1
|
Chéry SL, O'Buckley TK, Boero G, Balan I, Morrow AL. Neurosteroid [3α,5α]3-hydroxypregnan-20-one inhibition of chemokine monocyte chemoattractant protein-1 in alcohol-preferring rat brain neurons, microglia, and astroglia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1693-1703. [PMID: 38991981 DOI: 10.1111/acer.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.
Collapse
Affiliation(s)
- Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Fernández-Rodríguez S, Cano-Cebrián MJ, Esposito-Zapero C, Pérez S, Guerri C, Zornoza T, Polache A. N-Acetylcysteine normalizes brain oxidative stress and neuroinflammation observed after protracted ethanol abstinence: a preclinical study in long-term ethanol-experienced male rats. Psychopharmacology (Berl) 2023; 240:725-738. [PMID: 36708386 PMCID: PMC10006045 DOI: 10.1007/s00213-023-06311-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
RATIONALE Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine (NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats. OBJECTIVES To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were also explored. METHODS The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested. RESULTS NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing the observed downregulation of GLT1 and GLAST in Nacc. CONCLUSIONS NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new anti-relapse pharmacotherapies.
Collapse
Affiliation(s)
- Sandra Fernández-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - María José Cano-Cebrián
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Claudia Esposito-Zapero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Teodoro Zornoza
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
3
|
Barkell GA, Parekh SV, Paniccia JE, Martin AJ, Reissner KJ, Knapp DJ, Robinson SL, Thiele TE, Lysle DT. Chronic ethanol consumption exacerbates future stress-enhanced fear learning, an effect mediated by dorsal hippocampal astrocytes. Alcohol Clin Exp Res 2022; 46:2177-2190. [PMID: 36349797 PMCID: PMC10187052 DOI: 10.1111/acer.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature. METHODS We used a 15-day exposure to the 5% w/v EtOH low-fat Lieber-DeCarli liquid diet in combination with the stress-enhanced fear learning (SEFL) paradigm to investigate the effects of chronic EtOH consumption on the development of a PTSD-like phenotype. Next, we used a reverse transcription quantitative real-time polymerase chain reaction to quantify mRNA expression of glial cell markers GFAP (astrocytes) and CD68 (microglia) following severe footshock stress in EtOH-withdrawn rats. Finally, we tested the functional contribution of dorsal hippocampal (DH) astrocytes in the development of SEFL in EtOH-dependent rats using astrocyte-specific Gi designer receptors exclusively activated by designer drugs (Gi -DREADD). RESULTS Results demonstrate that chronic EtOH consumption and withdrawal exacerbate future SEFL. Additionally, we found significantly increased GFAP mRNA expression in the dorsal and ventral hippocampus and amygdalar complex following the severe stressor in EtOH-withdrawn animals. Finally, the stimulation of the astroglial Gi -DREADD during EtOH withdrawal prevented the EtOH-induced enhancement of SEFL. CONCLUSIONS Collectively, results indicate that prior EtOH dependence and withdrawal combined with a severe stressor potentiate future enhanced fear learning. Furthermore, DH astrocytes significantly contribute to this change in behavior. Overall, these studies provide insight into the comorbidity of AUD and PTSD and the potential neurobiological mechanisms behind increased susceptibility to a PTSD-like phenotype in individuals with AUD.
Collapse
Affiliation(s)
- Gillian A Barkell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alia J Martin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Darin J Knapp
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stacey L Robinson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Fernández-Rodríguez S, Cano-Cebrián MJ, Rius-Pérez S, Pérez S, Guerri C, Granero L, Zornoza T, Polache A. Different brain oxidative and neuroinflammation status in rats during prolonged abstinence depending on their ethanol relapse-like drinking behavior: Effects of ethanol reintroduction. Drug Alcohol Depend 2022; 232:109284. [PMID: 35033958 DOI: 10.1016/j.drugalcdep.2022.109284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE Accumulating evidence suggests that chronic alcohol consumption is associated with excessive oxidative damage and neuroinflammatory processes and these events have been associated to early alcohol withdrawal. In the present research we wonder if brain oxidative stress and neuroinflammation remains altered during prolonged withdrawal situations and whether these alterations can be correlated with relapse behavior in alcohol consumption. The effects of alcohol reintroduction were also evaluated METHODS: We have used a model based on the alcohol deprivation effect (ADE) within a cohort of wild-type male Wistar rats. Two subpopulations were identified according to the alcohol relapse-like drinking behavior displayed (ADE and NO-ADE subpopulations). Oxidized and reduced glutathione content was determined within the hippocampus and the amygdala using a mass spectrometry method. The levels of mRNA of seven different inflammatory mediators in the prefrontal cortex of rats were quantified. All the analyses were performed in two different conditions: after 21-day alcohol deprivation (prolonged abstinence) and after 24 h of ethanol reintroduction in both subpopulations. RESULTS ADE and NO-ADE rats showed different endophenotypes. ADE rats always displayed a significant lower alcohol intake rate and ethanol preference than NO-ADE rats. The results also demonstrated the existence of altered brain redox and neuroinflammation status after prolonged abstinence exclusively in ADE rats. Moreover, when ethanol was reintroduced in the ADE subpopulation, altered oxidative stress and neuroinflammatory markers were restored. CONCLUSIONS Present findings provide new mechanisms underlying the neurobiology of relapse behavior and suggest the development of new pharmacological approaches to treat alcohol-induced relapse.
Collapse
Affiliation(s)
- S Fernández-Rodríguez
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| | - M J Cano-Cebrián
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| | - S Rius-Pérez
- Departament de Fisiologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| | - S Pérez
- Departament de Fisiologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| | - C Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Carrer d'Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - L Granero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| | - T Zornoza
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain.
| | - A Polache
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Avda Vicente Andrés Estellés, s/n 46100 Burjassot, Spain
| |
Collapse
|
5
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
6
|
Steel TL, Afshar M, Edwards S, Jolley SE, Timko C, Clark BJ, Douglas IS, Dzierba AL, Gershengorn HB, Gilpin NW, Godwin DW, Hough CL, Maldonado JR, Mehta AB, Nelson LS, Patel MB, Rastegar DA, Stollings JL, Tabakoff B, Tate JA, Wong A, Burnham EL. Research Needs for Inpatient Management of Severe Alcohol Withdrawal Syndrome: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204:e61-e87. [PMID: 34609257 PMCID: PMC8528516 DOI: 10.1164/rccm.202108-1845st] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Severe alcohol withdrawal syndrome (SAWS) is highly morbid, costly, and common among hospitalized patients, yet minimal evidence exists to guide inpatient management. Research needs in this field are broad, spanning the translational science spectrum. Goals: This research statement aims to describe what is known about SAWS, identify knowledge gaps, and offer recommendations for research in each domain of the Institute of Medicine T0-T4 continuum to advance the care of hospitalized patients who experience SAWS. Methods: Clinicians and researchers with unique and complementary expertise in basic, clinical, and implementation research related to unhealthy alcohol consumption and alcohol withdrawal were invited to participate in a workshop at the American Thoracic Society 2019 International Conference. The committee was subdivided into four groups on the basis of interest and expertise: T0-T1 (basic science research with translation to humans), T2 (research translating to patients), T3 (research translating to clinical practice), and T4 (research translating to communities). A medical librarian conducted a pragmatic literature search to facilitate this work, and committee members reviewed and supplemented the resulting evidence, identifying key knowledge gaps. Results: The committee identified several investigative opportunities to advance the care of patients with SAWS in each domain of the translational science spectrum. Major themes included 1) the need to investigate non-γ-aminobutyric acid pathways for alcohol withdrawal syndrome treatment; 2) harnessing retrospective and electronic health record data to identify risk factors and create objective severity scoring systems, particularly for acutely ill patients with SAWS; 3) the need for more robust comparative-effectiveness data to identify optimal SAWS treatment strategies; and 4) recommendations to accelerate implementation of effective treatments into practice. Conclusions: The dearth of evidence supporting management decisions for hospitalized patients with SAWS, many of whom require critical care, represents both a call to action and an opportunity for the American Thoracic Society and larger scientific communities to improve care for a vulnerable patient population. This report highlights basic, clinical, and implementation research that diverse experts agree will have the greatest impact on improving care for hospitalized patients with SAWS.
Collapse
|
7
|
Macht V, Vetreno R, Elchert N, Crews F. Galantamine prevents and reverses neuroimmune induction and loss of adult hippocampal neurogenesis following adolescent alcohol exposure. J Neuroinflammation 2021; 18:212. [PMID: 34530858 PMCID: PMC8447570 DOI: 10.1186/s12974-021-02243-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Binge ethanol exposure during adolescence reduces hippocampal neurogenesis, a reduction which persists throughout adulthood despite abstinence. This loss of neurogenesis, indicated by reduced doublecortin+ immunoreactivity (DCX+IR), is paralleled by an increase in hippocampal proinflammatory signaling cascades. As galantamine, a cholinesterase inhibitor, has anti-inflammatory actions, we tested the hypothesis that galantamine would prevent (study 1) or restore (study 2) AIE induction of proinflammatory signals within the hippocampus as well as AIE-induced loss of hippocampal neurogenesis. METHODS Galantamine (4 mg/kg) or vehicle (saline) was administered to Wistar rats during adolescent intermittent ethanol (AIE; 5.0 g/kg ethanol, 2 days on/2 days off, postnatal day [P] 25-54) (study 1, prevention) or after AIE during abstinent maturation to adulthood (study 2, restoration). RESULTS Results indicate AIE reduced DCX+IR and induced cleaved caspase3 (Casp3) in DCX-expressing immature neurons. Excitingly, AIE induction of activated Casp3 in DCX-expressing neurons is both prevented and reversed by galantamine treatment, which also resulted in prevention and restoration of neurogenesis (DCX+IR). Similarly, galantamine prevented and/or reversed AIE induction of proinflammatory markers, including the chemokine (C-C motif) ligand 2 (CCL2), cyclooxygenase-2 (COX-2), and high mobility group box 1 (HMGB1) protein, suggesting that AIE induction of proinflammatory signaling mediates both cell death cascades and hippocampal neurogenesis. Interestingly, galantamine treatment increased Ki67+IR generally as well as increased pan-Trk expression specifically in AIE-treated rats but failed to reverse AIE induction of NADPH-oxidase (gp91phox). CONCLUSIONS Collectively, our studies suggest that (1) loss of neurogenesis after AIE is mediated by persistent induction of proinflammatory cascades which drive activation of cell death machinery in immature neurons, and (2) galantamine can prevent and restore AIE disruptions in the hippocampal environmental milieu to then prevent and restore AIE-mediated loss of neurogenesis.
Collapse
Affiliation(s)
- Victoria Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA.
| | - Ryan Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Elchert
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Fulton Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
9
|
Harper KM, Knapp DJ, Todd CA, Balan I, Aurelian L, Criswell HE, Breese GR. Phenotyping CCL2 Containing Central Amygdala Neurons Controlling Alcohol Withdrawal-Induced Anxiety. Front Cell Neurosci 2020; 14:580583. [PMID: 33192326 PMCID: PMC7531233 DOI: 10.3389/fncel.2020.580583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as chemokine (C-C motif) ligand 2 (CCL2) play a role in several behaviors, including anxiety-like behavior, but whether neurons are an important source of CCL2 for behavior and how neuronal CCL2 may work to affect behavior are still debated. When a herpes simplex virus (HSV) vector was used to knockdown CCL2 mRNA in neurons of the central nucleus of the amygdala (CeA) in rats experiencing multiple withdrawals from low dose ethanol, anxiety-like behavior appeared in the social interaction task. To examine this finding further Fractalkine (CX3CL1), a chemokine that is often found to have an opposing function to CCL2 was measured in these rats. Both alcohol withdrawal and CCL2 knockdown increased the levels of the anti-inflammatory protein CX3CL1. The combination of alcohol withdrawal and CCL2 knockdown decreased CX3CL1 and may alter pro-inflammatory/anti-inflammatory balance, and thus highlights the potential importance of CCL2 and CCL2/CX3CL1 balance in anxiety. To find a mechanism by which neuronal chemokines like CCL2 could affect behavior, retrograde tracing with fluorescent nanobeads was done in two brain regions associated with anxiety the bed nucleus of the stria terminalis (BNST) and the ventral periaqueductal gray (VPAG). These studies identified CeA projection neurons to these brain regions that contain CCL2. To demonstrate that CCL2 can be transported via axons to downstream brain regions, the axonal transport blocker, colchicine, was given and 24 h later, the accumulation of CCL2 in CeA neuronal cell bodies was found. Finally, CCL2 in CeA neurons was localized to the synapse using confocal microscopy with enhanced resolution following deconvolution and electron microscopy, which along with the other evidence suggests that CCL2 may be transported down axons in CeA neurons and released from nerve terminals perhaps into brain regions like the BNST and VPAG to affect behaviors such as anxiety. These results suggest that neurons are an important target for chemokine research related to behavior.
Collapse
Affiliation(s)
- Kathryn M Harper
- Department of Psychiatry, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Darin J Knapp
- Department of Psychiatry, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Caroline A Todd
- Department of Psychiatry, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Irina Balan
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States.,Stanford University School of Medicine, Stanford University, Stanford, CA, United States
| | - Hugh E Criswell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - George R Breese
- Department of Psychiatry, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Pharmacology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
11
|
Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2019; 12:100203. [PMID: 31879693 PMCID: PMC6920111 DOI: 10.1016/j.ynstr.2019.100203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
13
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
14
|
Harper KM, Knapp DJ, Butler RK, Cook CA, Criswell HE, Stuber GD, Breese GR. Amygdala Arginine Vasopressin Modulates Chronic Ethanol Withdrawal Anxiety-Like Behavior in the Social Interaction Task. Alcohol Clin Exp Res 2019; 43:2134-2143. [PMID: 31386210 DOI: 10.1111/acer.14163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chronic ethanol (EtOH) exposure induces neurobehavioral maladaptations in the brain though the precise changes have not been fully explored. The central nucleus of the amygdala (CEA) regulates anxiety-like behavior induced by withdrawal from chronic intermittent EtOH (CIE) exposure, and the arginine vasopressin (AVP) system within the CEA regulates many anxiety-like behaviors. Thus, adaptations occur in the CEA AVP system due to chronic EtOH exposure, which lead to anxiety-like behaviors in rats. METHODS Chronic exposure to a low-dose EtOH (4.5% wt/vol) induces anxiety-like behavior in rats. Wistar or Sprague Dawley rats were exposed to a modified CIE or CIE, while intra-CEA microinjections of AVP or a V1b receptor antagonist were used to elicit or block withdrawal-induced anxiety. Additionally, AVP microinjections into the CEA were given 24 hours following 15 days of continuous high-dose EtOH (7% wt/vol), a time period when rats no longer express anxiety. Chemogenetics was also used to activate the basolateral amygdala (BLA) or deactivate the dorsal periaqueductal gray=(dm/dlPAG) therefore PAG=periaqueductal gray to elicit or block withdrawal-induced anxiety. RESULTS AVP microinjected into the CEA in lieu of exposure to the first 2 cycles of CIE was sufficient to induce anxiety-like behavior in these commonly used rat strains. The V1b receptor antagonist, but not an oxytocin receptor agonist, into the CEA during the first 2 withdrawal cycles suppressed anxiety. However, activation of the BLA in lieu of exposure to the first 2 cycles of CIE was insufficient to induce anxiety-like behavior. AVP microinjection into the CEA 24 hours into withdrawal reelicited anxiety-like behavior, and deactivation of the dm/dlPAG reduced this effect of CEA AVP. CONCLUSIONS Taken together, this study demonstrates a role of CEA AVP and a CEA-dm/dlPAG circuit in the development of anxiety induced by CIE. Such information is valuable for identifying novel therapeutic targets for alcohol- and anxiety-associated disorders.
Collapse
Affiliation(s)
- Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan K Butler
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cory A Cook
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hugh E Criswell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Garret D Stuber
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
16
|
Gano A, Vore AS, Sammakia M, Deak T. Assessment of Extracellular Cytokines in the Hippocampus of the Awake Behaving Rat Using Large-Molecule Microdialysis Combined with Multiplex Arrays After Acute and Chronic Ethanol Exposure. Alcohol Clin Exp Res 2019; 43:640-654. [PMID: 30667526 PMCID: PMC6443416 DOI: 10.1111/acer.13963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies have demonstrated persistent changes in central nervous system (CNS) cytokine gene expression following ethanol (EtOH) exposure. However, the low endogenous expression and short half-lives of cytokines in the CNS have made cytokine protein detection challenging. The goal of these studies was to establish parameters for use of large-molecule microdialysis and sensitive multiplexing technology for the simultaneous detection of brain cytokines, corticosterone (CORT), and EtOH concentrations in the awake behaving rat. METHODS Adult (P75+) male Sprague Dawley rats that were either naïve to EtOH (Experiment 1) or had a history of adolescent chronic intermittent EtOH (CIE; Experiment 2) were given an acute EtOH challenge during microdialysis. Experiment 1 examined brain EtOH concentrations, CORT and a panel of neuroimmune analytes, including cytokines associated with innate and adaptive immunity. The natural time course of changes in these cytokines was compared to the effects of an acute 1.5 or 3.0 g/kg intraperitoneal (i.p.) EtOH challenge. In Experiment 2, rats with a history of adolescent CIE or controls exposed to vehicle were challenged with 3.0 g/kg i.p. EtOH during microdialysis in adulthood, and a panel of cytokines was examined in parallel with brain EtOH concentrations and CORT. RESULTS The microdialysis procedure itself induced a cytokine-specific response that replicated across studies, specifically a sequential elevation of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10. Surprisingly, acute EtOH did not significantly alter this course of cytokine fluctuations in the hippocampus. However, a history of adolescent CIE showed drastic effects on multiple neuroimmune analytes when rechallenged with EtOH as adults. Rats with a history of adolescent EtOH displayed a severely blunted neuroimmune response in adulthood, evinced by suppressed IL-1β, IL-10, and TNF-α. CONCLUSIONS Together, these findings provide a methodological framework for assessment of cytokine release patterns, their modulation by EtOH, and the long-lasting changes to neuroimmune reactivity evoked by a history of adolescent CIE.
Collapse
Affiliation(s)
- Anny Gano
- Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, SC, USA
| | - Andrew S. Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Maryam Sammakia
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| |
Collapse
|
17
|
Varodayan FP, Khom S, Patel RR, Steinman MQ, Hedges DM, Oleata CS, Homanics GE, Roberto M, Bajo M. Role of TLR4 in the Modulation of Central Amygdala GABA Transmission by CRF Following Restraint Stress. Alcohol Alcohol 2019; 53:642-649. [PMID: 29309503 PMCID: PMC6203127 DOI: 10.1093/alcalc/agx114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Aims Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress. Methods Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). Results TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRF significantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress. Conclusions Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response. Short Summary TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - S Khom
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - R R Patel
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M Q Steinman
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - D M Hedges
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - C S Oleata
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - G E Homanics
- Departments of Anesthesiology, Pharmacology & Chemical Biology, and Neurobiology, University of 6060 Biomedical Science Tower 3, Pittsburgh, Pittsburgh, PA, USA
| | - M Roberto
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M Bajo
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| |
Collapse
|
18
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
19
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
20
|
Knapp DJ, Harper KM, Melton J, Breese G. Comparative effects of stressors on behavioral and neuroimmune responses of fawn-hooded (FH/Wjd) and Wistar rats: Implications for models of depression. J Neuroimmunol 2018; 322:74-80. [DOI: 10.1016/j.jneuroim.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022]
|
21
|
Harper KM, Knapp DJ, Park MA, Breese GR. Differential effects of single versus repeated minocycline administration-Lack of significant interaction with chronic alcohol history. Pharmacol Biochem Behav 2018; 168:33-42. [PMID: 29572015 DOI: 10.1016/j.pbb.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Neuroimmune cytokines are increased with alcohol withdrawal and may mediate clinical responses associated with alcoholism. Because minocycline regulates the level of cytokines, it has been suggested as a therapeutic for disorders associated with alcohol. Male Wistar rats were exposed to chronic intermittent alcohol (CIA) comprising three 5-day cycles of ethanol liquid diet separated by 2 days of withdrawal. Rats were tested on social interaction, a measure of anxiety-like behavior, followed immediately by collection of amygdala tissue to measure CCL2 and TNFα or collection of the blood to measure corticosterone (CORT). One group received a single minocycline injection 3 h into the final CIA withdrawal and was tested 2 h later. A second group received injections during each of the three withdrawals and was similarly tested during the final acute withdrawal. A third group received a single injection at 23 h into withdrawal (extended withdrawal) and was tested 6 h later. Results showed that CIA withdrawal increased anxiety-like behavior. A single injection of minocycline during the final acute withdrawal increased anxiety-like behavior in rats that consumed liquid diet with or without alcohol, but this effect disappeared with repeated injections of minocycline. Differences in alcohol intake, blood alcohol level, and plasma CORT levels did not explain results. Only repeated injections of minocycline decreased TNFα mRNA levels in rats that consumed liquid diet with or without alcohol. When a single injection of minocycline was given during extended withdrawal, it decreased CCL2 mRNA levels, but did not reverse the elevation of CCL2 protein. These results suggest that minocycline has actions in brain and on behavior, but minocycline does not significantly impact these actions in relation to alcohol withdrawal.
Collapse
Affiliation(s)
- Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.
| | - Meredith A Park
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Bray JG, Reyes KC, Roberts AJ, Gruol DL. Altered hippocampal synaptic function in transgenic mice with increased astrocyte expression of CCL2 after withdrawal from chronic alcohol. Neuropharmacology 2018; 135:113-125. [PMID: 29499275 DOI: 10.1016/j.neuropharm.2018.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
CNS actions of the chemokine CCL2 are thought to play a role in a variety of conditions that can have detrimental consequences to CNS function, including alcohol use disorders. We used transgenic mice that express elevated levels of CCL2 in the CNS (CCL2-tg) and their non-transgenic (non-tg) littermate control mice to investigate long-term consequences of CCL2/alcohol/withdrawal interactions on hippocampal synaptic function, including excitatory synaptic transmission, somatic excitability, and synaptic plasticity. Two alcohol exposure paradigms were tested, a two-bottle choice alcohol (ethanol) drinking protocol (2BC drinking) and a chronic intermittent alcohol (ethanol) (CIE/2BC) protocol. Electrophysiological measurements of hippocampal function were made ex vivo, starting ∼0.6 months after termination of alcohol exposure. Both alcohol exposure/withdrawal paradigms resulted in CCL2-dependent interactions that altered the effects of alcohol on synaptic function. The synaptic alterations differed for the two alcohol exposure paradigms. The 2BC drinking/withdrawal treatment had no apparent long-term consequences on synaptic responses and long-term potentiation (LTP) in hippocampal slices from non-tg mice, whereas synaptic transmission was reduced but LTP was enhanced in hippocampal slices from CCL2-tg mice. In contrast, the CIE/2BC/withdrawal treatment enhanced synaptic transmission but reduced LTP in the non-tg hippocampus, whereas there were no apparent long-term consequences to synaptic transmission and LTP in hippocampus from CCL2-tg mice, although somatic excitability was enhanced. These results support the idea that alcohol-induced CCL2 production can modulate the effects of alcohol exposure/withdrawal on synaptic function and indicate that CCL2/alcohol interactions can vary depending on the alcohol exposure/withdrawal protocol used.
Collapse
Affiliation(s)
- Jennifer G Bray
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth C Reyes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Zahr NM. Peripheral TNFα elevations in abstinent alcoholics are associated with hepatitis C infection. PLoS One 2018; 13:e0191586. [PMID: 29408932 PMCID: PMC5800541 DOI: 10.1371/journal.pone.0191586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Substantial evidence supports the view that inflammatory processes contribute to brain alterations in HIV infection. Mechanisms recently proposed to underlie neuropathology in Alcohol Use Disorder (AUD) include elevations in peripheral cytokines that sensitize the brain to the damaging effects of alcohol. This study included 4 groups: healthy controls, individuals with AUD (abstinent from alcohol at examination), those infected with HIV, and those comorbid for HIV and AUD. The aim was to determine whether inflammatory cytokines are elevated in AUD as they are in HIV infection. Cytokines showing group differences included interferon gamma-induced protein 10 (IP-10) and tumor necrosis factor α (TNFα). Follow-up t-tests revealed that TNFα and IP-10 were higher in AUD than controls but only in AUD patients who were seropositive for Hepatitis C virus (HCV). Specificity of TNFα and IP-10 elevations to HCV infection status was provided by correlations between cytokine levels and HCV viral load and indices of liver integrity including albumin/globulin ratio, fibrosis scores, and AST/platelet count ratio. Because TNFα levels were mediated by HCV infection, this study provides no evidence for elevations in peripheral cytokines in "uncomplicated", abstinent alcoholics, independent of liver disease or HCV infection. Nonetheless, these results corroborate evidence for elevations in IP-10 and TNFα in HIV and for IP-10 levels in HIV+HCV co-infection.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Neuroscience Department, SRI International, Menlo Park, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Beattie MC, Reguyal CS, Porcu P, Daunais JB, Grant KA, Morrow AL. Neuroactive Steroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) and Pro-inflammatory Cytokine MCP-1 Levels in Hippocampus CA1 are Correlated with Voluntary Ethanol Consumption in Cynomolgus Monkey. Alcohol Clin Exp Res 2017; 42:12-20. [PMID: 29112774 DOI: 10.1111/acer.13545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) are potent neuromodulators that enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Chronic ethanol (EtOH) consumption reduces 3α,5α-THP levels in human plasma, but has brain region- and species-specific effects on central nervous system levels of 3α,5α-THP. We explored the relationship between 3α,5α-THP levels in the hippocampus and voluntary EtOH consumption in the cynomolgus monkey following daily self-administration of EtOH for 12 months and further examined the relationship with hypothalamic-pituitary-adrenal (HPA) axis function prior to EtOH exposure. We simultaneously explored hippocampus levels of monocyte chemoattractant protein 1 (MCP-1), a pro-inflammatory cytokine that plays an important role in the neuroimmune response to EtOH, following chronic self-administration. METHODS Monkeys were subjected to scheduled induction of water and EtOH consumption (0 to 1.5 g/kg) over 4 months, followed by free access to EtOH or water for 22 h/d over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP or anti-MCP-1 antibody. Prolonged voluntary drinking resulted in individual differences in EtOH consumption that ranged from 1.2 to 4.2 g/kg/d over 12 months. RESULTS Prolonged EtOH consumption increased cellular 3α,5α-THP immunoreactivity by 12 ± 2% (p < 0.05) and reduced MCP-1 immunoreactivity by 23 ± 9% (p < 0.05) in the hippocampus CA1. In both cases, the effect of EtOH was most pronounced in heavy drinkers that consumed ≥3 g/kg for ≥20% of days. 3α,5α-THP immunoreactivity was positively correlated with average daily EtOH intake (Spearman r = 0.76, p < 0.05) and dexamethasone inhibition of HPA axis function (Spearman r = 0.9, p < 0.05). In contrast, MCP-1 immunoreactivity was negatively correlated with average daily EtOH intake (Spearman r = -0.78, p < 0.05) and dexamethasone suppression of HPA axis function (Spearman r = -0.76, p < 0.05). Finally, 3α,5α-THP and MCP-1 immunoreactivity were inversely correlated with each other (Spearman r = -0.68, p < 0.05). CONCLUSIONS These data indicate that voluntary, long-term EtOH consumption results in higher levels of 3α,5α-THP, while decreasing levels of MCP-1 in the CA1 hippocampus, and that both changes may be linked to HPA axis function and the magnitude of voluntary EtOH consumption.
Collapse
Affiliation(s)
- Matthew C Beattie
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Reguyal
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Patrizia Porcu
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Walter TJ, Vetreno RP, Crews FT. Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res 2017; 41:2066-2081. [PMID: 28941277 PMCID: PMC5725687 DOI: 10.1111/acer.13511] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Background Cycles of alcohol and stress are hypothesized to contribute to alcohol use disorders. How this occurs is poorly understood, although both alcohol and stress activate the neuroimmune system—the immune molecules and cells that interact with the nervous system. The effects of alcohol and stress on the neuroimmune system are mediated in part by peripheral signaling molecules. Alcohol and stress both enhance immunomodulatory molecules such as corticosterone and endotoxin to impact neuroimmune cells, such as microglia, and may subsequently impact neurons. In this study, we therefore examined the effects of acute and chronic ethanol (EtOH) on the corticosterone, endotoxin, and microglial and neuronal response to acute stress. Methods Male Wistar rats were treated intragastrically with acute EtOH and acutely stressed with restraint/water immersion. Another group of rats was treated intragastrically with chronic intermittent EtOH and acutely stressed following prolonged abstinence. Plasma corticosterone and endotoxin were measured, and immunohistochemical stains for the microglial marker CD11b and neuronal activation marker c‐Fos were performed. Results Acute EtOH and acute stress interacted to increase plasma endotoxin and microglial CD11b, but not plasma corticosterone or neuronal c‐Fos. Chronic EtOH caused a lasting sensitization of stress‐induced plasma endotoxin, but not plasma corticosterone. Chronic EtOH also caused a lasting sensitization of stress‐induced microglial CD11b, but not neuronal c‐Fos. Conclusions These results find acute EtOH combined with acute stress enhanced plasma endotoxin, as well as microglial CD11b in many brain regions. Chronic EtOH followed by acute stress also increased plasma endotoxin and microglial CD11b, suggesting a lasting sensitization to acute stress. Overall, these data suggest alcohol and stress interact to increase plasma endotoxin, resulting in enhanced microglial activation that could contribute to disease progression.
Collapse
Affiliation(s)
- Thomas Jordan Walter
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
26
|
Abstract
It is now widely accepted that an innate immune system exists within the brain and plays an important role in both physiological and pathological processes [1,2].[...].
Collapse
|
27
|
Grissom NM, George R, Reyes TM. Suboptimal nutrition in early life affects the inflammatory gene expression profile and behavioral responses to stressors. Brain Behav Immun 2017; 63:115-126. [PMID: 27756624 DOI: 10.1016/j.bbi.2016.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Nutritional conditions in early life can have a lasting impact on health and disease risk, though the underlying mechanisms are incompletely understood. In the healthy individual, physiological and behavioral responses to stress are coordinated in such a way as to mobilize resources necessary to respond to the stressor and to terminate the stress response at the appropriate time. Induction of proinflammatory gene expression within the brain is one such example that is initiated in response to both physiological and psychological stressors, and is the focus of the current study. We tested the hypothesis that early life nutrition would impact the proinflammatory transcriptional response to a stressor. Pregnant and lactating dams were fed one of three diets; a low-protein diet, a high fat diet, or the control diet through pregnancy and lactation. Adult male offspring were then challenged with either a physiological stressor (acute lipopolysaccharide injection, IP) or a psychological stressor (15 min restraint). Expression of 20 proinflammatory and stress-related genes was evaluated in hypothalamus, prefrontal cortex, amygdala and ventral tegmental area. In a second cohort, behavioral responses (food intake, locomotor activity, metabolic rate) were evaluated. Offspring from low protein fed dams showed a generally reduced transcriptional response, particularly to LPS, and resistance to behavioral changes associated with restraint, while HF offspring showed an exacerbated transcriptional response within the PFC, a reduced transcriptional response in hypothalamus and amygdala, and an exacerbation of the LPS-induced reduction of locomotor activity. The present data identify differential proinflammatory transcriptional responses throughout the brain driven by perinatal diet as an important variable that may affect risk or resilience to stressors.
Collapse
Affiliation(s)
- Nicola M Grissom
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Robert George
- University of Pennsylvania, Department of Pharmacology, Philadelphia, PA, USA
| | - Teresa M Reyes
- University of Cincinnati, Department of Psychiatry and Behavioral Neuroscience, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Wolf G, Lotan A, Lifschytz T, Ben-Ari H, Kreisel Merzel T, Tatarskyy P, Valitzky M, Mernick B, Avidan E, Koroukhov N, Lerer B. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation. Front Aging Neurosci 2017; 9:191. [PMID: 28670274 PMCID: PMC5472721 DOI: 10.3389/fnagi.2017.00191] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
Bilateral common carotid artery stenosis (BCAS) models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month) and young adult (3 month) female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014): on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049), while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP) showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05) compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01) and old control mice (p < 0.05). These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.
Collapse
Affiliation(s)
- Gilly Wolf
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel.,Departments of Psychology and Life Sciences, School of Sciences, Achva Academic CollegeBe'er Tuvia, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Hagar Ben-Ari
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Tirzah Kreisel Merzel
- Department of Developmental Biology and Cancer Research, Hadassah-Hebrew University Medical SchoolJerusalem, Israel
| | - Pavel Tatarskyy
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| | - Michael Valitzky
- Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel.,Neurology Laboratory, Department of Neurology, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Ben Mernick
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Developmental Psychopathology Laboratory, Department of Psychology, University of HaifaHaifa, Israel
| | - Elad Avidan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Nickolay Koroukhov
- Cardiovascular Research Center, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical CenterJerusalem, Israel.,Hadassah BrainLabs-National Knowledge Center for Research on Brain DiseasesJerusalem, Israel
| |
Collapse
|
29
|
Chen H, He D, Lasek AW. Midkine in the mouse ventral tegmental area limits ethanol intake and Ccl2 gene expression. GENES BRAIN AND BEHAVIOR 2017; 16:699-708. [PMID: 28398003 DOI: 10.1111/gbb.12384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Midkine (MDK) is a cytokine and neurotrophic factor that is more highly expressed in the brains of alcoholics and in mice predisposed to drink large amounts of ethanol, suggesting that MDK may regulate ethanol consumption. Here we measured ethanol consumption in male and female Mdk knockout (-/-) mice using the two-bottle choice and the drinking in the dark (DID) tests. We found that Mdk -/- mice consumed significantly more ethanol than wild-type controls in both tests. To determine if MDK acts in the ventral tegmental area (VTA) to regulate ethanol consumption, we delivered lentivirus expressing a Mdk shRNA into the VTA of male C57BL/6J mice to locally knockdown Mdk and performed the DID test. Mice expressing a Mdk shRNA in the VTA consumed more ethanol than mice expressing a control non-targeting shRNA, demonstrating that the VTA is one site in the brain through which MDK acts to regulate ethanol consumption. Since MDK also controls the expression of inflammatory cytokines in other organs, we examined gene expression of interleukin-1 beta (Il1b), tumor necrosis factor alpha (Tnfα) and the chemokine (C-C motif) ligand 2 (Ccl2) in the VTA of Mdk -/- mice and in mice expressing Mdk shRNA in the VTA. Expression of Ccl2 was elevated in the VTA of Mdk -/- mice and in mice expressing Mdk shRNA in the VTA. These results demonstrate that MDK functions in the VTA to limit ethanol consumption and levels of CCL2, a chemokine known to increase ethanol consumption.
Collapse
Affiliation(s)
- H Chen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - D He
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - A W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Bray JG, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol. Neuroscience 2017; 354:88-100. [PMID: 28431906 DOI: 10.1016/j.neuroscience.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). The consequences of alcohol-induced increases in CCL2 levels in the CNS have yet to be fully elucidated. Our studies focus on the hypothesis that increased levels of CCL2 in the CNS produce neuroadaptive changes that modify the actions of alcohol on the CNS. We utilized behavioral testing in transgenic mice that express elevated levels of CCL2 to test this hypothesis. The increased level of CCL2 in the transgenic mice involves increased astrocyte expression. Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning.
Collapse
Affiliation(s)
- Jennifer G Bray
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Baxter-Potter LN, Henricks AM, Berger AL, Bieniasz KV, Lugo JM, McLaughlin RJ. Alcohol vapor exposure differentially impacts mesocorticolimbic cytokine expression in a sex-, region-, and duration-specific manner. Neuroscience 2017; 346:238-246. [DOI: 10.1016/j.neuroscience.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/12/2023]
|
32
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
33
|
Harper KM, Knapp DJ, Park MA, Breese GR. Age-related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal in male Wistar rats. Psychopharmacology (Berl) 2017; 234:79-88. [PMID: 27665607 PMCID: PMC5203962 DOI: 10.1007/s00213-016-4439-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and adult rats. METHODS Adolescent and adult Wistar rats were exposed to CIA (three 5-day blocks of dietary alcohol separated by 2 days of withdrawal) at concentrations that created similar blood alcohol levels across age. Twenty-four hours into the final withdrawal, half of the rats were exposed to 1 h of restraint stress. Four hours post-stress, rats were used for behavior or tissue assays. RESULTS Anxiety-like behavior was increased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 mRNA was increased versus controls by CIA in adolescents and by CIA and CIA + stress in adults. CCL2 co-localization with neuronal marker NeuN was decreased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 co-localization with astrocytic marker GFAP was decreased versus controls by CIA and CIA + stress in adolescents, but experimental groups did not differ from controls in adults. CCL2 co-localization with microglial marker Iba1 was decreased versus controls by stress alone in adolescents and by CIA + stress in adults. CONCLUSIONS Changes in CCL2 protein might control behavior at either age but are particularly associated with CIA alone in adolescents and with CIA + stress in adults. That the number of CeA neurons expressing CCL2 was altered after CIA and stress is consistent with CCL2 involvement in neural function.
Collapse
Affiliation(s)
- Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 3006 Thurston-Bowles Building, Chapel Hill, NC 27599-7178, USA
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 3006 Thurston-Bowles Building, Chapel Hill, NC, 27599-7178, USA. .,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Meredith A. Park
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 3006 Thurston-Bowles Building, Chapel Hill, NC 27599-7178, USA
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 3006 Thurston-Bowles Building, Chapel Hill, NC 27599-7178, USA, Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, The UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Gano A, Pautassi RM, Doremus-Fitzwater TL, Deak T. Conditioned effects of ethanol on the immune system. Exp Biol Med (Maywood) 2017; 242:718-730. [PMID: 28201924 DOI: 10.1177/1535370217694097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to alcohol abuse and dependence. Ethanol-induced conditioning of the immune system could likely exacerbate neuroinflammation and drug-related toxicity, which in turn may facilitate further engagement in ethanol intake. The main new finding of the present study was that, after four pairings of ethanol's unconditioned effects and a distinctive odor, the latter CS increased IL-6 levels in HPC and AMG. This suggests that ethanol's effects upon IL-6 in HPC and AMG may come under conditioned control, particularly after repeated pairings between distinctive odor cues and ethanol's effects. This article advances our knowledge of conditioned increases in cytokine responses, which should help understand the mechanisms underlying alcohol use, abuse, and relapse.
Collapse
Affiliation(s)
- Anny Gano
- 1 Department of Psychology, Developmental Exposure Alcohol Research Center, NY 13902-6000, USA
| | - Ricardo Marcos Pautassi
- 2 Instituto de Investigación Médica M. y M. Ferreyra, Universidad Nacional de Córdoba, C.P. 5000, Argentina.,3 Facultad de Psicología, Universidad Nacional de Córdoba, C.P. 5000, Argentina
| | | | - Terrence Deak
- 1 Department of Psychology, Developmental Exposure Alcohol Research Center, NY 13902-6000, USA
| |
Collapse
|