaj Nyanasamvara Geriatric Hospital, Department of Medical Services, Ministry of Public Health, Chon Buri Province, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
11
|
Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. PSYCHORADIOLOGY 2023; 3:kkad009. [PMID: 38666112 PMCID: PMC11003434 DOI: 10.1093/psyrad/kkad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 04/28/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological changes in AD patients occur up to 10-20 years before the emergence of clinical symptoms. Specific diagnosis and appropriate intervention strategies are crucial during the phase of mild cognitive impairment (MCI) and AD. The detection of biomarkers has emerged as a promising tool for tracking the efficacy of potential therapies, making an early disease diagnosis, and prejudging treatment prognosis. Specifically, multiple neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission tomography, optical imaging, and single photon emission-computed tomography, have provided a few potential biomarkers for clinical application. The MRI modalities described in this review include structural MRI, functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, and arterial spin labelling. These techniques allow the detection of presymptomatic diagnostic biomarkers in the brains of cognitively normal elderly people and might also be used to monitor AD disease progression after the onset of clinical symptoms. This review highlights potential biomarkers, merits, and demerits of different neuroimaging modalities and their clinical value in MCI and AD patients. Further studies are necessary to explore more biomarkers and overcome the limitations of multiple neuroimaging modalities for inclusion in diagnostic criteria for AD.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanchao Wang
- Department of Neurology, Chifeng University of Affiliated Hospital, Chifeng 024000, China
| | - Qian Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu 610000, China
| |
Collapse
|
12
|
Weng WH, Yang YR, Yeh NC, Ku PH, Wang PS, Liao YY, Wang RY. Gait performance and prefrontal cortex activation during single and dual task walking in older adults with different cognitive levels. Front Aging Neurosci 2023; 15:1177082. [PMID: 37333460 PMCID: PMC10272571 DOI: 10.3389/fnagi.2023.1177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Growing evidence shows the cognitive function influences the motor performance. The prefrontal cortex (PFC) as a part of the executive locomotor pathway is also important for cognitive function. This study investigated the differences in motor function and brain activity among older adults with different cognitive levels, and examined the significance of cognition on motor functions. Methods Normal control (NC), individuals with mild cognitive impairment (MCI) or mild dementia (MD) were enrolled in this study. All participants received a comprehensive assessment including cognitive function, motor function, PFC activity during walking, and fear of fall. The assessment of cognitive function included general cognition, attention, executive function, memory, and visuo-spatial. The assessment of motor function included timed up and go (TUG) test, single walking (SW), and cognitive dual task walking (CDW). Results Individuals with MD had worse SW, CDW and TUG performance as compared to individuals with MCI and NC. These gait and balance performance did not differ significantly between MCI and NC. Motor functions all correlated with general cognition, attention, executive function, memory, and visuo-spatial ability. Attention ability measured by trail making test A (TMT-A) was the best predictor for TUG and gait velocity. There were no significant differences in PFC activity among three groups. Nevertheless, the PFC activated more during CDW as compared with SW in individuals with MCI (p = 0.000), which was not demonstrated in the other two groups. Conclusion MD demonstrated worse motor function as compared to NC and MCI. The greater PFC activity during CDW in MCI may be considered as a compensatory strategy for maintaining the gait performance. Motor function was related to the cognitive function, and the TMT A was the best predictor for the gait related performance in present study among older adults.
Collapse
Affiliation(s)
- Wei-Han Weng
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Chen Yeh
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Hsin Ku
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Shan Wang
- Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Wu Y, Dong Y, Tang Y, Wang W, Bo Y, Zhang C. Relationship between motor performance and cortical activity of older neurological disorder patients with dyskinesia using fNIRS: A systematic review. Front Physiol 2023; 14:1153469. [PMID: 37051020 PMCID: PMC10083370 DOI: 10.3389/fphys.2023.1153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Neurological disorders with dyskinesia would seriously affect older people’s daily activities, which is not only associated with the degeneration or injury of the musculoskeletal or the nervous system but also associated with complex linkage between them. This study aims to review the relationship between motor performance and cortical activity of typical older neurological disorder patients with dyskinesia during walking and balance tasks.Methods: Scopus, PubMed, and Web of Science databases were searched. Articles that described gait or balance performance and cortical activity of older Parkinson’s disease (PD), multiple sclerosis, and stroke patients using functional near-infrared spectroscopy were screened by the reviewers. A total of 23 full-text articles were included for review, following an initial yield of 377 studies.Results: Participants were mostly PD patients, the prefrontal cortex was the favorite region of interest, and walking was the most popular test motor task, interventional studies were four. Seven studies used statistical methods to interpret the relationship between motor performance and cortical activation. The motor performance and cortical activation were simultaneously affected under difficult walking and balance task conditions. The concurrent changes of motor performance and cortical activation in reviewed studies contained the same direction change and different direction change.Conclusion: Most of the reviewed studies reported poor motor performance and increased cortical activation of PD, stroke and multiple sclerosis older patients. The external motor performance such as step speed were analyzed only. The design and results were not comprehensive and profound. More than 5 weeks walking training or physiotherapy can contribute to motor function promotion as well as cortices activation of PD and stroke patients. Thus, further study is needed for more statistical analysis on the relationship between motor performance and activation of the motor-related cortex. More different type and program sports training intervention studies are needed to perform.
Collapse
Affiliation(s)
- Yunzhi Wu
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yuqi Dong
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yunqi Tang
- College of Art and Design, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Weiran Wang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yulong Bo
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Cui Zhang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
- Laboratory of Sports Biomechanics, Shandong Institute of Sport Science, Jinan, Shandong, China
- *Correspondence: Cui Zhang,
| |
Collapse
|
14
|
Talamonti D, Gagnon C, Vincent T, Nigam A, Lesage F, Bherer L, Fraser S. Exploring cognitive and brain oxygenation changes over a 1-year period in physically active individuals with mild cognitive impairment: a longitudinal fNIRS pilot study. BMC Geriatr 2022; 22:648. [PMID: 35941561 PMCID: PMC9361664 DOI: 10.1186/s12877-022-03306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging is associated with an increased likelihood of developing dementia, but a growing body of evidence suggests that certain modifiable risk factors may help prevent or delay dementia onset. Among these, physical activity (PA) has been linked to better cognitive performance and brain functions in healthy older adults and may contribute to preventing dementia. The current pilot study investigated changes in behavioral and brain activation patterns over a 1-year period in individuals with mild cognitive impairment (MCI) and healthy controls taking part in regular PA. METHODS Frontal cortical response during a dual-task walking paradigm was investigated at baseline, at 6 months (T6), and at 12 months (T12) by means of a portable functional Near-Infrared Spectroscopy (fNIRS) system. The dual-task paradigm included a single cognitive task (2-back), a single motor task (walking), and a dual-task condition (2-back whilst walking). RESULTS Both groups showed progressive improvement in cognitive performance at follow-up visits compared to baseline. Gait speed remained stable throughout the duration of the study in the control group and increased at T6 for those with MCI. A significant decrease in cortical activity was observed in both groups during the cognitive component of the dual-task at follow-up visits compared to baseline, with MCI individuals showing the greatest improvement. CONCLUSIONS The observations of this pilot study suggest that taking part in regular PA may be especially beneficial for both cognitive performance and brain functions in older adulthood and, especially, in individuals with MCI. Our findings may serve as preliminary evidence for the use of PA as a potential intervention to prevent cognitive decline in individuals at greater risk of dementia.
Collapse
Affiliation(s)
- Deborah Talamonti
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Christine Gagnon
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Thomas Vincent
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Anil Nigam
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Frederic Lesage
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada.,École Polytechnique de Montréal, Montreal, QC, Canada
| | - Louis Bherer
- Research center and EPIC Center, Montreal Heart Institute, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada.,Centre de recherche, Institute universitaire de gériatrie de Montréal, Montreal, QC, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Koppelmans V, Silvester B, Duff K. Neural Mechanisms of Motor Dysfunction in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis Rep 2022; 6:307-344. [PMID: 35891638 PMCID: PMC9277676 DOI: 10.3233/adr-210065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Despite the prevalence of motor symptoms in mild cognitive impairment (MCI) and Alzheimer’s disease (AD), their underlying neural mechanisms have not been thoroughly studied. Objective: This review summarizes the neural underpinnings of motor deficits in MCI and AD. Methods: We searched PubMed up until August of 2021 and identified 37 articles on neuroimaging of motor function in MCI and AD. Study bias was evaluated based on sample size, availability of control samples, and definition of the study population in terms of diagnosis. Results: The majority of studies investigated gait, showing that slower gait was associated with smaller hippocampal volume and prefrontal deactivation. Less prefrontal activation was also observed during cognitive-motor dual tasking, while more activation in cerebellar, cingulate, cuneal, somatosensory, and fusiform brain regions was observed when performing a hand squeezing task. Excessive subcortical white matter lesions in AD were associated with more signs of parkinsonism, poorer performance during a cognitive and motor dual task, and poorer functional mobility. Gait and cognitive dual-tasking was furthermore associated with cortical thickness of temporal lobe regions. Most non-gait motor measures were only reported in one study in relation to neural measures. Conclusion: Cross-sectional designs, lack of control groups, mixing amnestic- and non-amnestic MCI, disregard of sex differences, and small sample sizes limited the interpretation of several studies, which needs to be addressed in future research to progress the field.
Collapse
Affiliation(s)
- Vincent Koppelmans
- Department of Psychiatry, University of Utah, SaltLake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Silvester
- Department of Psychiatry, University of Utah, SaltLake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Kevin Duff
- Department of Neurology, University of Utah, SaltLake City, UT, USA
| |
Collapse
|
16
|
Wang Z, Ren K, Li D, Lv Z, Li X, He X, Wang D, Jiang W. Assessment of Brain Function in Patients With Cognitive Impairment Based on fNIRS and Gait Analysis. Front Aging Neurosci 2022; 14:799732. [PMID: 35686022 PMCID: PMC9170988 DOI: 10.3389/fnagi.2022.799732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Early detection of mild cognitive impairment is crucial in the prevention of Alzheimer’s disease (AD). This study aims to explore the changes in gait and brain co-functional connectivity between cognitively healthy and cognitively impaired groups under dual-task walking through the functional near-infrared spectroscopy (fNIRS) and gait analysis devices. Method This study used fNIRS device and gait analysis devices to collect the data of 54 older adults. According to the Mini-mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) scales, the older adults were cognitively healthy (control group) and cognitively impaired (experimental group), of which 38 were in the control group and 16 were in the experimental group. The experiment was divided into a total of three sets of task experiments: a walking-only experiment, a dual-task walking-easy (DTW-easy) experiment, and a dual-task walking-difficult (DTW-difficult) experiment. Main Result For the cognitively impaired and cognitively healthy populations, there were no significant differences in overall functional connectivity, region of interest (ROI) connection strength, and gait performance during single-task walking between the two groups.Whereas the performances of DTW differed significantly from the single-task walking in terms of between-group variability of functional connectivity strength change values, and ROI connection strength change values in relation to the dual-task cost of gait. Finally, the cognitively impaired group was significantly more affected by DTW-difficult tasks than the cognitively healthy group. Conclusion This study provides a new approach to assist in the diagnosis of people with cognitive impairment and provides a new research pathway for the identification of cognitive impairment.
Collapse
Affiliation(s)
- Zehua Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ke Ren
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zeping Lv
- National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | | | - Daifa Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Daifa Wang Wenyu Jiang
| | - Wenyu Jiang
- Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Daifa Wang Wenyu Jiang
| |
Collapse
|
17
|
Kuo HT, Yeh NC, Yang YR, Hsu WC, Liao YY, Wang RY. Effects of different dual task training on dual task walking and responding brain activation in older adults with mild cognitive impairment. Sci Rep 2022; 12:8490. [PMID: 35589771 PMCID: PMC9120469 DOI: 10.1038/s41598-022-11489-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
The concurrent additional tasking impacts the walking performance, and such impact is even greater in individuals with mild cognitive impairment (MCI) than in healthy elders. However, effective training program to improve dual task walking ability for the people with MCI is not immediately provided. Therefore, this study aimed to determine the effects of cognitive and motor dual task walking training on dual task walking performance and the responding brain changes in older people with MCI. Thirty older adults with MCI were randomly allocated to receive 24 sessions of 45-min cognitive dual task training (CDTT, n = 9), motor dual task training (MDTT, n = 11), or conventional physical therapy (CPT, n = 10). Gait performance and brain activation during single and dual task walking, and cognitive function assessed by trail-making test (TMT-A, B) and digit span test were measured at pre-, post-test, and 1-month follow-up. Both CDTT and MDTT improved dual task walking with responding activation changes in specific brain areas. The improvements in motor dual task walking performance after both dual task trainings were significantly better than after CPT in the older adults with MCI. Both cognitive and motor dual task training were feasible and beneficial to improve dual task walking ability in older adults with MCI. Trial Registration: The trial was registered to Thai Clinical Trial Registry and the registration number is TCTR20180510002 (first registration date: 10/05/2018).
Collapse
Affiliation(s)
- Hsiang-Tsen Kuo
- Department of Physical Medicine and Rehabilitation, Taipei Chang Gung Memorial Hospital, No. 199, Tung-Hwa North Rd., Taipei, 105, Taiwan
| | - Nai-Chen Yeh
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Wen-Chi Hsu
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal United Hospital, No. 976, Jhonghua 1st Rd., Gushan Dist., Kaohsiung, 804, Taiwan
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, No. 365, Ming-Te Rd., Peitou Dist., Taipei, 112, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
18
|
Ren Y, Cui G, Zhang X, Feng K, Yu C, Liu P. The promising fNIRS: Uncovering the function of prefrontal working memory networks based on multi-cognitive tasks. Front Psychiatry 2022; 13:985076. [PMID: 36386968 PMCID: PMC9640951 DOI: 10.3389/fpsyt.2022.985076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The diversity of cognitive task paradigms using functional near-infrared spectroscopy (fNIRS) and the lack of theoretical explanations for these functional imaging atlases have greatly hindered the application of fNIRS in psychiatry. The fNIRS brain imaging based on multiple cognitive tasks could generally reflect the working patterns and neurovascular coupling changes in the prefrontal working memory network. By alternating the stimulation patterns of resting and task states, six typical symptom-related functional brain imaging waveforms related to psychiatric disorders are identified and three joint networks of the prefrontal working memory, namely, the attentional working memory primary coordination network, the perceptual content working memory secondary network, and the emotional-behavioral working memory executive network, are initially represented. This is the first attempt to characterize the cognitive, emotional, and behavioral regulation of the prefrontal working memory network using fNIRS, which may promote the application of fNIRS in clinical settings.
Collapse
Affiliation(s)
- Yufei Ren
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Gang Cui
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Xiaoqian Zhang
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | - Kun Feng
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | | | - Pozi Liu
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China.,School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Liao YY, Liu MN, Wang HC, Walsh V, Lau CI. Combining Transcranial Direct Current Stimulation With Tai Chi to Improve Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Front Aging Neurosci 2021; 13:766649. [PMID: 34966268 PMCID: PMC8710779 DOI: 10.3389/fnagi.2021.766649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Engaging in a secondary task while walking increases motor-cognitive interference and exacerbates fall risk in older adults with mild cognitive impairment (MCI). Previous studies have demonstrated that Tai Chi (TC) may improve cognitive function and dual-task gait performance. Intriguingly, with emerging studies also indicating the potential of transcranial direct current stimulation (tDCS) in enhancing such motor-cognitive performance, whether combining tDCS with TC might be superior to TC alone is still unclear. The purpose of this study was to investigate the effects of combining tDCS with TC on dual-task gait in patients with MCI. Materials and Methods: Twenty patients with MCI were randomly assigned to receive either anodal or sham tDCS, both combined with TC, for 36 sessions over 12 weeks. Subjects received 40 min of TC training in each session. During the first 20 min, they simultaneously received either anodal or sham tDCS over the left dorsolateral prefrontal cortex. Outcome measures included dual-task gait performance and other cognitive functions. Results: There were significant interaction effects between groups on the cognitive dual task walking. Compared to sham, the anodal tDCS group demonstrated a greater improvement on cadence and dual task cost of speed. Conclusion: Combining tDCS with TC may offer additional benefits over TC alone in enhancing dual-task gait performance in patients with MCI. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [TCTR20201201007].
Collapse
Affiliation(s)
- Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Han-Cheng Wang
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Chi Ieong Lau
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Neurology, University Hospital, Taipai, Macao SAR, China
| |
Collapse
|
20
|
Zhong Q, Ali N, Gao Y, Wu H, Wu X, Sun C, Ma J, Thabane L, Xiao M, Zhou Q, Shen Y, Wang T, Zhu Y. Gait Kinematic and Kinetic Characteristics of Older Adults With Mild Cognitive Impairment and Subjective Cognitive Decline: A Cross-Sectional Study. Front Aging Neurosci 2021; 13:664558. [PMID: 34413762 PMCID: PMC8368728 DOI: 10.3389/fnagi.2021.664558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background Older adults with mild cognitive impairment (MCI) have slower gait speed and poor gait performance under dual-task conditions. However, gait kinematic and kinetic characteristics in older adults with MCI or subjective cognitive decline (SCD) remain unknown. This study was designed to explore the difference in gait kinematics and kinetics during level walking among older people with MCI, SCD, and normal cognition (NC). Methods This cross-sectional study recruited 181 participants from July to December 2019; only 82 met the inclusion criteria and consented to participate and only 79 completed gait analysis. Kinematic and kinetic data were obtained using three-dimensional motion capture system during level walking, and joint movements of the lower limbs in the sagittal plane were analyzed by Visual 3D software. Differences in gait kinematics and kinetics among the groups were analyzed using multivariate analysis of covariance (MANCOVA) with Bonferroni post-hoc analysis. After adjusting for multiple comparisons, the significance level was p < 0.002 for MANCOVA and p < 0.0008 for post-hoc analysis. Results Twenty-two participants were MCI [mean ± standard deviation (SD) age, 71.23 ± 6.65 years], 33 were SCD (age, 72.73 ± 5.25 years), and 24 were NC (age, 71.96 ± 5.30 years). MANCOVA adjusted for age, gender, body mass index (BMI), gait speed, years of education, diabetes mellitus, and Geriatric Depression Scale (GDS) revealed a significant multivariate effect of group in knee peak extension angle (F = 8.77, p < 0.0001) and knee heel strike angle (F = 8.07, p = 0.001) on the right side. Post-hoc comparisons with Bonferroni correction showed a significant increase of 5.91° in knee peak extension angle (p < 0.0001) and a noticeable decrease of 6.21°in knee heel strike angle (p = 0.001) in MCI compared with NC on the right side. However, no significant intergroup difference was found in gait kinetics, including dorsiflexion, plantar flexion, knee flexion, knee extension, hip flexion, and hip extension(p > 0.002). Conclusion An increase of right knee peak extension angle and a decrease of right knee heel strike angle during level walking were found among older adults with MCI compared to those with NC.
Collapse
Affiliation(s)
- Qian Zhong
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Nawab Ali
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Swat Institute of Rehabilitation & Medical Sciences, Swat, Pakistan
| | - Yaxin Gao
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Han Wu
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xixi Wu
- Zhongshan Rehabilitation Branch, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiyun Sun
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Biostatistics Unit, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiumin Zhou
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Szturm T, Kolesar TA, Mahana B, Goertzen AL, Hobson DE, Marotta JJ, Strafella AP, Ko JH. Changes in Metabolic Activity and Gait Function by Dual-Task Cognitive Game-Based Treadmill System in Parkinson's Disease: Protocol of a Randomized Controlled Trial. Front Aging Neurosci 2021; 13:680270. [PMID: 34149399 PMCID: PMC8211751 DOI: 10.3389/fnagi.2021.680270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Balance and gait impairments, and consequently, mobility restrictions and falls are common in Parkinson’s disease (PD). Various cognitive deficits are also common in PD and are associated with increased fall risk. These mobility and cognitive deficits are limiting factors in a person’s health, ability to perform activities of daily living, and overall quality of life. Community ambulation involves many dual-task (DT) conditions that require processing of several cognitive tasks while managing or reacting to sudden or unexpected balance challenges. DT training programs that can simultaneously target balance, gait, visuomotor, and cognitive functions are important to consider in rehabilitation and promotion of healthy active lives. In the proposed multi-center, randomized controlled trial (RCT), novel behavioral positron emission tomography (PET) brain imaging methods are used to evaluate the molecular basis and neural underpinnings of: (a) the decline of mobility function in PD, specifically, balance, gait, visuomotor, and cognitive function, and (b) the effects of an engaging, game-based DT treadmill walking program on mobility and cognitive functions. Both the interactive cognitive game tasks and treadmill walking require continuous visual attention, and share spatial processing functions, notably to minimize any balance disturbance or gait deviation/stumble. The ability to “walk and talk” normally includes activation of specific regions of the prefrontal cortex (PFC) and the basal ganglia (site of degeneration in PD). The PET imaging analysis and comparison with healthy age-matched controls will allow us to identify areas of abnormal, reduced activity levels, as well as areas of excessive activity (increased attentional resources) during DT-walking. We will then be able to identify areas of brain plasticity associated with improvements in mobility functions (balance, gait, and cognition) after intervention. We expect the gait-cognitive training effect to involve re-organization of PFC activity among other, yet to be identified brain regions. The DT mobility-training platform and behavioral PET brain imaging methods are directly applicable to other diseases that affect gait and cognition, e.g., cognitive vascular impairment, Alzheimer’s disease, as well as in aging.
Collapse
Affiliation(s)
- Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tiffany A Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew L Goertzen
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Douglas E Hobson
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit, E. J. Safra Parkinson Disease Program, Neurology Division/Department of Medicine, Toronto Western Hospital, Krembil Brain Institute, University Health Network (UHN), Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, ON, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Csipo T, Lipecz A, Mukli P, Bahadli D, Abdulhussein O, Owens CD, Tarantini S, Hand RA, Yabluchanska V, Kellawan JM, Sorond F, James JA, Csiszar A, Ungvari ZI, Yabluchanskiy A. Increased cognitive workload evokes greater neurovascular coupling responses in healthy young adults. PLoS One 2021; 16:e0250043. [PMID: 34010279 PMCID: PMC8133445 DOI: 10.1371/journal.pone.0250043] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding how the brain allocates resources to match the demands of active neurons under physiological conditions is critically important. Increased metabolic demands of active brain regions are matched with hemodynamic responses known as neurovascular coupling (NVC). Several methods that allow noninvasive assessment of brain activity in humans detect NVC and early detection of NVC impairment may serve as an early marker of cognitive impairment. Therefore, non-invasive NVC assessments may serve as a valuable tool to detect early signs of cognitive impairment and dementia. Working memory tasks are routinely employed in the evaluation of cognitive task-evoked NVC responses. However, recent attempts that utilized functional near-infrared spectroscopy (fNIRS) or transcranial Doppler sonography (TCD) while using a similar working memory paradigm did not provide convincing evidence for the correlation of the hemodynamic variables measured by these two methods. In the current study, we aimed to compare fNIRS and TCD in their performance of differentiating NVC responses evoked by different levels of working memory workload during the same working memory task used as cognitive stimulation. Fourteen healthy young individuals were recruited for this study and performed an n-back cognitive test during TCD and fNIRS monitoring. During TCD monitoring, the middle cerebral artery (MCA) flow was bilaterally increased during the task associated with greater cognitive effort. fNIRS also detected significantly increased activation during a more challenging task in the left dorsolateral prefrontal cortex (DLPFC), and in addition, widespread activation of the medial prefrontal cortex (mPFC) was also revealed. Robust changes in prefrontal cortex hemodynamics may explain the profound change in MCA blood flow during the same cognitive task. Overall, our data support our hypothesis that both TCD and fNIRS methods can discriminate NVC evoked by higher demand tasks compared to baseline or lower demand tasks.
Collapse
Affiliation(s)
- Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Dhay Bahadli
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Osamah Abdulhussein
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Cameron D. Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Rachel A. Hand
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Valeriya Yabluchanska
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Bon Secours St. Francis Family Medicine Center, Midlothian, Virginia, United States of America
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Farzaneh Sorond
- Division of Stroke and Neurocritical, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Judith A. James
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Section of Geriatrics, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
23
|
Bishnoi A, Holtzer R, Hernandez ME. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sci 2021; 11:291. [PMID: 33652706 PMCID: PMC7996848 DOI: 10.3390/brainsci11030291] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Functional near-infrared spectroscopy (fNIRS) provides a useful tool for monitoring brain activation changes while walking in adults with neurological disorders. When combined with dual task walking paradigms, fNIRS allows for changes in brain activation to be monitored when individuals concurrently attend to multiple tasks. However, differences in dual task paradigms, baseline, and coverage of cortical areas, presents uncertainty in the interpretation of the overarching findings. (2) Methods: By conducting a systematic review of 35 studies and meta-analysis of 75 effect sizes from 17 studies on adults with or without neurological disorders, we show that the performance of obstacle walking, serial subtraction and letter generation tasks while walking result in significant increases in brain activation in the prefrontal cortex relative to standing or walking baselines. (3) Results: Overall, we find that letter generation tasks have the largest brain activation effect sizes relative to walking, and that significant differences between dual task and single task gait are seen in persons with multiple sclerosis and stroke. (4) Conclusions: Older adults with neurological disease generally showed increased brain activation suggesting use of more attentional resources during dual task walking, which could lead to increased fall risk and mobility impairments. PROSPERO ID: 235228.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461, USA;
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manuel E. Hernandez
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
24
|
Szturm T, Beheshti I, Mahana B, Hobson DE, Goertzen A, Ko JH. Imaging Cerebral Glucose Metabolism during Dual-Task Walking in Patients with Parkinson's disease. J Neuroimaging 2020; 31:356-362. [PMID: 33289947 DOI: 10.1111/jon.12812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Gait impairment is a hallmark of Parkinson's disease (PD). Natural walking involves more cognitive demand than treadmill walking or in-laboratory walking tests because patients have to actively work on navigation and top-down cognitive control which taxes cognitive reserve in the prefrontal cortex. To mimic the prefrontal engagement occurring with natural walking in a controlled and safe environment, dual-task (DT) treadmill walking has been developed. In this study, we tested the feasibility of imaging DT walking-related changes in brain glucose metabolism in patients with PD. METHODS Fifteen patients with PD were scanned with fluorodeoxyglucose (FDG) positron emission tomography. Five patients performed DT walking, and 10 patients were rested during the FDG uptake period. First, the images were contrasted between the groups. Second, the walking-related brain glucose metabolism was inspected at the individual level. RESULTS Consistently increased glucose metabolism was identified in DT walking versus rest in the primary visual/sensorimotor areas, thalamus, superior colliculus, and cerebellum. In individual level analysis, patients with less progressed disease (n = 3) showed prefrontal activity during DT walking while patients with more progressed disease (n = 2) did not. CONCLUSION This study confirms the feasibility of imaging glucose metabolism during DT walking in patients with PD. We also report that during DT walking, there is a lesser degree of prefrontal engagement in the patients with more progressed disease compared to those with less progressed disease, implying increased degrees of frontal dysfunction with PD progression.
Collapse
Affiliation(s)
- Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, Manitoba, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Douglas E Hobson
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Goertzen
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ji Hyun Ko
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|