1
|
Calixto C, Soldatelli MD, Li B, Pierotich L, Gholipour A, Warfield SK, Karimi D. White matter tract crossing and bottleneck regions in the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603804. [PMID: 39091823 PMCID: PMC11291018 DOI: 10.1101/2024.07.20.603804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been extensively researched for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 59 fetal brain scans and extracted a set of 51 distinct white tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75-80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. The results of this study highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matheus D Soldatelli
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Li
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lana Pierotich
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
3
|
Maurer JM, Paul S, Edwards BG, Anderson NE, Nyalakanti PK, Harenski CL, Decety J, Kiehl KA. Reduced structural integrity of the uncinate fasciculus in incarcerated women scoring high on psychopathy. Brain Imaging Behav 2022; 16:2141-2149. [PMID: 35882762 PMCID: PMC11423388 DOI: 10.1007/s11682-022-00684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/01/2022]
Abstract
Both men and women scoring high on psychopathy exhibit similar structural and functional neural abnormalities, including reduced volume of the orbitofrontal cortex (OFC) and reduced hemodynamic activity in the amygdala during affective processing experimental paradigms. The uncinate fasciculus (UF) is a white matter (WM) tract that connects the amygdala to the OFC. Reduced structural integrity of the UF, measured via fractional anisotropy (FA), is commonly associated with men scoring high on psychopathy. However, only one study to date has investigated the relationship between psychopathic traits and UF structural integrity in women, recruiting participants from a community sample. Here, we investigated whether Hare Psychopathy Checklist-Revised (PCL-R) facet scores (measuring interpersonal, affective, lifestyle/behavioral, and antisocial psychopathic traits, respectively) were associated with reduced FA in the left and right UF in a sample of 254 incarcerated women characterized by a wide range of psychopathy scores. We observed that PCL-R Facet 3 scores, assessing lifestyle/behavioral psychopathic traits, were associated with reduced FA in the left and right UF, even when controlling for participant's age and history of previous substance use. The results obtained in the current study help improve our understanding of structural abnormalities associated with women scoring high on psychopathy. Specifically, reduced UF structural integrity may contribute to some of the deficits commonly associated with women scoring high on psychopathy, including emotion dysregulation.
Collapse
Affiliation(s)
- J Michael Maurer
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA.
| | - Subhadip Paul
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, West Bengal, India
- JIVAN- Centre for Research in Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, West Bengal, India
- Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), P.O.: Belur Math, Howrah, West Bengal, India
| | - Bethany G Edwards
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Carla L Harenski
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA
| | - Jean Decety
- Department of Psychology, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Kent A Kiehl
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Steinberg SN, Tedla NB, Hecht E, Robins DL, King TZ. White matter pathways associated with empathy in females: A DTI investigation. Brain Cogn 2022; 162:105902. [PMID: 36007350 DOI: 10.1016/j.bandc.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Empathy is a component of social cognition that allows us to understand, perceive, experience, and respond to the emotional state of others. In this study, we seek to build on previous research that suggests that sex and hormone levels may impact white matter microstructure. These white matter microstructural differences may influence social cognition. We examine the fractional anisotropy (FA) of white matter pathways associated with the complex human process of empathy in healthy young adult females during the self-reported luteal phase of their menstrual cycle. We used tract-based spatial statistics to perform statistical comparisons of FA and conducted multiple linear regression analysis to examine the strength of association between white matter FA and scores on the Empathy Quotient (EQ), a self-report questionnaire in which individuals report how much they agree or disagree with 60 statements pertaining to their empathic tendencies. Results identified a significant negative relationship between EQ scores and FA within five clusters of white matter: in the left forceps minor/body of the corpus callosum, left corticospinal tract, intraparietal sulcus/primary somatosensory cortex, superior longitudinal fasciculus, and right inferior fronto-occipital fasciculus/forceps minor. These consistent findings across clusters suggest that lower self-reported empathy is related to higher FA across healthy young females in specific white matter regions during the menstrual luteal phase. Future research should seek to examine if self-reported empathy varies across the menstrual cycle, using blood samples to confirm cycle phase and hormone levels.
Collapse
Affiliation(s)
| | - Neami B Tedla
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Erin Hecht
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Diana L Robins
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
5
|
Yeh CH, Tseng RY, Ni HC, Cocchi L, Chang JC, Hsu MY, Tu EN, Wu YY, Chou TL, Gau SSF, Lin HY. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities. Mol Autism 2022; 13:21. [PMID: 35585645 PMCID: PMC9118608 DOI: 10.1186/s13229-022-00499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (ASD-II-Only) or MV expression (ASD-MV). Methods Sixty-five participants with ASD (ASD-Whole; 16.6 ± 5.9 years; comprising 34 intellectually able youth, ASD-IA, and 31 intellectually impaired youth, ASD-II, including 24 ASD-II-Only plus 7 ASD-MV) and 38 demographic-matched typically developing controls (TDC; 17.3 ± 5.6 years) were scanned in accelerated diffusion-weighted MRI. Fixel-based analysis was undertaken to investigate the categorical differences in fiber density (FD), fiber cross section (FC), and a combined index (FDC), and brain symptom/cognition associations. Results ASD-Whole had reduced FD in the anterior and posterior corpus callosum and left cerebellum Crus I, and smaller FDC in right cerebellum Crus II, compared to TDC. ASD-IA, relative to TDC, had no significant discrepancies, while ASD-II showed almost identical alterations to those from ASD-Whole vs. TDC. ASD-II-Only had greater FD/FDC in the isthmus splenium of callosum than ASD-MV. Autistic severity negatively correlated with FC in right Crus I. Nonverbal full-scale IQ positively correlated with FC/FDC in cerebellum VI. FD/FDC of the right dorsolateral prefrontal cortex showed a diagnosis-by-executive function interaction. Limitations We could not preclude the potential effects of age and sex from the ASD cohort, although statistical tests suggested that these factors were not influential. Our results could be confounded by variable psychiatric comorbidities and psychotropic medication uses in our ASD participants recruited from outpatient clinics, which is nevertheless closer to a real-world presentation of ASD. The outcomes related to ASD-MV were considered preliminaries due to the small sample size within this subgroup. Finally, our study design did not include intellectual impairment-only participants without ASD to disentangle the mixture of autistic and intellectual symptoms. Conclusions ASD-associated white matter alterations appear driven by individuals with II and potentially further by MV. Results suggest that changes in the corpus callosum and cerebellum are key for psychopathology and cognition associated with ASD. Our work highlights an essential to include understudied subpopulations on the spectrum in research. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00499-1.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Rung-Yu Tseng
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - En-Nien Tu
- Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, and Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1025 Queen St W - 3314, Toronto, ON, M6J 1H4, Canada. .,Department of Psychiatry and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
High-Resolution Nerve Ultrasound Abnormalities in POEMS Syndrome-A Comparative Study. Diagnostics (Basel) 2021; 11:diagnostics11020264. [PMID: 33572067 PMCID: PMC7915164 DOI: 10.3390/diagnostics11020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: High-resolution nerve ultrasound (HRUS) has been proven to be a valuable tool in the diagnosis of immune-mediated neuropathies, such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, M-protein, skin changes) is an important differential diagnosis of CIDP. Until now, there have been no studies that could identify specific HRUS abnormalities in POEMS syndrome patients. Thus, the aim of this study was to assess possible changes and compare findings with CIDP patients. Methods: We retrospectively analyzed HRUS findings in three POEMS syndrome and ten CIDP patients by evaluating cross-sectional nerve area (CSA), echogenicity and additionally calculating ultrasound pattern scores (UPSA, UPSB, UPSC and UPSS) and homogeneity scores (HS). Results: CIDP patients showed greater CSA enlargement and higher UPSS (median 14 vs. 11), UPSA (median 11.5 vs. 8) and HS (median 5 vs. 3) compared with POEMS syndrome patients. However, every POEMS syndrome patient illustrated enlarged nerves exceeding reference values, which were not restricted to entrapment sites. In CIDP and POEMS syndrome, heterogeneous enlargement patterns could be identified, such as inhomogeneous, homogeneous and regional nerve enlargement. HRUS in CIDP patients visualized both increased and decreased echointensity, while POEMS syndrome patients pictured hypoechoic nerves with hyperechoic intraneural connective tissue. Discussion: This is the first study to demonstrate HRUS abnormalities in POEMS syndrome outside of common entrapment sites. Although nerve enlargement was more prominent in CIDP, POEMS syndrome patients revealed distinct echogenicity patterns, which might aid in its differentiation from CIDP. Future studies should consider HRUS and its possible role in determining diagnosis, prognosis and treatment response in POEMS syndrome.
Collapse
|
7
|
Mazur W, Urbańczyk-Zawadzka M, Banyś R, Obuchowicz R, Trystuła M, Krzyżak AT. Diffusion as a Natural Contrast in MR Imaging of Peripheral Artery Disease (PAD) Tissue Changes. A Case Study of the Clinical Application of DTI for a Patient with Chronic Calf Muscles Ischemia. Diagnostics (Basel) 2021; 11:diagnostics11010092. [PMID: 33429993 PMCID: PMC7827719 DOI: 10.3390/diagnostics11010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
This paper reports a first application of diffusion tensor imaging with corrections by using the B-matrix spatial distribution method (BSD-DTI) for peripheral artery disease (PAD) detected in the changes of diffusion tensor parameters (DTPs). A 76-year-old male was diagnosed as having PAD, since he demonstrated in angiographic images of lower legs severe arterial stenosis and the presence of lateral and peripheral circulation and assigned to the double-blind RCT using mesenchymal stem cells (MSCs) or placebo for the regenerative treatment of implications of ischemic diseases. In order to indicate changes in diffusivity in calf muscles in comparison to a healthy control, a DTI methodology was developed. The main advantage of the applied protocol was decreased scanning time, which was achieved by reducing b-value and number of scans (to 1), while maintaining minimal number of diffusion gradient directions and high resolution. This was possible due to calibration via the BSD method, which reduced systematic errors and allowed quantitative analysis. In the course of PAD, diffusivities were elevated across the calf muscles in posterior compartment and lost their anisotropy. Different character was noticed for anterior compartment, in which diffusivities along and across muscles were decreased without a significant loss of anisotropy. After the intervention involving a series of injections, the improvement of DTPs and tractography was visible, but can be assigned neither to MSCs nor placebo before unblinding.
Collapse
Affiliation(s)
- Weronika Mazur
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza Avenue 30, 30-059 Cracow, Poland;
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Avenue 30, 30-059 Cracow, Poland
| | - Małgorzata Urbańczyk-Zawadzka
- Department of Radiology and Diagnostic Imaging, John Paul II Hospital, Prądnicka Street 80, 31-202 Cracow, Poland; (M.U.-Z.); (R.B.)
| | - Robert Banyś
- Department of Radiology and Diagnostic Imaging, John Paul II Hospital, Prądnicka Street 80, 31-202 Cracow, Poland; (M.U.-Z.); (R.B.)
| | - Rafał Obuchowicz
- Department of Diagnostic Imaging, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Cracow, Poland;
| | - Mariusz Trystuła
- Department of Vascular Surgery with Endovascular Procedures Subdivision, John Paul II Hospital, Prądnicka Street 80, 31-202 Cracow, Poland;
| | - Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza Avenue 30, 30-059 Cracow, Poland;
- Correspondence:
| |
Collapse
|
8
|
Yuan K, Chen C, Wang X, Chu WCW, Tong RKY. BCI Training Effects on Chronic Stroke Correlate with Functional Reorganization in Motor-Related Regions: A Concurrent EEG and fMRI Study. Brain Sci 2021; 11:brainsci11010056. [PMID: 33418846 PMCID: PMC7824842 DOI: 10.3390/brainsci11010056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
Brain–computer interface (BCI)-guided robot-assisted training strategy has been increasingly applied to stroke rehabilitation, while few studies have investigated the neuroplasticity change and functional reorganization after intervention from multimodality neuroimaging perspective. The present study aims to investigate the hemodynamic and electrophysical changes induced by BCI training using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) respectively, as well as the relationship between the neurological changes and motor function improvement. Fourteen chronic stroke subjects received 20 sessions of BCI-guided robot hand training. Simultaneous EEG and fMRI data were acquired before and immediately after the intervention. Seed-based functional connectivity for resting-state fMRI data and effective connectivity analysis for EEG were processed to reveal the neuroplasticity changes and interaction between different brain regions. Moreover, the relationship among motor function improvement, hemodynamic changes, and electrophysical changes derived from the two neuroimaging modalities was also investigated. This work suggested that (a) significant motor function improvement could be obtained after BCI training therapy, (b) training effect significantly correlated with functional connectivity change between ipsilesional M1 (iM1) and contralesional Brodmann area 6 (including premotor area (cPMA) and supplementary motor area (SMA)) derived from fMRI, (c) training effect significantly correlated with information flow change from cPMA to iM1 and strongly correlated with information flow change from SMA to iM1 derived from EEG, and (d) consistency of fMRI and EEG results illustrated by the correlation between functional connectivity change and information flow change. Our study showed changes in the brain after the BCI training therapy from chronic stroke survivors and provided a better understanding of neural mechanisms, especially the interaction among motor-related brain regions during stroke recovery. Besides, our finding demonstrated the feasibility and consistency of combining multiple neuroimaging modalities to investigate the neuroplasticity change.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong; (K.Y.); (C.C.); (X.W.)
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong; (K.Y.); (C.C.); (X.W.)
| | - Xin Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong; (K.Y.); (C.C.); (X.W.)
| | - Winnie Chiu-wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong; (K.Y.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
9
|
Kierońska S, Świtońska M, Meder G, Piotrowska M, Sokal P. Tractography Alterations in the Arcuate and Uncinate Fasciculi in Post-Stroke Aphasia. Brain Sci 2021; 11:brainsci11010053. [PMID: 33466403 PMCID: PMC7824889 DOI: 10.3390/brainsci11010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 01/01/2023] Open
Abstract
Fiber tractography based on diffuse tensor imaging (DTI) can reveal three-dimensional white matter connectivity of the human brain. Tractography is a non-invasive method of visualizing cerebral white matter structures in vivo, including neural pathways surrounding the ischemic area. DTI may be useful for elucidating alterations in brain connectivity resulting from neuroplasticity after stroke. We present a case of a male patient who developed significant mixed aphasia following ischemic stroke. The patient had been treated by mechanical thrombectomy followed by an early rehabilitation, in conjunction with transcranial direct current stimulation (tDCS). DTI was used to examine the arcuate fasciculus and uncinate fasciculus upon admission and again at three months post-stroke. Results showed an improvement in the patient’s symptoms of aphasia, which was associated with changes in the volume and numbers of tracts in the uncinate fasciculus and the arcuate fasciculus.
Collapse
Affiliation(s)
- Sara Kierońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
| | - Milena Świtońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
- Faculty of Health Science, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| | - Grzegorz Meder
- Department of Interventional Radiology, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Magdalena Piotrowska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
- Faculty of Health Science, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-600954415
| |
Collapse
|