1
|
Therapeutic Interventions in Rat Models of Preterm Hypoxic Ischemic Injury: Effects of Hypothermia, Caffeine, and the Influence of Sex. Life (Basel) 2022; 12:life12101514. [PMID: 36294948 PMCID: PMC9605553 DOI: 10.3390/life12101514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infants born prematurely have an increased risk of experiencing brain injury, specifically injury caused by Hypoxia Ischemia (HI). There is no approved treatment for preterm infants, in contrast to term infants that experience Hypoxic Ischemic Encephalopathy (HIE) and can be treated with hypothermia. Given this increased risk and lack of approved treatment, it is imperative to explore and model potential treatments in animal models of preterm injury. Hypothermia is one potential treatment, though cooling to current clinical standards has been found to be detrimental for preterm infants. However, mild hypothermia may prove useful. Caffeine is another treatment that is already used in preterm infants to treat apnea of prematurity, and has shown neuroprotective effects. Both of these treatments show sex differences in behavioral outcomes and neuroprotective effects, which are critical to explore when working to translate from animal to human. The effects and research history of hypothermia, caffeine and how sex affects these treatment outcomes will be explored further in this review article.
Collapse
|
2
|
Gailus B, Naundorf H, Welzel L, Johne M, Römermann K, Kaila K, Löscher W. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia 2021; 62:2826-2844. [PMID: 34458992 DOI: 10.1111/epi.17050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Birth asphyxia is a major cause of hypoxic-ischemic encephalopathy (HIE) in neonates and often associated with mortality, neonatal seizures, brain damage, and later life motor, cognitive, and behavioral impairments and epilepsy. Preclinical studies on rodent models are needed to develop more effective therapies for preventing HIE and its consequences. Thus far, the most popular rodent models have used either exposure of intact animals to hypoxia-only, or a combination of hypoxia and carotid occlusion, for the induction of neonatal seizures and adverse outcomes. However, such models lack systemic hypercapnia, which is a fundamental constituent of birth asphyxia with major effects on neuronal excitability. Here, we use a recently developed noninvasive rat model of birth asphyxia with subsequent neonatal seizures to study later life adverse outcome. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female postnatal day 11 rat pups to three 7 + 3-min cycles of 9% and 5% O2 at constant 20% CO2 . All pups exhibited convulsive seizures after asphyxia. A set of behavioral tests were performed systematically over 14 months following asphyxia, that is, a large part of the rat's life span. Video-electroencephalographic (EEG) monitoring was used to determine whether asphyxia led to the development of epilepsy. Finally, structural brain alterations were examined. RESULTS The animals showed impaired spatial learning and memory and increased anxiety when tested at an age of 3-14 months. Video-EEG at ~10 months showed an abundance of spontaneous seizures, which was paralleled by neurodegeneration in the hippocampus and thalamus, and by aberrant mossy fiber sprouting. SIGNIFICANCE The present model of birth asphyxia recapitulates several of the later life consequences associated with human HIE. This model thus allows evaluation of the efficacy of novel therapies designed to prevent HIE and seizures following asphyxia, and of how such therapies might alleviate long-term adverse consequences.
Collapse
Affiliation(s)
- Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
3
|
Penny TR, Pham Y, Sutherland AE, Smith MJ, Lee J, Jenkin G, Fahey MC, Miller SL, McDonald CA. Optimization of behavioral testing in a long-term rat model of hypoxic ischemic brain injury. Behav Brain Res 2021; 409:113322. [PMID: 33901432 DOI: 10.1016/j.bbr.2021.113322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxic ischemic (HI) brain injury is a significant cause of childhood neurological deficits. Preclinical rodent models are often used to study these deficits; however, no preclinical study has determined which behavioral tests are most appropriate for long-term follow up after neonatal HI. METHODS HI brain injury was induced in postnatal day (PND) 10 rat pups using the Rice-Vannucci method of unilateral carotid artery ligation. Rats underwent long-term behavioral testing to assess motor and cognitive outcomes between PND11-50. Behavioral scores were transformed into Z-scores and combined to create composite behavioral scores. RESULTS HI rats showed a significant deficit in three out of eight behavioral tests: negative geotaxis analysis, the cylinder test and the novel object recognition test. These individual test outcomes were transformed into Z-scores and combined to create a composite Z-score. This composite z-score showed that HI rats had a significantly increased behavioral burden over the course of the experiment. CONCLUSION In this study we have identified tests that highlight specific cognitive and motor deficits in a rat model of neonatal HI. Due to the high variability in this model of neonatal HI brain injury, significant impairment is not always observed in individual behavioral tests, but by combining outcomes from these individual tests, long-term behavioral burden can be measured.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Madeleine J Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Joohyung Lee
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
|
5
|
Mammel B, Kvárik T, Szabó Z, Gyarmati J, Ertl T, Farkas J, Helyes Z, Atlasz T, Reglődi D, Kiss P. Prenatal cigarette smoke exposure slightly alters neurobehavioral development in neonatal rats: Implications for developmental origins of health and disease (DoHAD). Physiol Int 2020; 107:55-66. [PMID: 32598332 DOI: 10.1556/2060.2020.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022]
Abstract
Numerous studies indicate that smoking during pregnancy exerts harmful effects on fetal brain development. The aim of this study was to determine the influence of maternal smoking during pregnancy on the early physical and neurobehavioral development of newborn rats. Wistar rats were subjected to whole-body smoke exposure for 2 × 40 min daily from the day of mating until day of delivery. For this treatment, a manual closed-chamber smoking system and 4 research cigarettes per occasion were used. After delivery the offspring were tested daily for somatic growth, maturation of facial characteristics and neurobehavioral development until three weeks of age. Motor coordination tests were performed at 3 and 4 weeks of age. We found that prenatal cigarette smoke exposure did not alter weight gain or motor coordination. Critical physical reflexes indicative of neurobehavioral development (eyelid reflex, ear unfolding) appeared significantly later in pups prenatally exposed to smoke as compared to the control group. Prenatal smoke exposure also resulted in a delayed appearance of reflexes indicating neural maturity, including hind limb grasping and forelimb placing reflexes. In conclusion, clinically relevant prenatal exposure to cigarette smoke results in slightly altered neurobehavioral development in rat pups. These findings suggest that chronic exposure of pregnant mothers to cigarette smoke (including passive smoking) results in persisting alterations in the developing brain, which may have long-lasting consequences supporting the concept of developmental origins of health and disease (DoHAD).
Collapse
Affiliation(s)
- B Mammel
- 1Department of Obstetrics and Gynecology, Department of Neonatology, University of Pécs, Pécs, Hungary.,2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| | - T Kvárik
- 1Department of Obstetrics and Gynecology, Department of Neonatology, University of Pécs, Pécs, Hungary.,2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| | - Zs Szabó
- 2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| | - J Gyarmati
- 1Department of Obstetrics and Gynecology, Department of Neonatology, University of Pécs, Pécs, Hungary
| | - T Ertl
- 1Department of Obstetrics and Gynecology, Department of Neonatology, University of Pécs, Pécs, Hungary
| | - J Farkas
- 2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| | - Zs Helyes
- 3Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,5Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - T Atlasz
- 2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary.,4Department of Sportbiology, University of Pécs, Pécs, Hungary
| | - D Reglődi
- 2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| | - P Kiss
- 2Department of Anatomy,University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
6
|
Sun G, Xie H, Liu Y, Chen Y, Hou X, Zhang D. Impact of Brain Injury on Processing of Emotional Prosodies in Neonates. Front Pediatr 2019; 7:192. [PMID: 31143760 PMCID: PMC6521740 DOI: 10.3389/fped.2019.00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Being able to appropriately process different emotional prosodies is an important cognitive ability normally present at birth. In this study, we used event-related potential (ERP) to assess whether brain injury impacts the ability to process different emotional prosodies (happy, fear, and neutral) in neonates; whether the ERP measure has potential value for the evaluation of neurodevelopmental outcome in later childhood. A total of 42 full-term neonates were recruited from the neonatology department of Peking University First Hospital from June 2014 to January 2015. They were assigned to the brain injury group (n = 20) or control group (n = 22) according to their clinical manifestations, physical examinations, cranial images and routine EEG outcomes. Using an oddball paradigm, ERP data were recorded while subjects listened to happy (20%, deviation stimulus), fearful (20%, deviation stimulus) and neutral (80%, standard stimulus) prosodies to evaluate the potential prognostic value of ERP indexes for neurodevelopment at 30 months of age. Results showed that while the mismatch responses (MMRs) at the frontal lobe were larger for fearful than happy prosody in control neonates, this difference was not observed in neonates with brain injuries. This finding suggests that perinatal brain injury may influence the cognitive ability to process different emotional prosodies in neonatal brain; this deficit could be reflected by decreased MMR amplitudes in response to fearful prosody. Moreover, the decreased MMRs at the frontal lobe was associated with impaired neurodevelopment at 30 months old.
Collapse
Affiliation(s)
- Guoyu Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Xie
- College of Psychology, Shenzhen University, Shenzhen, China
| | - Yanan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Chen
- College of Psychology, Shenzhen University, Shenzhen, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dandan Zhang
- College of Psychology, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Ueba Y, Aratake T, Onodera KI, Higashi Y, Hamada T, Shimizu T, Shimizu S, Yawata T, Nakamura R, Akizawa T, Ueba T, Saito M. Attenuation of zinc-enhanced inflammatory M1 phenotype of microglia by peridinin protects against short-term spatial-memory impairment following cerebral ischemia in mice. Biochem Biophys Res Commun 2018; 507:476-483. [DOI: 10.1016/j.bbrc.2018.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/04/2023]
|
8
|
Das S, Mishra K, Ganju L, Singh S. Intranasally delivered small interfering RNA-mediated suppression of scavenger receptor Mac-1 attenuates microglial phenotype switching and working memory impairment following hypoxia. Neuropharmacology 2018; 137:240-255. [DOI: 10.1016/j.neuropharm.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023]
|
9
|
Kasahara Y, Ikegaya Y, Koyama R. Neonatal Seizure Models to Study Epileptogenesis. Front Pharmacol 2018; 9:385. [PMID: 29720941 PMCID: PMC5915831 DOI: 10.3389/fphar.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Current therapeutic strategies for epilepsy include anti-epileptic drugs and surgical treatments that are mainly focused on the suppression of existing seizures rather than the occurrence of the first spontaneous seizure. These symptomatic treatments help a certain proportion of patients, but these strategies are not intended to clarify the cellular and molecular mechanisms underlying the primary process of epilepsy development, i.e., epileptogenesis. Epileptogenic changes include reorganization of neural and glial circuits, resulting in the formation of an epileptogenic focus. To achieve the goal of developing “anti-epileptogenic” drugs, we need to clarify the step-by-step mechanisms underlying epileptogenesis for patients whose seizures are not controllable with existing “anti-epileptic” drugs. Epileptogenesis has been studied using animal models of neonatal seizures because such models are useful for studying the latent period before the occurrence of spontaneous seizures and the lowering of the seizure threshold. Further, neonatal seizure models are generally easy to handle and can be applied for in vitro studies because cells in the neonatal brain are suitable for culture. Here, we review two animal models of neonatal seizures for studying epileptogenesis and discuss their features, specifically focusing on hypoxia-ischemia (HI)-induced seizures and febrile seizures (FSs). Studying these models will contribute to identifying the potential therapeutic targets and biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
11
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
12
|
Markostamou I, Ioannidis A, Dandi E, Mandyla MA, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA. Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus. Int J Dev Neurosci 2016; 52:1-12. [PMID: 27165447 DOI: 10.1016/j.ijdevneu.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
Exposure to early-life stress is associated with long-term alterations in brain and behavior, and may aggravate the outcome of neurological insults. This study aimed at investigating the possible interaction between maternal separation, a model of early stress, and subsequent neonatal hypoxia-ischemia on emotional behavior and markers of synaptic plasticity in hippocampus. Therefore, rat pups (N=60) were maternally separated for a prolonged (MS 180min) or a brief (MS 15min) period during the first six postnatal days, while a control group was left undisturbed. Hypoxia-ischemia was applied to a subgroup of each rearing condition on postnatal day 7. Emotional behavior was examined at three months of age and included assessments of anxiety (elevated plus maze), depression-like behavior (forced swimming) and spontaneous exploration (open field). Synaptic plasticity was evaluated based on BDNF and synaptophysin expression in CA3 and dentate gyrus hippocampal regions. We found that neonatal hypoxia-ischemia caused increased levels of anxiety, depression-like behavior and locomotor activity (ambulation). Higher anxiety levels were also seen in maternally separated rats (MS180min) compared to non-maternally separated rats, but prolonged maternal separation prior to HI did not potentiate the HI-associated effect. No differences among the three rearing conditions were found regarding depression-like behavior or ambulation. Immunohistochemical evaluation of synaptophysin revealed that both prolonged maternal separation (MS180min) and neonatal hypoxia-ischemia significantly reduced its expression in the CA3 and dentate gyrus. Decreases in synaptophysin expression in these areas were not exacerbated in rats that were maternally separated for a prolonged period prior to HI. Regarding BDNF expression, we found a significant decrease in immunoreactivity only in the hypoxic-ischemic rats that were subjected to the prolonged maternal separation paradigm. The above findings suggest that early-life stress prior to neonatal hypoxia-ischemia leads to significant alterations in synaptic plasticity of the dorsal hippocampus during adulthood, but does not exacerbate HI-related changes in emotional behavior.
Collapse
Affiliation(s)
- Ioanna Markostamou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Ioannidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Aikaterini Mandyla
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology & Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
13
|
Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent Hypoxia-Ischemia Models for Cerebral Palsy Research: A Systematic Review. Front Neurol 2016; 7:57. [PMID: 27199883 PMCID: PMC4843764 DOI: 10.3389/fneur.2016.00057] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/03/2016] [Indexed: 12/28/2022] Open
Abstract
Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5-3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice-Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Tatiana Bregman
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Steven P Miller
- Department of Pediatrics, Hospital for Sick Children , Toronto, ON , Canada
| | - Jerome Y Yager
- Division of Pediatric Neurosciences, Stollery Children's Hospital, University of Alberta , Edmonton, AB , Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Smith AL, Rosenkrantz TS, Fitch RH. Effects of Sex and Mild Intrainsult Hypothermia on Neuropathology and Neural Reorganization following Neonatal Hypoxic Ischemic Brain Injury in Rats. Neural Plast 2016; 2016:2585230. [PMID: 27042359 PMCID: PMC4794561 DOI: 10.1155/2016/2585230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/08/2016] [Accepted: 01/31/2016] [Indexed: 11/17/2022] Open
Abstract
Hypoxia ischemia (HI) is a recognized risk factor among late-preterm infants, with HI events leading to varied neuropathology and cognitive/behavioral deficits. Studies suggest a sex difference in the incidence of HI and in the severity of subsequent behavioral deficits (with better outcomes in females). Mechanisms of a female advantage remain unknown but could involve sex-specific patterns of compensation to injury. Neuroprotective hypothermia is also used to ameliorate HI damage and attenuate behavioral deficits. Though currently prescribed only for HI in term infants, cooling has potential intrainsult applications to high-risk late-preterm infants as well. To address this important clinical issue, we conducted a study using male and female rats with a postnatal (P) day 7 HI injury induced under normothermic and hypothermic conditions. The current study reports patterns of neuropathology evident in postmortem tissue. Results showed a potent benefit of intrainsult hypothermia that was comparable for both sexes. Findings also show surprisingly different patterns of compensation in the contralateral hemisphere, with increases in hippocampal thickness in HI females contrasting reduced thickness in HI males. Findings provide a framework for future research to compare and contrast mechanisms of neuroprotection and postinjury plasticity in both sexes following a late-preterm HI insult.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Psychology, Behavioral Neuroscience Division, The University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Ted S. Rosenkrantz
- Department of Pediatrics/Neonatology, The University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - R. Holly Fitch
- Department of Psychology, Behavioral Neuroscience Division, The University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| |
Collapse
|
15
|
Gaudet CM, Lim YP, Stonestreet BS, Threlkeld SW. Effects of age, experience and inter-alpha inhibitor proteins on working memory and neuronal plasticity after neonatal hypoxia-ischemia. Behav Brain Res 2016; 302:88-99. [PMID: 26778784 DOI: 10.1016/j.bbr.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/15/2023]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) commonly results in cognitive and sensory impairments. Early behavioral experience has been suggested to improve cognitive and sensory outcomes in children and animal models with perinatal neuropathology. In parallel, we previously showed that treatment with immunomodulator Inter-alpha Inhibitor Proteins (IAIPs) improves cellular and behavioral outcomes in neonatal HI injured rats. The purpose of the current study was to evaluate the influences of early experience and typical maturation in combination with IAIPs treatment on spatial working and reference memory after neonatal HI injury. A second aim was to determine the effects of these variables on hippocampal CA1 neuronal morphology. Subjects were divided into two groups that differed with respect to the time when exposed to eight arm radial water maze testing: Group one was tested as juveniles (early experience, Postnatal day (P) 36-61) and adults (P88-113), and Group two was tested in adulthood only (P88-113; without early experience). Three treatment conditions were included in each experience group (HI+Vehicle, HI+IAIPs, and Sham subjects). Incorrect arm entries (errors) were compared between treatment and experience groups across three error types (reference memory (RM), working memory incorrect (WMI), working memory correct (WMC)). Early experience led to improved working memory performance regardless of treatment. Combining IAIPs intervention with early experience provided a long-term behavioral advantage on the WMI component of the task in HI animals. Anatomically, early experience led to a decrease in the average number of basal dendrites per CA1 pyramidal neuron for IAIP treated subjects and a significant reduction in basal dendritic length in control subjects, highlighting the importance of pruning in typical early life learning. Our results support the hypothesis that early behavioral experience combined with IAIPs improve outcome on a relativity demanding cognitive task, beyond that of a single intervention strategy, and appears to facilitate neuronal plasticity following neonatal brain injury.
Collapse
Affiliation(s)
- Cynthia M Gaudet
- Department of Biology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., 349 Eddy Street, Providence, RI 02903, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Steven W Threlkeld
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave. Providence, RI 02904, USA.
| |
Collapse
|
16
|
Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods 2015; 260:252-60. [PMID: 26434705 DOI: 10.1016/j.jneumeth.2015.09.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Despite greater understanding and improved management, seizures continue to be a major problem in childhood. Neonatal seizures are often refractory to conventional antiepileptic drugs, and can result in later life epilepsy and cognitive deficits, conditions for which there are no specific treatments. Hypoxic and/or ischemic encephalopathy (HIE) is the most common cause for neonatal seizures, and accounts for more than two-thirds of neonatal seizure cases. A better understanding of the cellular and molecular mechanisms is essential for identifying new therapeutic strategies that control the neonatal seizures and its cognitive consequences. This heavily relies on animal models that play a critical role in discovering novel mechanisms underlying both epileptogenesis and associated cognitive impairments. To date, a number of animal models have provided a tremendous amount of information regarding the pathophysiology of HIE-induced neonatal seizures. This review provides an overview on the most important features of the main animal models of HIE-induced seizures. In particular, we focus on the methodology of seizure induction and the characterizations of post-HIE injury consequences. These aspects of HIE-induced seizure models are discussed in the light of the suitability of these models in studying human HIE-induced seizures.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor M Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats. Brain Sci 2015; 5:220-40. [PMID: 26010486 PMCID: PMC4493466 DOI: 10.3390/brainsci5020220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.
Collapse
|
18
|
Smith AL, Alexander M, Chrobak JJ, Rosenkrantz TS, Fitch RH. Dissociation in the Effects of Induced Neonatal Hypoxia-Ischemia on Rapid Auditory Processing and Spatial Working Memory in Male Rats. Dev Neurosci 2015; 37:440-52. [PMID: 25791036 DOI: 10.1159/000375487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/26/2015] [Indexed: 12/25/2022] Open
Abstract
Infants born prematurely are at risk for cardiovascular events causing hypoxia-ischemia (HI; reduced blood and oxygen to the brain). HI in turn can cause neuropathology, though patterns of damage are sometimes diffuse and often highly variable (with clinical heterogeneity further magnified by rapid development). As a result, though HI injury is associated with long-term behavioral and cognitive impairments in general, pathology indices for specific infants can provide only limited insight into individual prognosis. The current paper addresses this important clinical issue using a rat model that simulates unilateral HI in a late preterm infant coupled with long-term behavioral evaluation in two processing domains - auditory discrimination and spatial learning/memory. We examined the following: (1) whether deficits on one task would predict deficits on the other (suggesting that subjects with more severe injury perform worse across all cognitive domains) or (2) whether domain-specific outcomes among HI-injured subjects would be uncorrelated (suggesting differential damage to orthogonal neural systems). All animals (sham and HI) received initial auditory testing and were assigned to additional auditory testing (group A) or spatial maze testing (group B). This allowed within-task (group A) and between-task (group B) correlation. Anatomic measures of cortical, hippocampal and ventricular volume (indexing HI damage) were also obtained and correlated against behavioral measures. Results showed that auditory discrimination in the juvenile period was not correlated with spatial working memory in adulthood (group B) in either sham or HI rats. Conversely, early auditory processing performance for group A HI animals significantly predicted auditory deficits in adulthood (p = 0.05; no correlation in shams). Anatomic data also revealed significant relationships between the volumes of different brain areas within both HI and shams, but anatomic measures did not correlate with any behavioral measure in the HI group (though we saw a hippocampal/spatial correlation in shams, in the expected direction). Overall, current data provide an impetus to enhance tools for characterizing individual HI-related pathology in neonates, which could provide more accurate individual prognoses within specific cognitive/behavioral domains and thus improved patient-specific early interventions.
Collapse
Affiliation(s)
- Amanda L Smith
- Department of Psychology, Behavioral Neuroscience Division, University of Connecticut, Storrs, Conn., USA
| | | | | | | | | |
Collapse
|