1
|
Dorninger F, Berger J, Honsho M. Editorial: Solving the plasmalogen puzzle-From basic science to clinical application. Front Cell Dev Biol 2023; 11:1137868. [PMID: 36727111 PMCID: PMC9885182 DOI: 10.3389/fcell.2023.1137868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Wang T, Huynh K, Giles C, Mellett NA, Duong T, Nguyen A, Lim WLF, Smith AAT, Olshansky G, Cadby G, Hung J, Hui J, Beilby J, Watts GF, Chatterjee P, Martins I, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Doré V, Fripp J, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Baillie R, Han X, Martins RN, Moses EK, Kaddurah‐Daouk R, Meikle PJ. APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies. Alzheimers Dement 2022; 18:2151-2166. [PMID: 35077012 PMCID: PMC9787288 DOI: 10.1002/alz.12538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.
Collapse
|
3
|
Goodenowe DB, Senanayake V. Brain ethanolamine phospholipids, neuropathology and cognition: A comparative post-mortem analysis of structurally specific plasmalogen and phosphatidyl species. Front Cell Dev Biol 2022; 10:866156. [PMID: 36092723 PMCID: PMC9451657 DOI: 10.3389/fcell.2022.866156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Reduced cognition in the elderly is associated with low levels of plasmalogens and high levels of lipid rafts, amyloid plaques, and neurofibrillary tangles in the temporal cortex. A systematic integrative analysis of key indices of these pathologies to determine their collective and independent contributions to cognition was performed. Levels of four phosphatidylethanolamines (PE) and four ethanolamine plasmalogens (PL) of identical sn-1 carbon length and desaturation (stearic, 18:0) and identical sn-2 fatty acid compositions of varying side chain lengths and degrees of unsaturation (oleic, 18:1; linoleic, 18:2; arachidonic, 20:4; docosahexaenoic, 22:6), flotillin-1 expression and amyloid plaque and neurofibrillary tangle densities were measured in inferior temporal cortex tissue from 100 elderly subjects (Rush University Memory and Aging Project, 88.5 ± 5.8 years old). Subjects were evenly distributed with respect to gender (52/48, F/M) and cognitive status (38/24/38, no cognitive impairment/mild cognitive impairment/Alzheimer's dementia) proximate to death. Multivariate logistic regression analyses were used to determine the relative and collective associations of the neuropathological indices with cognition. Higher levels of tangles, amyloid, or flotillin and lower levels of PL 18:0/22:6 were significantly associated with lower cognition in the base model (adjusted for age, sex, education). Multivariate analysis revealed that only PL 18:0/22:6 (β = 0.506; p < 0.00001), tangles (-0.307; p < 0.01), and flotillin (-0.2027; p < 0.05) were independently associated with reduced cognition. PL 18:0/22:6 and PE 18:0/22:6 levels were independently associated with cognition in the presence of tangles, amyloid, and flotillin, but only PL 18:0/22:6 retained its association with cognition when both PL and PE 18:0/22:6 were included in the model indicating that PE 18:0/22:6 levels were associated with PL 18:0/22:6, not cognition. Only high brain levels of PL 18:0/22:6 (>mean+1SD) was predictive of normal cognition (coef = 1.67, p < 0.05) and non-demented state (coef = -2.73, p < 0.001), whereas low levels of PL 18:0/22:6 and high levels of tangles or flotillin were predictive of dementia. The association of high brain polyunsaturated (PUFA)-PL levels with better cognition was independent of amyloid plaque, neurofibrillary tangle, PE, and flotillin-1 expression. Maintenance or augmentation of brain docosahexaenoic (DHA)-PL levels warrants further investigation as a target for preventing cognitive decline or improving cognition in the elderly, respectively.
Collapse
|
4
|
Goodenowe DB, Haroon J, Kling MA, Zielinski M, Mahdavi K, Habelhah B, Shtilkind L, Jordan S. Targeted Plasmalogen Supplementation: Effects on Blood Plasmalogens, Oxidative Stress Biomarkers, Cognition, and Mobility in Cognitively Impaired Persons. Front Cell Dev Biol 2022; 10:864842. [PMID: 35874835 PMCID: PMC9297104 DOI: 10.3389/fcell.2022.864842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmalogens are a specific type of glycerophospholipid found in especially high levels in neuronal membranes. Decreased blood and brain levels of docosahexaenoic acid (DHA) containing plasmalogens are associated with decreased cognition and neuromuscular function in humans. Administration of 1-O-alkyl-2-acylglycerol (AAG) plasmalogen precursors containing DHA at the sn-2 position dose-dependently increase blood DHA plasmalogens and are neuroprotective in animal models of neurodegeneration at doses between 10 and 50 mg/kg. We conducted an investigational clinical trial in 22 cognitively impaired persons to evaluate the effects of an escalating oral dosing regimen of DHA-AAG from 900 to 3,600 mg/day over a 4-month period on blood serum plasmalogen and non-plasmalogen phospholipids and oxidative stress biomarkers. Safety, tolerability and therapeutic effects on cognition and mobility were also evaluated. DHA plasmalogen levels increased with increasing dose and remained significantly elevated at all treatment doses and durations. DHA plasmalogen levels were positively associated with catalase activity and negatively associated with malondialdehyde (MDA) levels. DHA-AAG supplementation normalized catalase activity in persons with low baseline catalase activity, normalized MDA levels in persons with high baseline MDA levels, and normalized superoxide dismutase activity in persons with high baseline SOD activity. Cognition improved in nine participants, was unchanged in nine, and declined in four. Mobility improved in twelve, was unchanged in five and declined in four participants. Changes in cognition and mobility were statistically significant versus a random outcome. Baseline DHA-plasmalogen levels were not predictive of clinical response. DHA-AAG was well tolerated at all dosages and no adverse reactions were observed.
Collapse
|
5
|
Guan X, Iyaswamy A, Sreenivasmurthy SG, Su C, Zhu Z, Liu J, Kan Y, Cheung KH, Lu J, Tan J, Li M. Mechanistic Insights into Selective Autophagy Subtypes in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073609. [PMID: 35408965 PMCID: PMC8998506 DOI: 10.3390/ijms23073609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
Collapse
Affiliation(s)
- Xinjie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jiahong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macau, Macao, China;
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Correspondence: (J.T.); (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: (J.T.); (M.L.)
| |
Collapse
|
6
|
Azad AK, Sheikh AM, Haque MA, Osago H, Sakai H, Shibly AZ, Yano S, Michikawa M, Hossain S, Tabassum S, A G, Zhou X, Zhang Y, Nagai A. Time-Dependent Analysis of Plasmalogens in the Hippocampus of an Alzheimer's Disease Mouse Model: A Role of Ethanolamine Plasmalogen. Brain Sci 2021; 11:1603. [PMID: 34942905 PMCID: PMC8699479 DOI: 10.3390/brainsci11121603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Plasmalogens are alkenyl-acyl glycerophospholipids and decreased in post-mortem Alzheimer's disease (AD) brains. The aim of this study is to investigate the time-dependent changes of plasmalogens in the hippocampus of an AD model mouse (J20). Plasmalogen levels at 3, 6, 9, 12 and 15 months were analyzed by liquid-chromatography-targeted-multiplexed-selected-reaction-monitoring-tandem-mass-spectrometry (LC-SRM/MS). Reactive oxygen species (ROS) levels were evaluated using dichlorofluorescein diacetate (DCF-DA). Plasmalogen synthesizing enzyme glycerone-phosphate O-acyltransferase (GNPAT) and late endosome marker Rab7 levels were quantified by Western blotting. GNPAT localization, changes of neuronal and glial cell numbers were evaluated by immunostaining. Compared to wild-type mice (WT), total plasmalogen-ethanolamine, but not plasmalogen-choline levels, were increased at 9 months and subsequently decreased at 15 months in J20 mice. A principal component analysis of plasmalogen-ethanolamine species could separate WT and J20 mice both at 9 and 15 months. Both GNPAT and Rab7 protein were increased in J20 mice at 9 months, whereas GNPAT was decreased at 15 months. ROS levels were increased in J20 mice except for 9 months. Our results suggest that increased plasmalogen-ethanolamine could counteract ROS levels and contribute to the phagocytosis process in J20 mice at 9 months. Such results might indicate a transient protective response of plasmalogen-ethanolamine in AD conditions.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Md Ahsanul Haque
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Harumi Osago
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Abu Zaffar Shibly
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Shahdat Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Garu A
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Xiaojing Zhou
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuchi Zhang
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|
7
|
Liu TT, Pang SJ, Jia SS, Man QQ, Li YQ, Song S, Zhang J. Association of Plasma Phospholipids with Age-Related Cognitive Impairment: Results from a Cross-Sectional Study. Nutrients 2021; 13:2185. [PMID: 34201969 PMCID: PMC8308406 DOI: 10.3390/nu13072185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
Decreased concentration of phospholipids were observed in brain tissue from individuals with dementia compared with controls, indicating phospholipids might be a key variable in development of age-related cognitive impairment. The reflection of these phospholipid changes in blood might provide both reference for diagnosis/monitoring and potential targets for intervention through peripheral circulation. Using a full-scale targeted phospholipidomic approach, 229 molecular species of plasma phospholipid were identified and quantified among 626 senile residents; the association of plasma phospholipids with MoCA score was also comprehensively discussed. Significant association was confirmed between phospholipid matrix and MoCA score by a distance-based linear model. Additionally, the network analysis further observed that two modules containing PEs were positively associated with MoCA score, and one module containing LPLs had a trend of negative correlation with MoCA score. Furthermore, 23 phospholipid molecular species were found to be significantly associated with MoCA score independent of fasting glucose, lipidemia, lipoproteins, inflammatory variables and homocysteine. Thus, the decreased levels of pPEs containing LC-PUFA and the augmented levels of LPLs were the most prominent plasma phospholipid changes correlated with the cognitive decline, while alterations in plasma PC, PS and SM levels accompanying cognitive decline might be due to variation of lipidemia and inflammatory levels.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shao-Jie Pang
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Shan-Shan Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Qing-Qing Man
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Yu-Qian Li
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shuang Song
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Jian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| |
Collapse
|
8
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
9
|
Kling MA, Goodenowe DB, Senanayake V, MahmoudianDehkordi S, Arnold M, Massaro TJ, Baillie R, Han X, Leung YY, Saykin AJ, Nho K, Kueider-Paisley A, Tenenbaum JD, Wang LS, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF. Circulating ethanolamine plasmalogen indices in Alzheimer's disease: Relation to diagnosis, cognition, and CSF tau. Alzheimers Dement 2020; 16:1234-1247. [PMID: 32715599 DOI: 10.1002/alz.12110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Altered lipid metabolism is implicated in Alzheimer's disease (AD), but the mechanisms remain obscure. Aging-related declines in circulating plasmalogens containing omega-3 fatty acids may increase AD risk by reducing plasmalogen availability. METHODS We measured four ethanolamine plasmalogens (PlsEtns) and four closely related phosphatidylethanolamines (PtdEtns) from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 1547 serum) and University of Pennsylvania (UPenn; n = 112 plasma) cohorts, and derived indices reflecting PlsEtn and PtdEtn metabolism: PL-PX (PlsEtns), PL/PE (PlsEtn/PtdEtn ratios), and PBV (plasmalogen biosynthesis value; a composite index). We tested associations with baseline diagnosis, cognition, and cerebrospinal fluid (CSF) AD biomarkers. RESULTS Results revealed statistically significant negative relationships in ADNI between AD versus CN with PL-PX (P = 0.007) and PBV (P = 0.005), late mild cognitive impairment (LMCI) versus cognitively normal (CN) with PL-PX (P = 2.89 × 10-5 ) and PBV (P = 1.99 × 10-4 ), and AD versus LMCI with PL/PE (P = 1.85 × 10-4 ). In the UPenn cohort, AD versus CN diagnosis associated negatively with PL/PE (P = 0.0191) and PBV (P = 0.0296). In ADNI, cognition was negatively associated with plasmalogen indices, including Alzheimer's Disease Assessment Scale 13-item cognitive subscale (ADAS-Cog13; PL-PX: P = 3.24 × 10-6 ; PBV: P = 6.92 × 10-5 ) and Mini-Mental State Examination (MMSE; PL-PX: P = 1.28 × 10-9 ; PBV: P = 6.50 × 10-9 ). In the UPenn cohort, there was a trend toward a similar relationship of MMSE with PL/PE (P = 0.0949). In ADNI, CSF total-tau was negatively associated with PL-PX (P = 5.55 × 10-6 ) and PBV (P = 7.77 × 10-6 ). Additionally, CSF t-tau/Aβ1-42 ratio was negatively associated with these same indices (PL-PX, P = 2.73 × 10-6 ; PBV, P = 4.39 × 10-6 ). In the UPenn cohort, PL/PE was negatively associated with CSF total-tau (P = 0.031) and t-tau/Aβ1-42 (P = 0.021). CSF Aβ1-42 was not significantly associated with any of these indices in either cohort. DISCUSSION These data extend previous studies by showing an association of decreased plasmalogen indices with AD, mild cognitive impairment (MCI), cognition, and CSF tau. Future studies are needed to better define mechanistic relationships, and to test the effects of interventions designed to replete serum plasmalogens.
Collapse
Affiliation(s)
- Mitchel A Kling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Behavioral Health Service, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tyler J Massaro
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yuk-Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jessica D Tenenbaum
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | -
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Meletis CD. Alkyl-Acylglycerols and the Important Clinical Ramifications of Raising Plasmalogens in Dementia and Alzheimer's Disease. Integr Med (Encinitas) 2020; 19:12-16. [PMID: 33132773 PMCID: PMC7572144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A critical factor involved in the pathophysiology of Alzheimer's disease (AD) and related dementias is the decline of plasmalogens, a key glycerophospholipid required for normal neuron function. An accumulating body of evidence correlates low blood and brain plasmalogens with higher levels of AD pathology and lower cognition scores and indicates that declines in these phospholipids begin years before clinical symptoms develop. Furthermore, it has been recently reported that high blood plasmalogen levels neutralize the increased risk of dementia in persons who carry the APOE epsilon 4 allele, the most significant genetic risk factor for AD. There are over 30 common species of plasmalogens in the human body with different plasmalogen species playing different roles, depending on the organ and cell type. Accordingly, there is great interest in understanding how to selectively target plasmalogen augmentation for specific health needs. For example, brain white matter is comprised of plasmalogens containing monounsaturated fatty acids, whereas gray matter is comprised of plasmalogens containing polyunsaturated fatty acids. Fortunately, the structure-activity and biochemistry of plasmalogen augmentation has been extensively studied in cell and animal models. Restoring and augmenting levels of selective plasmalogens can be achieved with dietary supplementation of 1-O-alkyl-2-acyl glycerol oils containing the desired fatty acid type at the 2-acyl position. Neuron-targeted 1-O-alkyl-2-acyl glycerol containing DHA has been shown to be neuroprotective and neuroactive in animal models of neurodegeneration. This review will discuss the mechanisms by which plasmalogen deficiency leads to Alzheimer's and/or dementia and the critical role that 1-O-alkyl-2-acyl glycerol oils can play in patients with those disorders.
Collapse
|
11
|
Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front Cell Neurosci 2020; 14:44. [PMID: 32210766 PMCID: PMC7075811 DOI: 10.3389/fncel.2020.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes exist in most cells, where they participate in lipid metabolism, as well as scavenging the reactive oxygen species (ROS) that are produced as by-products of their metabolic functions. In certain tissues such as the liver and kidneys, peroxisomes have more specific roles, such as bile acid synthesis in the liver and steroidogenesis in the adrenal glands. In the brain, peroxisomes are critically involved in creating and maintaining the lipid content of cell membranes and the myelin sheath, highlighting their importance in the central nervous system (CNS). This review summarizes the peroxisomal lifecycle, then examines the literature that establishes a link between peroxisomal dysfunction, cellular aging, and age-related disorders that affect the CNS. This review also discusses the gap of knowledge in research on peroxisomes in the CNS.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Louise D. McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|