• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (925)   Subscriber (50676)
For: Ahmad A, Chaiyasarn K, Farooq F, Ahmad W, Suparp S, Aslam F. Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA. Buildings 2021;11:324. [DOI: 10.3390/buildings11080324] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Number Cited by Other Article(s)
1
Aziz T, Aziz H, Mahapakulchai S, Charoenlarpnopparut C. Optimizing compressive strength prediction using adversarial learning and hybrid regularization. Sci Rep 2024;14:18338. [PMID: 39112659 PMCID: PMC11306558 DOI: 10.1038/s41598-024-69434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]  Open
2
Rezaei F, Arab Juneghani MR, Keshavarz Moraveji M, Rafiei Y, Sharifi M, Ahmadi M, Hemmati-Sarapardeh A. On the evaluation of surface tension of biodiesel. Sci Rep 2024;14:18253. [PMID: 39107333 PMCID: PMC11303739 DOI: 10.1038/s41598-024-68064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024]  Open
3
Inqiad WB, Javed MF, Onyelowe K, Siddique MS, Asif U, Alkhattabi L, Aslam F. Soft computing models for prediction of bentonite plastic concrete strength. Sci Rep 2024;14:18145. [PMID: 39103567 PMCID: PMC11300626 DOI: 10.1038/s41598-024-69271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]  Open
4
Fabijański M, Gołofit T. Influence of Processing Parameters on Mechanical Properties and Degree of Crystallization of Polylactide. MATERIALS (BASEL, SWITZERLAND) 2024;17:3584. [PMID: 39063876 PMCID: PMC11278669 DOI: 10.3390/ma17143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
5
Liu X, Liu H, Wang Z, Zang X, Ren J, Zhao H. Performance Characterization and Composition Design Using Machine Learning and Optimal Technology for Slag-Desulfurization Gypsum-Based Alkali-Activated Materials. MATERIALS (BASEL, SWITZERLAND) 2024;17:3540. [PMID: 39063830 PMCID: PMC11279024 DOI: 10.3390/ma17143540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
6
Saingam P, Hussain Q, Sua-Iam G, Nawaz A, Ejaz A. Hemp Fiber-Reinforced Polymers Composite Jacketing Technique for Sustainable and Environment-Friendly Concrete. Polymers (Basel) 2024;16:1774. [PMID: 39000630 PMCID: PMC11244574 DOI: 10.3390/polym16131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]  Open
7
Wang R, Huo Y, Wang T, Hou P, Gong Z, Li G, Li C. Machine Learning Method to Explore the Correlation between Fly Ash Content and Chloride Resistance. MATERIALS (BASEL, SWITZERLAND) 2024;17:1192. [PMID: 38473663 DOI: 10.3390/ma17051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
8
Dodo Y, Arif K, Alyami M, Ali M, Najeh T, Gamil Y. Estimation of compressive strength of waste concrete utilizing fly ash/slag in concrete with interpretable approaches: optimization and graphical user interface (GUI). Sci Rep 2024;14:4598. [PMID: 38409333 PMCID: PMC10897462 DOI: 10.1038/s41598-024-54513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]  Open
9
Zhou J, Su Z, Hosseini S, Tian Q, Lu Y, Luo H, Xu X, Chen C, Huang J. Decision tree models for the estimation of geo-polymer concrete compressive strength. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024;21:1413-1444. [PMID: 38303471 DOI: 10.3934/mbe.2024061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
10
Li Q, Ren G, Wang H, Xu Q, Zhao J, Wang H, Ding Y. Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques. Sci Rep 2023;13:20102. [PMID: 37973915 PMCID: PMC10654708 DOI: 10.1038/s41598-023-47196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]  Open
11
Asghar M, Javed MF, Khan MI, Abdullaev S, Awwad FA, Ismail EAA. Empirical models for compressive and tensile strength of basalt fiber reinforced concrete. Sci Rep 2023;13:19909. [PMID: 37964000 PMCID: PMC10646001 DOI: 10.1038/s41598-023-47330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]  Open
12
Hosseinzadeh M, Mousavi SS, Hosseinzadeh A, Dehestani M. An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset. Sci Rep 2023;13:15024. [PMID: 37700062 PMCID: PMC10497559 DOI: 10.1038/s41598-023-42270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]  Open
13
Li H. Prediction of high-performance concrete compressive strength through novel structured neural network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-221342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
14
Amin MN, Alkadhim HA, Ahmad W, Khan K, Alabduljabbar H, Mohamed A. Experimental and machine learning approaches to investigate the effect of waste glass powder on the flexural strength of cement mortar. PLoS One 2023;18:e0280761. [PMID: 36689541 PMCID: PMC9870140 DOI: 10.1371/journal.pone.0280761] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]  Open
15
Alfaiad MA, Khan K, Ahmad W, Amin MN, Deifalla AF, A Ghamry N. Evaluating the compressive strength of glass powder-based cement mortar subjected to the acidic environment using testing and modeling approaches. PLoS One 2023;18:e0284761. [PMID: 37093880 PMCID: PMC10124891 DOI: 10.1371/journal.pone.0284761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]  Open
16
Amin MN, Al-Hashem MN, Ahmad A, Khan K, Ahmad W, Qadir MG, Imran M, Al-Ahmad QMS. Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete. MATERIALS (BASEL, SWITZERLAND) 2022;15:7800. [PMID: 36363391 PMCID: PMC9656225 DOI: 10.3390/ma15217800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
17
Qureshi HJ, Saleem MU, Javed MF, Al Fuhaid AF, Ahmad J, Amin MN, Khan K, Aslam F, Arifuzzaman M. Prediction of Autogenous Shrinkage of Concrete Incorporating Super Absorbent Polymer and Waste Materials through Individual and Ensemble Machine Learning Approaches. MATERIALS (BASEL, SWITZERLAND) 2022;15:7412. [PMID: 36363008 PMCID: PMC9656842 DOI: 10.3390/ma15217412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
18
Alkadhim HA, Amin MN, Ahmad W, Khan K, Nazar S, Faraz MI, Imran M. Evaluating the Strength and Impact of Raw Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations (SHAP) Methods. MATERIALS (BASEL, SWITZERLAND) 2022;15:ma15207344. [PMID: 36295407 PMCID: PMC9609276 DOI: 10.3390/ma15207344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 05/05/2023]
19
Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Polymers (Basel) 2022;14:polym14183906. [PMID: 36146051 PMCID: PMC9506242 DOI: 10.3390/polym14183906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]  Open
20
Zheng D, Wu R, Sufian M, Kahla NB, Atig M, Deifalla AF, Accouche O, Azab M. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. MATERIALS 2022;15:ma15155194. [PMID: 35897626 PMCID: PMC9332776 DOI: 10.3390/ma15155194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
21
A Systematic Review of the Research Development on the Application of Machine Learning for Concrete. MATERIALS 2022;15:ma15134512. [PMID: 35806636 PMCID: PMC9267835 DOI: 10.3390/ma15134512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
22
Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters. Polymers (Basel) 2022;14:polym14122509. [PMID: 35746085 PMCID: PMC9231083 DOI: 10.3390/polym14122509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]  Open
23
Yang D, Zhao J, Suhail SA, Ahmad W, Kamiński P, Dyczko A, Salmi A, Mohamed A. Investigating the Ultrasonic Pulse Velocity of Concrete Containing Waste Marble Dust and Its Estimation Using Artificial Intelligence. MATERIALS 2022;15:ma15124311. [PMID: 35744370 PMCID: PMC9229265 DOI: 10.3390/ma15124311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
24
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. MATERIALS 2022;15:ma15124209. [PMID: 35744270 PMCID: PMC9228203 DOI: 10.3390/ma15124209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
25
Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients. MATERIALS 2022;15:ma15124194. [PMID: 35744254 PMCID: PMC9229192 DOI: 10.3390/ma15124194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023]
26
Khan K, Ahmad W, Amin MN, Ahmad A, Nazar S, Alabdullah AA, Arab AMA. Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms. MATERIALS 2022;15:ma15124108. [PMID: 35744167 PMCID: PMC9227983 DOI: 10.3390/ma15124108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
27
Amin MN, Khan K, Ahmad W, Javed MF, Qureshi HJ, Saleem MU, Qadir MG, Faraz MI. Compressive Strength Estimation of Geopolymer Composites through Novel Computational Approaches. Polymers (Basel) 2022;14:polym14102128. [PMID: 35632011 PMCID: PMC9147713 DOI: 10.3390/polym14102128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]  Open
28
Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques. BUILDINGS 2022. [DOI: 10.3390/buildings12050690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
29
Khan K, Ahmad W, Amin MN, Aslam F, Ahmad A, Al-Faiad MA. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. MATERIALS 2022;15:ma15103430. [PMID: 35629456 PMCID: PMC9147385 DOI: 10.3390/ma15103430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/24/2023]
30
Zou Y, Zheng C, Alzahrani AM, Ahmad W, Ahmad A, Mohamed AM, Khallaf R, Elattar S. Evaluation of Artificial Intelligence Methods to Estimate the Compressive Strength of Geopolymers. Gels 2022;8:gels8050271. [PMID: 35621569 PMCID: PMC9140756 DOI: 10.3390/gels8050271] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]  Open
31
Predicting the Splitting Tensile Strength of Recycled Aggregate Concrete Using Individual and Ensemble Machine Learning Approaches. CRYSTALS 2022. [DOI: 10.3390/cryst12050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
32
Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete. MATERIALS 2022;15:ma15082823. [PMID: 35454516 PMCID: PMC9025364 DOI: 10.3390/ma15082823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/20/2022]
33
Application of Machine Learning Approaches to Predict the Strength Property of Geopolymer Concrete. MATERIALS 2022;15:ma15072400. [PMID: 35407733 PMCID: PMC8999160 DOI: 10.3390/ma15072400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022]
34
Wang Q, Ahmad W, Ahmad A, Aslam F, Mohamed A, Vatin NI. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites. Polymers (Basel) 2022;14:polym14061074. [PMID: 35335405 PMCID: PMC8956037 DOI: 10.3390/polym14061074] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]  Open
35
Compressive Strength Prediction of High-Strength Concrete Using Long Short-Term Memory and Machine Learning Algorithms. BUILDINGS 2022. [DOI: 10.3390/buildings12030302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
36
Data-Driven Compressive Strength Prediction of Fly Ash Concrete Using Ensemble Learner Algorithms. BUILDINGS 2022. [DOI: 10.3390/buildings12020132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
37
Shang M, Li H, Ahmad A, Ahmad W, Ostrowski KA, Aslam F, Joyklad P, Majka TM. Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. MATERIALS 2022;15:ma15020647. [PMID: 35057364 PMCID: PMC8778266 DOI: 10.3390/ma15020647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
38
Prediction of Compressive Strength of Fly-Ash-Based Concrete Using Ensemble and Non-Ensemble Supervised Machine-Learning Approaches. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
39
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. MATERIALS 2021;14:ma14227034. [PMID: 34832432 PMCID: PMC8618129 DOI: 10.3390/ma14227034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
40
Tosee SVR, Faridmehr I, Bedon C, Sadowski Ł, Aalimahmoody N, Nikoo M, Nowobilski T. Metaheuristic Prediction of the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL Optimization Algorithm. MATERIALS 2021;14:ma14206172. [PMID: 34683782 PMCID: PMC8540916 DOI: 10.3390/ma14206172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
41
Ahmad A, Ahmad W, Chaiyasarn K, Ostrowski KA, Aslam F, Zajdel P, Joyklad P. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Polymers (Basel) 2021;13:polym13193389. [PMID: 34641204 PMCID: PMC8512145 DOI: 10.3390/polym13193389] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022]  Open
42
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. MATERIALS 2021;14:ma14195762. [PMID: 34640160 PMCID: PMC8510219 DOI: 10.3390/ma14195762] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
43
Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach. MATERIALS 2021;14:ma14164518. [PMID: 34443041 PMCID: PMC8398330 DOI: 10.3390/ma14164518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA