1
|
Jeong SH, Park S, Choi JS, Cho NJ, Moon JS, Gil HW. Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes. Kidney Res Clin Pract 2024; 43:774-784. [PMID: 37956994 PMCID: PMC11615446 DOI: 10.23876/j.krcp.23.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. METHODS The rate of extracellular acidification was measured in astrocytes when IS (0.5-3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. RESULTS In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. CONCLUSION Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-sung Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Yu YH, Im H, Park S, Song B, Park DK, Kim DS, Gil HW. AST-120 Protects Cognitive and Emotional Impairment in Chronic Kidney Disease Induced by 5/6 Nephrectomy. Brain Sci 2024; 14:1043. [PMID: 39595807 PMCID: PMC11591787 DOI: 10.3390/brainsci14111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Uremic toxins resulting from chronic kidney disease (CKD) can cause cognitive and emotional disorders, as well as cardiovascular diseases. Indoxyl sulfate (IS) and p-cresol are notable uremic toxins found in patients with CKD. However, few studies have investigated whether reducing uremic toxins can alleviate cognitive and emotional disorders associated with CKD. METHODS We studied the effects of AST-120, which lowers IS levels, through behavioral tests, local field potentials, field excitatory postsynaptic potentials, and histological experiments in a 5/6 nephrectomy CKD model. RESULTS We confirmed AST-120's effectiveness in CKD by measuring serum creatinine, blood urea nitrogen, and IS levels and performing renal tissue staining. Behavioral phenotypes indicated an alleviation of cognitive and anxiety disorders following AST-120 treatment in CKD-induced rats, which was further validated through local field potentials and field excitatory postsynaptic potential recordings. Double immunofluorescence staining for aquaporin-4 and glial fibrillary acidic protein in the hippocampus of CKD rats treated with AST-120 showed reduced coexpression. CONCLUSIONS Our findings demonstrate the potential therapeutic effects of AST-120 in lowering IS levels and improving cognitive and emotional impairments associated with CKD.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| | - Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| |
Collapse
|
3
|
Cladis DP, Burstad KM, Biruete A, Jannasch AH, Cooper BR, Hill Gallant KM. Dietary Phosphorus Levels Influence Protein-Derived Uremic Toxin Production in Nephrectomized Male Rats. Nutrients 2024; 16:1807. [PMID: 38931160 PMCID: PMC11207110 DOI: 10.3390/nu16121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota-derived uremic toxins (UT) accumulate in patients with chronic kidney disease (CKD). Dietary phosphorus and protein restriction are common in CKD treatment, but the relationship between dietary phosphorus, a key nutrient for the gut microbiota, and protein-derived UT is poorly studied. Thus, we explored the relationship between dietary phosphorus and serum UT in CKD rats. For this exploratory study, we used serum samples from a larger study on the effects of dietary phosphorus on intestinal phosphorus absorption in nephrectomized (Nx, n = 22) or sham-operated (sham, n = 18) male Sprague Dawley rats. Rats were randomized to diet treatment groups of low or high phosphorus (0.1% or 1.2% w/w, respectively) for 1 week, with serum trimethylamine oxide (TMAO), indoxyl sulfate (IS), and p-cresol sulfate (pCS) analyzed by LC-MS. Nx rats had significantly higher levels of serum TMAO, IS, and pCS compared to sham rats (all p < 0.0001). IS showed a significant interaction between diet and CKD status, where serum IS was higher with the high-phosphorus diet in both Nx and sham rats, but to a greater extent in the Nx rats. Serum TMAO (p = 0.24) and pCS (p = 0.34) were not affected by dietary phosphorus levels. High dietary phosphorus intake for 1 week results in higher serum IS in both Nx and sham rats. The results of this exploratory study indicate that reducing dietary phosphorus intake in CKD may have beneficial effects on UT accumulation.
Collapse
Affiliation(s)
- Dennis P. Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Kendal M. Burstad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Annabel Biruete
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Nutrition and Dietetics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber H. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; (A.H.J.); (B.R.C.)
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; (A.H.J.); (B.R.C.)
| | - Kathleen M. Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, García-Sáez RM, Torralbo AI, Obrero T, Vidal-Jiménez V, Jiménez MJ, Carmona A, Guerrero F, Pendón-Ruiz de Mier MV, Rodelo-Haad C, Canalejo A, Rodríguez M, Soriano-Cabrera S, Muñoz-Castañeda JR. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci 2024; 25:4194. [PMID: 38673780 PMCID: PMC11050028 DOI: 10.3390/ijms25084194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.
Collapse
Affiliation(s)
- María E. Rodríguez-Ortiz
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Daniel Jurado-Montoya
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Karen Valdés-Díaz
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Raquel M. García-Sáez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Ana I. Torralbo
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Teresa Obrero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Victoria Vidal-Jiménez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - María J. Jiménez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Andrés Carmona
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Fátima Guerrero
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - María V. Pendón-Ruiz de Mier
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Cristian Rodelo-Haad
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Antonio Canalejo
- Department of Integrated Sciences/Research Center on Natural Resources, Health, and Environment (RENSMA), University of Huelva Campus el Carmen, Avda. Del Tres de Marzo, s/n, 21071 Huelva, Spain;
| | - Mariano Rodríguez
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Sagrario Soriano-Cabrera
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Juan R. Muñoz-Castañeda
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| |
Collapse
|
6
|
Ibos KE, Bodnár É, Dinh H, Kis M, Márványkövi F, Kovács ZZA, Siska A, Földesi I, Galla Z, Monostori P, Szatmári I, Simon P, Sárközy M, Csabafi K. Chronic kidney disease may evoke anxiety by altering CRH expression in the amygdala and tryptophan metabolism in rats. Pflugers Arch 2024; 476:179-196. [PMID: 37989901 DOI: 10.1007/s00424-023-02884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Chronic kidney disease (CKD) is associated with anxiety; however, its exact mechanism is not well understood. Therefore, the aim of the present study was to assess the effect of moderate CKD on anxiety in rats. 5/6 nephrectomy was performed in male Wistar rats. 7 weeks after, anxiety-like behavior was assessed by elevated plus maze (EPM), open field (OF), and marble burying (MB) tests. At weeks 8 and 9, urinalysis was performed, and blood and amygdala samples were collected, respectively. In the amygdala, the gene expression of Avp and the gene and protein expression of Crh, Crhr1, and Crhr2 were analyzed. Furthermore, the plasma concentration of corticosterone, uremic toxins, and tryptophan metabolites was measured by UHPLC-MS/MS. Laboratory tests confirmed the development of CKD. In the CKD group, the closed arm time increased; the central time and the total number of entries decreased in the EPM. There was a reduction in rearing, central distance and time in the OF, and fewer interactions with marbles were detected during MB. CKD evoked an upregulation of gene expression of Crh, Crhr1, and Crhr2, but not Avp, in the amygdala. However, there was no alteration in protein expression. In the CKD group, plasma concentrations of p-cresyl-sulfate, indoxyl-sulfate, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid, picolinic acid, and quinolinic acid increased. However, the levels of tryptophan, tryptamine, 5-hydroxytryptophan, serotonin, and tyrosine decreased. In conclusion, moderate CKD evoked anxiety-like behavior that might be mediated by the accumulation of uremic toxins and metabolites of the kynurenine pathway, but the contribution of the amygdalar CRH system to the development of anxiety seems to be negligible at this stage.
Collapse
Affiliation(s)
- Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary.
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| | - Hoa Dinh
- Department of Biochemistry, Bach Mai Hospital, 78 Giai Phong Street, Phuong Mai, Dong Da, Hanoi, 100000, Vietnam
| | - Merse Kis
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Péter Simon
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Márta Sárközy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| |
Collapse
|
7
|
Li R, Shi C, Wei C, Wang C, Du H, Liu R, Wang X, Hong Q, Chen X. Fufang Shenhua tablet inhibits renal fibrosis by inhibiting PI3K/AKT. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154873. [PMID: 37257328 DOI: 10.1016/j.phymed.2023.154873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Fufang Shenhua tablet (SHT), a traditional Chinese medicine compound, has been utilized in the clinical management of chronic kidney disease (CKD) for a long time. Nevertheless, the fundamental active constituents and potential mechanism of action remain unclear. Thus, the objective of this study was to investigate the renoprotective effect of SHT on residual renal tissue in CKD model rats and to explore its primary efficacious components and their underlying mechanism. METHODS After a 12-week period of SHT treatment through gavage in a 5/6 nephrectomized animal model of CKD, we evaluated the body weight, renal function, and renal pathological changes. Furthermore, the expression levels of fibronectin (FN), collagen I (COL-1), α-smooth muscle actin (α-SMA), and vimentin in renal tissues were assessed. In addition, network pharmacology analysis and molecular docking were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways through which SHT could potentially exert its anti-kidney fibrosis effects. Subsequently, these predictions were validated in renal tissues of rats with CKD and in transforming growth factor β1 (TGF-β1)-induced HK-2 cells. RESULTS SHT significantly improved renal function and reduced renal pathological damage and fibrosis in CKD model rats. Network pharmacological analysis identified 62 active components in SHT, with quercetin ranked first, and 105 protein targets shared by SHT and CKD. Based on the protein‒protein interaction network (PPI) and the SHT-CKD-pathway network, AKT1, MYC, IL2, and VEGFA were identified as key targets. Furthermore, GO and KEGG pathway enrichment analyses indicated that the renoprotective effect of SHT on CKD was closely associated with the PI3K/AKT signaling pathway. Molecular docking results demonstrated that the main active components of SHT had a strong binding affinity to the hub genes. During experimental validation, SHT hindered the activity of the PI3K/AKT signaling pathway in the renal tissue of CKD model rats. Furthermore, activation of the PI3K/AKT signaling pathway was correlated with a modified fibrotic phenotype in rats with 5/6 nephrectomy-induced CKD and TGF-β1-induced HK-2 cells. Conversely, SHT and quercetin curtailed the activation of the PI3K/AKT signaling pathway and inhibited the formation of renal fibrosis, thus indicating that the PI3K/AKT signaling pathway is the basis of the antifibrotic effects of SHT. Ultimately, administration of the PI3K/AKT agonist 740Y-P counteracted the fibrotic phenotype of TGF-β1-induced HK-2 cells induced by SHT. CONCLUSIONS In this investigation, we employed a fusion of systems pharmacology and in vivo and in vitro experiments to elucidate the mechanism of SHT's antifibrotic properties via obstruction of the PI3K/AKT signaling pathway. Additionally, we surmised that AKT may be the principal target of SHT for the management of CKD and that quercetin may be its efficacious component. We have thus identified SHT as a promising drug for the amelioration of renal fibrosis and the progression of CKD.
Collapse
Affiliation(s)
- Run Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunru Shi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiting Wei
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Febrile Seizures Cause Depression and Anxiogenic Behaviors in Rats. Cells 2022; 11:cells11203228. [PMID: 36291094 PMCID: PMC9600115 DOI: 10.3390/cells11203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Febrile seizure (FS) is a common type of seizure occurring in human during infancy and childhood. Although an epileptic seizure is associated with psychiatric disorders and comorbid diseases such as depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine, the causal relationship between FS and psychiatric disorders is poorly understood. The objective of the current study was to investigate the relationship of FS occurrence in childhood with the pathogenesis of anxiety disorder and depression using an FS rat model. We induced febrile seizures in infantile rats (11 days postnatal) using a mercury vapor lamp. At 3 weeks and 12 weeks after FS induction, we examined behaviors and recorded local field potentials (LFPs) to assess anxiety and depression disorder. Interestingly, after FS induction in infantile rats, anxiogenic behaviors and depression-like phenotypes were found in both adult and juvenile FS rats. The analysis of LFPs revealed that 4-7 Hz hippocampal theta rhythm, a neural oscillatory marker for anxiety disorder, was significantly increased in FS rats compared with their wild-type littermates. Taken together, our findings suggest that FS occurrence in infants is causally related to increased levels of anxiety-related behaviors and depression-like symptoms in juvenile and adult rodents.
Collapse
|
9
|
Cognitive Sequelae and Hippocampal Dysfunction in Chronic Kidney Disease following 5/6 Nephrectomy. Brain Sci 2022; 12:brainsci12070905. [PMID: 35884712 PMCID: PMC9321175 DOI: 10.3390/brainsci12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are prevalent in patients with chronic kidney disease (CKD). Vascular factors and uremic toxins are involved with cognitive impairment in CKD. In addition, vascular dementia-induced alterations in the structure and function of the hippocampus can lead to deficits in hippocampal synaptic plasticity and cognitive function. However, regardless of this clinical evidence, the pathophysiology of cognitive impairment in patients with CKD is not fully understood. We used male Sprague Dawley rats and performed 5/6 nephrectomy to observe the changes in behavior, field excitatory postsynaptic potential, and immunostaining of the hippocampus following CKD progression. We measured the hippocampus volume on magnetic resonance imaging scans in the controls (n = 34) and end-stage renal disease (ESRD) hemodialysis patients (n = 42). In four cognition-related behavior assays, including novel object recognition, Y-maze, Barnes maze, and classical contextual fear conditioning, we identified deficits in spatial working memory, learning and memory, and contextual memory, as well as the ability to distinguish familiar and new objects, in the rats with CKD. Immunohistochemical staining of Na+/H+ exchanger1 was increased in the hippocampus of the CKD rat models. We performed double immunofluorescent staining for aquaporin-4 and glial fibrillary acidic protein and then verified the high coexpression in the hippocampus of the CKD rat model. Furthermore, results from recoding of the field excitatory postsynaptic potential (fEPSP) in the hippocampus showed the reduced amplitude and slope of fEPSP in the CKD rats. ESRD patients with cognitive impairment showed a significant decrease in the hippocampus volume compared with ESRD patients without cognitive impairment or the controls. Our findings suggest that uremia resulting from decreased kidney function may cause the destruction of the blood–brain barrier and hippocampus-related cognitive impairment in CKD.
Collapse
|
10
|
Kim DS, Kim SW, Gil HW. Emotional and cognitive changes in chronic kidney disease. Korean J Intern Med 2022; 37:489-501. [PMID: 35249316 PMCID: PMC9082446 DOI: 10.3904/kjim.2021.492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) leads to cognitive impairment and emotional changes. However, the precise mechanism underlying the crosstalk between the kidneys and the nervous system is not fully understood. Inflammation and cerebrovascular disease can influence the development of depression in CKD. CKD is one of the strongest risk factors for cognitive impairment. Moreover, cognitive impairment occurs in CKD as patients experience the dysregulation of several brain functional domains due to damage caused to multiple cortical regions and to subcortical modulatory neurons. The differences in structural brain changes between CKD and non-CKD dementia may be attributable to the different mechanisms that occur in CKD. The kidney and brain have similar anatomical vascular systems, which may be susceptible to traditional risk factors. Vascular factors are assumed to be involved in the development of cognitive impairment in patients with CKD. Vascular injury induces white matter lesions, silent infarction, and microbleeds. Uremic toxins may also be directly related to cognitive impairment in CKD. Many uremic toxins, such as indoxyl sulfate, are likely to have an impact on the central nervous system. Further studies are required to identify therapeutic targets to prevent changes in the brain in patients with CKD.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Seong-Wook Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, Daejeon,
Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan,
Korea
| |
Collapse
|
11
|
Sun X, Huang Y, Zhu S, Yan J, Gan K, Xu Z, Wang S, Kang X, Zhang J, Sun W. Yishen Qingli Heluo Granule in the Treatment of Chronic Kidney Disease: Network Pharmacology Analysis and Experimental Validation. Drug Des Devel Ther 2022; 16:769-787. [PMID: 35355655 PMCID: PMC8959874 DOI: 10.2147/dddt.s348335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Chronic kidney disease (CKD) is considered a global public health problem with high morbidity and mortality. Yishen Qingli Heluo granule (YQHG) is representative traditional Chinese medicine (TCM) remedy for clinical treatment of CKD. This study aims to explore the mechanism of YQHG on CKD through network pharmacology and experimental validation. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and wide-scale literature mining were applied to screen active compounds of YQHG. Multiple bioinformatic tools and online databases were applied by us to obtain relevant targets of YQHG and CKD. The intersection targets between YQHG and CKD were considered as candidate targets. The compound-target, herb-candidate target and protein–protein interaction networks were constructed and visualized for topological analyses. GO and KEGG enrichment analyses were conducted to determine the biological processes and signaling pathways. Molecular docking was used to verify the reliability of network pharmacology. Finally, pharmacological evaluation was performed to explore the mechanism of YQHG against CKD on a 5/6 nephrectomy model. Results Seventy-nine candidate targets, ten core biological processes and one key signaling pathway (p53) were screened. PTGS2 was identified as a key target based on H-CT network. The molecular docking showed that Quercetin, Kaempferol, Luteolin were three key compounds with the best binding activity. In addition, IL6 and Quercetin could form a stable complex with high binding affinity (−7.29 kcal/mol). In vivo experiment revealed that YQHG improved kidney function and fibrosis in 5/6 nephrectomized rats. Moreover, the decreased expression of PTGS2, IL6, and the increased expression of p53 were observed in kidney tissue. Notably, the gut microbiota of rats treated with YQHG was reshaped, which was characterized by a reduced ratio of Firmicutes/Bacteroidota. Conclusion Our results predicted and verified the potential targets of YQHG on CKD from a holistic perspective, and provided valuable direction for the further research of YQHG. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/02pumepfbPI
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jin Yan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Gan
- Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoyu Kang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|