1
|
Agamia NF, El Mulla KF, Alsayed NM, Ghazala RM, El Maksoud REA, Abdelmeniem IM, Talaat IM, Zaki II, Sabah RM, Melnik BC. Isotretinoin treatment upregulates the expression of p53 in the skin and sebaceous glands of patients with acne vulgaris. Arch Dermatol Res 2023; 315:1355-1365. [PMID: 36585988 PMCID: PMC10205870 DOI: 10.1007/s00403-022-02508-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023]
Abstract
The transcriptomic regulation induced by isotretinoin (13-cis retinoic acid) is still a matter of debate as short-term exposures of immortalized sebocytes with isotretinoin produced conflicting results. Based on translational evidence, it has been hypothesized that oral isotretinoin treatment upregulates the expression of the transcription factor p53. Twenty-five patients suffering from acne vulgaris were treated with isotretinoin (0.6 mg/kg body weight) for 6 weeks. Biopsies from back skin were taken before and after isotretinoin treatment for the determination of p53 expression by immunohistochemical staining, quantification of p53 protein concentration by enzyme-linked immunosorbent assay and TP53 gene expression by quantitative reverse transcription real time PCR. Fifteen socio-demographically cross-matched healthy volunteers served as controls. Isotretinoin treatment significantly increased the nuclear expression of p53 in sebaceous glands of treated patients compared to pre-treatment levels and p53 levels of untreated controls. Furthermore, the p53 protein and gene expression significantly increased in the skin after treatment. The magnitude of p53 expression showed an inverse correlation to acne severity score and body mass index. Under clinical conditions, isotretinoin induced the expression of p53, which controls multiple transcription factors involved in the pathogenesis of acne vulgaris including FoxO1, androgen receptor and critical genes involved in the induction of autophagy and apoptosis. Increased p53-FoxO1 signalling enhanced by systemic isotretinoin treatment explains the underlying transcriptomic changes causing sebum suppression but also the adverse effects associated with systemic isotretinoin therapy.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Khalid Fawzi El Mulla
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Naglaa Mohamed Alsayed
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rasha Mohamed Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Iman Mohamed Abdelmeniem
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Iman Mamdouh Talaat
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Inass Ibrahim Zaki
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rana Mohamed Sabah
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Bodo Clemens Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49076, Osnabrück, Germany
| |
Collapse
|
2
|
Fazlalipour M, Ghoreshi ZAS, Molaei HR, Arefinia N. The Role of DNA Viruses in Human Cancer. Cancer Inform 2023; 22:11769351231154186. [PMID: 37363356 PMCID: PMC10286548 DOI: 10.1177/11769351231154186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 06/28/2023] Open
Abstract
This review discusses the possible involvement of infections-associated cancers in humans, with virus infections contributing 15% to 20% of total cancer cases in humans. DNA virus encoded proteins interact with host cellular signaling pathways and control proliferation, cell death and genomic integrity viral oncoproteins are known to bind cellular Deubiquitinates (DUBs) such as cyclindromatosis tumor suppressor, ubiquitin-specific proteases 7, 11, 15 and 20, and A-20 to improve their intracellular stability and cellular signaling pathways and finally transformation. Human papillomaviruses (cervical carcinoma, oral cancer and laryngeal cancer); human polyomaviruses (mesotheliomas, brain tumors); Epstein-Barr virus (B-cell lymphoproliferative diseases and nasopharyngeal carcinoma); Kaposi's Sarcoma Herpesvirus (Kaposi's Sarcoma and primary effusion lymphomas); hepatitis B (hepatocellular carcinoma (HCC)) cause up to 20% of malignancies around the world.
Collapse
Affiliation(s)
- Mehdi Fazlalipour
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran (IPI), Tehran, Iran
- Research Center for Emerging and Reemerging Infectious diseases, Pasteur Institute of Iran (IPI), Tehran, Iran
| | | | - Hamid Reza Molaei
- Department of Medical Bacteriology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasir Arefinia
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
3
|
Göbel T, Goebel B, Hyprath M, Lamminger I, Weisser H, Angioni C, Mathes M, Thomas D, Kahnt AS. Three-dimensional growth reveals fine-tuning of 5-lipoxygenase by proliferative pathways in cancer. Life Sci Alliance 2023; 6:e202201804. [PMID: 36849252 PMCID: PMC9971161 DOI: 10.26508/lsa.202201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.
Collapse
Affiliation(s)
- Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ira Lamminger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hannah Weisser
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
| | - Marius Mathes
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Arman W, Munger K. Mechanistic Contributions of lncRNAs to Cellular Signaling Pathways Crucial to the Lifecycle of Human Papillomaviruses. Viruses 2022; 14:2439. [PMID: 36366537 PMCID: PMC9697900 DOI: 10.3390/v14112439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses are ubiquitous epitheliotropic viruses with double-stranded circular DNA genomes of approximately 8000 base pairs. The viral life cycle is somewhat unusual in that these viruses can establish persistent infections in the mitotically active basal epithelial cells that they initially infect. High-level viral genome replication ("genome amplification"), the expression of capsid proteins, and the formation of infectious progeny are restricted to terminally differentiated cells where genomes are synthesized at replication factories at sites of double-strand DNA breaks. To establish persistent infections, papillomaviruses need to retain the basal cell identity of the initially infected cells and restrain and delay their epithelial differentiation program. To enable high-level viral genome replication, papillomaviruses also need to hold the inherently growth-arrested terminally differentiated cells in a replication-competent state. To provide ample sites for viral genome synthesis, they target the DNA damage and repair machinery. Studies focusing on delineating cellular factors that are targeted by papillomaviruses may aid the development of antivirals. Whilst most of the current research efforts focus on protein targets, the majority of the human transcriptome consists of noncoding RNAs. This review focuses on one specific class of noncoding RNAs, long noncoding RNAs (lncRNAs), and summarizes work on lncRNAs that may regulate the cellular processes that are subverted by papillomavirus to enable persistent infections and progeny synthesis.
Collapse
Affiliation(s)
- Warda Arman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Lin W, Zhang X, Zhang C, Li L, Zhang J, Xie P, Zhan Y, An W. Deletion of Smurf1 attenuates liver steatosis via stabilization of p53. J Transl Med 2022; 102:1075-1087. [PMID: 36775348 DOI: 10.1038/s41374-022-00802-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, characterized by excessive hepatic lipid accumulation. Recently, we demonstrated that Smad ubiquitination regulatory factor 1 (Smurf1) deficiency significantly alleviates mouse hepatic steatosis. However, the mechanism of Smurf1-regulating hepatic lipid accumulation requires further exploration and clarification. Hence, this study explores the potential mechanism of Smurf1 in hepatic steatosis. In this study, hepatic Smurf1 proteins in NAFLD patients and healthy individuals were determined using immunohistochemical staining. Control and NAFLD mouse models were established by feeding Smurf1-knockout (KO) and wild-type mice with either a high-fat diet (HFD) or a chow diet (CD) for eight weeks. Oleic acid (OA)-induced steatotic hepatocytes were used as the NAFLD mode cells. Lipid content in liver tissues was analyzed. Smurf1-MDM2 interaction, MDM2 and p53 ubiquitination, and p53 target genes expression in liver tissues and hepatocytes were analyzed. We found that hepatic Smurf1 is highly expressed in NAFLD patients and HFD-induced NAFLD mice. Its deletion attenuates hepatocyte steatosis. Mechanistically, Smurf1 interacts with and stabilizes mouse double minute 2 (MDM2), promoting p53 degradation. In Smurf1-deficient hepatocytes, an increase in p53 suppresses SREBP-1c expression and elevates the expression of both malonyl-CoA decarboxylase (MCD) and lipin1 (Lpin1), two essential proteins in lipid catabolism. Contrarily, the activities of these three proteins and hepatocyte steatosis are reversed by p53 knockdown in Smurf1-deficient hepatocytes. This study shows that Smurf1 is involved in the pathogenesis of NAFLD by balancing de novo lipid synthesis and lipolysis.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chuan Zhang
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ping Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China.
| | - Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Wei An
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
7
|
Structural Characteristics of the 5′-Terminal Region of Mouse p53 mRNA and Identification of Proteins That Bind to This mRNA Region. Int J Mol Sci 2022; 23:ijms23179709. [PMID: 36077109 PMCID: PMC9456389 DOI: 10.3390/ijms23179709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA’s structure and its interactions with proteins in the translation process. In particular, the 5′-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5′-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5′-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5′-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.
Collapse
|
8
|
Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The Elephant evolved p53 isoforms that escape mdm2-mediated repression and cancer. Mol Biol Evol 2022; 39:6632613. [PMID: 35792674 PMCID: PMC9279639 DOI: 10.1093/molbev/msac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53–MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53–MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto’s Paradox.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Mia-Lyn Jooste
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
- Department of Medical Biosciences, Umeå University , 90185 Umeå , Sweden
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
| | - Fritz Vollrath
- Department of Zoology, Zoology Research and Administration Building, University of Oxford , Oxford, UK
- Save the Elephants Marula Manor , Marula Lane, Karen P.O. Box 54667. Nairobi 00200. Kenya Office: +254 720 441 178
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain
| |
Collapse
|
9
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
10
|
Hisaoka M, Schott J, Bortecen T, Lindner D, Krijgsveld J, Stoecklin G. Preferential translation of p53 target genes. RNA Biol 2022; 19:437-452. [PMID: 35388737 PMCID: PMC8993080 DOI: 10.1080/15476286.2022.2048562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor p53 exerts its tumour suppressive effect through transcriptional activation of numerous target genes controlling cell cycle arrest, apoptosis, cellular senescence and DNA repair. In addition, there is evidence that p53 influences the translation of specific mRNAs, including translational inhibition of ribosomal protein synthesis and translational activation of MDM2. A challenge in the analysis of translational control is that changes in mRNA abundance exert a kinetic (passive) effect on ribosome densities. In order to separate these passive effects from active regulation of translation efficiency in response to p53 activation, we conducted a comprehensive analysis of translational regulation by comparative analysis of mRNA levels and ribosome densities upon DNA damage induced by neocarzinostatin in wild-type and TP53−/− HCT116 colorectal carcinoma cells. Thereby, we identified a specific group of mRNAs that are preferentially translated in response to p53 activation, many of which correspond to p53 target genes including MDM2, SESN1 and CDKN1A. By subsequent polysome profile analysis of SESN1 and CDKN1A mRNA, we could demonstrate that p53-dependent translational activation relies on a combination of inducing the expression of translationally advantageous isoforms and trans-acting mechanisms that further enhance the translation of these mRNAs.
Collapse
Affiliation(s)
- Miharu Hisaoka
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany.,National Center for Tumor Diseases (NCT) partner site, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany
| | - Toman Bortecen
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany.,National Center for Tumor Diseases (NCT) partner site, Heidelberg, Germany
| |
Collapse
|
11
|
Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188718. [PMID: 35304296 DOI: 10.1016/j.bbcan.2022.188718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Collapse
Affiliation(s)
- Chloé Morin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Caroline Moyret-Lalle
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France.
| |
Collapse
|
12
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
13
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
14
|
Cirotti C, Rizza S, Giglio P, Poerio N, Allega MF, Claps G, Pecorari C, Lee J, Benassi B, Barilà D, Robert C, Stamler JS, Cecconi F, Fraziano M, Paull TT, Filomeni G. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep 2021; 22:e50500. [PMID: 33245190 PMCID: PMC7788447 DOI: 10.15252/embr.202050500] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.
Collapse
Affiliation(s)
- Claudia Cirotti
- Department of BiologyTor Vergata UniversityRomeItaly
- Laboratory of Cell SignalingIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa LuciaRomeItaly
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
| | - Paola Giglio
- Department of BiologyTor Vergata UniversityRomeItaly
| | - Noemi Poerio
- Department of BiologyTor Vergata UniversityRomeItaly
| | - Maria Francesca Allega
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
- Present address:
Cancer Research UK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Chiara Pecorari
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
| | - Ji‐Hoon Lee
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTXUSA
| | - Barbara Benassi
- Division of Health Protection TechnologiesENEA‐CasacciaRomeItaly
| | - Daniela Barilà
- Department of BiologyTor Vergata UniversityRomeItaly
- Laboratory of Cell SignalingIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa LuciaRomeItaly
| | - Caroline Robert
- INSERM, U981VillejuifFrance
- Université Paris SudUniversité Paris‐SaclayKremlin‐BicêtreFrance
- Oncology DepartmentGustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Jonathan S Stamler
- Institute for Transformative Molecular MedicineCase Western Reserve University and Harrington Discovery InstituteUniversity Hospitals Case Medical CenterClevelandOHUSA
| | - Francesco Cecconi
- Department of BiologyTor Vergata UniversityRomeItaly
- Cell Stress and Survival UnitDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Hematology and OncologyIRCCS Bambino Gesù Children's HospitalRomeItaly
| | | | - Tanya T Paull
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTXUSA
| | - Giuseppe Filomeni
- Department of BiologyTor Vergata UniversityRomeItaly
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
- Center for Healthy AgingCopenhagen UniversityCopenhagenDenmark
| |
Collapse
|
15
|
Bian Z, Huang X, Chen Y, Meng J, Feng X, Zhang M, Zhang L, Zhou J, Liang C. Fifteen-MiRNA-Based Signature Is a Reliable Prognosis-Predicting Tool for Prostate Cancer Patients. Int J Med Sci 2021; 18:284-294. [PMID: 33390797 PMCID: PMC7738977 DOI: 10.7150/ijms.49412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/09/2022] Open
Abstract
Recurrence is a major problem for prostate cancer patients, thus, identifying prognosis-related markers to evaluate clinical outcomes is essential. Here, we established a fifteen-miRNA-based recurrence-free survival (RFS) predicting signature based on the miRNA expression profile extracted from The Cancer Genome Atlas (TCGA) database by the LASSO Cox regression analysis. The median risk score generated by the signature in both the TCGA training and the external Memorial Sloan-Kettering Cancer Center (MSKCC) validation cohorts was employed and the patients were subclassified into low- and high-risk subgroups. The Kaplan-Meier plot and log-rank analyses showed significant survival differences between low- and high-risk subgroups of patients (TCGA, log-rank P < 0.001 & MSKCC, log-rank P = 0.045). In addition, the receiver operating characteristic curves of both the training and external validation cohorts indicated the good performance of our model. After predicting the downstream genes of these miRNAs, the miRNA-mRNA network was visualized by Cytoscape software. In addition, pathway analyses found that the differences between two groups were mainly enriched on tumor progression and drug resistance-related pathways. Multivariate analyses revealed that the miRNA signature is an independent indicator of RFS prognosis for prostate cancer patients with or without clinicopathological features. In summary, our novel fifteen-miRNA-based prediction signature is a reliable method to evaluate the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518000, China
| | - Yiding Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China.,Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, People's Republic of China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
16
|
Impaired chondrocyte U3 snoRNA expression in osteoarthritis impacts the chondrocyte protein translation apparatus. Sci Rep 2020; 10:13426. [PMID: 32778764 PMCID: PMC7417995 DOI: 10.1038/s41598-020-70453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Although pathways controlling ribosome activity have been described to regulate chondrocyte homeostasis in osteoarthritis, ribosome biogenesis in osteoarthritis is unexplored. We hypothesized that U3 snoRNA, a non-coding RNA involved in ribosomal RNA maturation, is critical for chondrocyte protein translation capacity in osteoarthritis. U3 snoRNA was one of a number of snoRNAs with decreased expression in osteoarthritic cartilage and osteoarthritic chondrocytes. OA synovial fluid impacted U3 snoRNA expression by affecting U3 snoRNA gene promoter activity, while BMP7 was able to increase its expression. Altering U3 snoRNA expression resulted in changes in chondrocyte phenotype. Interference with U3 snoRNA expression led to reduction of rRNA levels and translational capacity, whilst induced expression of U3 snoRNA was accompanied by increased 18S and 28S rRNA levels and elevated protein translation. Whole proteome analysis revealed a global impact of reduced U3 snoRNA expression on protein translational processes and inflammatory pathways. For the first time we demonstrate implications of a snoRNA in osteoarthritis chondrocyte biology and investigated its role in the chondrocyte differentiation status, rRNA levels and protein translational capacity.
Collapse
|
17
|
Uzdensky AB. Multifunctional Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Berthel E, Vincent A, Eberst L, Torres AG, Dacheux E, Rey C, Marcel V, Paraqindes H, Lachuer J, Catez F, de Pouplana LR, Treilleux I, Diaz JJ, Dalla Venezia N. Uncovering the Translational Regulatory Activity of the Tumor Suppressor BRCA1. Cells 2020; 9:cells9040941. [PMID: 32290274 PMCID: PMC7226996 DOI: 10.3390/cells9040941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
BRCA1 inactivation is a hallmark of familial breast cancer, often associated with aggressive triple negative breast cancers. BRCA1 is a tumor suppressor with known functions in DNA repair, transcription regulation, cell cycle control, and apoptosis. In the present study, we demonstrate that BRCA1 is also a translational regulator. We previously showed that BRCA1 was implicated in translation regulation. Here, we asked whether translational control could be a novel function of BRCA1 that contributes to its tumor suppressive activity. A combination of RNA-binding protein immunoprecipitation, microarray analysis, and polysome profiling, was used to identify the mRNAs that were specifically deregulated under BRCA1 deficiency. Western blot analysis allowed us to confirm at the protein level the deregulated translation of a subset of mRNAs. A unique and dedicated cohort of patients with documented germ-line BRCA1 pathogenic variant statues was set up, and tissue microarrays with the biopsies of these patients were constructed and analyzed by immunohistochemistry for their content in each candidate protein. Here, we show that BRCA1 translationally regulates a subset of mRNAs with which it associates. These mRNAs code for proteins involved in major programs in cancer. Accordingly, the level of these key proteins is correlated with BRCA1 status in breast cancer cell lines and in patient breast tumors. ADAT2, one of these key proteins, is proposed as a predictive biomarker of efficacy of treatments recently recommended to patients with BRCA1 deficiency. This study proposes that translational control may represent a novel molecular mechanism with potential clinical impact through which BRCA1 is a tumor suppressor.
Collapse
Affiliation(s)
- Elise Berthel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Anne Vincent
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Lauriane Eberst
- Centre Léon Bérard, Medical Oncology Department, Université de Lyon 1, F-69008 Lyon, France;
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (A.G.T.); (L.R.d.P.)
| | - Estelle Dacheux
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Catherine Rey
- ProfileXpert, UNIV-US7 INSERM-UMS 3453 CNRS, F-69000 Lyon, France; (C.R.); (J.L.)
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Hermes Paraqindes
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Joël Lachuer
- ProfileXpert, UNIV-US7 INSERM-UMS 3453 CNRS, F-69000 Lyon, France; (C.R.); (J.L.)
| | - Frédéric Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (A.G.T.); (L.R.d.P.)
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Isabelle Treilleux
- Department of Translational Research and Innovation, Centre Léon Bérard, F-69008 Lyon, France;
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
| | - Nicole Dalla Venezia
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (E.B.) ; (A.V.) ; (E.D.) ; (V.M.) ; (H.P.) ; (F.C.) ; (J.-J.D.)
- Correspondence: ; Tel.: +33-426-556-745
| |
Collapse
|
19
|
Huang M, Jin J, Zhang F, Wu Y, Xu C, Ying L, Su D. Non-disruptive mutation in TP53 DNA-binding domain is a beneficial factor of esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:316. [PMID: 32355760 PMCID: PMC7186752 DOI: 10.21037/atm.2020.02.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background TP53 is frequently altered in esophageal squamous cell carcinoma (ESCC). However, the landscape of TP53 mutation and its effects on patients remain controversial. Methods Somatic mutations of TP53 in 161 patients with resectable ESCC were identified by next-generation sequencing (NGS) and verified by immunohistochemistry (IHC). Patients were stratified into seven TP53 mutations, and depending on the extent of the effect on the encoded protein, it was divided into "disruptive" and "non-disruptive" types. The association of TP53 mutation with clinicopathological properties and disease outcome was investigated. Results TP53 mutations were discovered in 85.7% patients, of which 68.9% carried mutations in the DNA-binding domain (DBD). A total of 47.8% and 37.9% patients had disruptive and non-disruptive TP53 mutations, respectively. Most patients carried only one TP53 mutation, but 15.5% had double mutations. TP53 mutations were dominant in exons 5 to 8. Missense mutation was the most frequent (97/163, 59.5%), and the top five frequently occurring variations included R273X, Y220X, H193, H179X, and R175H. Multivariable analysis revealed non-disruptive mutation in TP53 DBD as the independent prognostic predictor for progression-free survival (PFS) and overall survival (OS). The expression of p53 positively correlated with non-disruptive mutation in DBD. Patients with high p53 protein expression showed better outcomes. Conclusions Non-disruptive mutation in TP53 DBD serves as an independent beneficial prognostic factor of prolonged survival in resectable ESCC.
Collapse
Affiliation(s)
- Minran Huang
- Department of Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China.,Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiaoyue Jin
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Fanrong Zhang
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Breast Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yingxue Wu
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Chenyang Xu
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lisha Ying
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Cancer Hospital of University of Chinese Academy of Sciences, 310022, China
| | - Dan Su
- Institute of Cancer and Basic Medical (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
20
|
Derech-Haim S, Friedman Y, Hizi A, Bakhanashvili M. p53 regulates its own expression by an intrinsic exoribonuclease activity through AU-rich elements. J Mol Med (Berl) 2020; 98:437-449. [PMID: 32016559 DOI: 10.1007/s00109-020-01884-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
The onco-suppressor p53 protein plays also an important role in the control of various aspects of health and disease. p53 levels are low in normal cells and elevated under stress conditions. While low levels of p53 promote tumor formation, overactive p53 leads to premature aging and cell death. RNA degradation is a critical level of regulation contributing to the control of gene expression. p53, as an RNA-binding protein, exerts 3' → 5' exoribonuclease activity, mediating degradation of adenylate/uridylate-rich elements (ARE)-containing ssRNAs. The 3'-UTR of p53-mRNA, which is a target of p53 itself, harbors cis-acting AREs. Our results suggest that p53 controls its own expression through murine double-minute 2 (mdm2)-independent "RNA decay" function in cytoplasm. We demonstrate that p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA via translation-independent and translation-dependent polysome-associated pathways. Antagonistic interplay was detected between p53 levels and execution of its exoribonuclease function mirrored in low p53 levels in normal cells, due to the efficient exoribonuclease activity, and in the accumulation of p53 in cells exposed to p53-activating drugs in accordance with the reduced exoribonuclease activity. Apparently, p53, via control of its own mRNA stability and/or translation in cytoplasm, might act as a negative regulator of p53-mRNA levels. The observed connection between exoribonuclease activity and p53 abundance highlights the importance of this function affecting p53 expression, imperative for multiple functions, with implications for the steady-state levels of protein and for the p53 stress response. The modulation in expression of exoribonuclease activity would be translated into the alterations in p53 level. KEY MESSAGES: p53 controls its own expression through mdm2-independent "RNA decay" function in cytoplasm. p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA. Antagonistic interplay exists between stress-induced p53 and execution of its exoribonuclease function.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Yael Friedman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Amnon Hizi
- Department of Cellular and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
21
|
Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep 2020; 10:1481. [PMID: 32001771 PMCID: PMC6992775 DOI: 10.1038/s41598-020-58267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cells need to preserve genome integrity despite varying cellular and physical states. p53, the guardian of the genome, plays a crucial role in the cellular response to DNA damage by triggering cell cycle arrest, apoptosis or senescence. Mutations in p53 or alterations in its regulatory network are major driving forces in tumorigenesis. As multiple studies indicate beneficial effects for hyperthermic treatments during radiation- or chemotherapy of human cancers, we aimed to understand how p53 dynamics after genotoxic stress are modulated by changes in temperature across a physiological relevant range. To this end, we employed a combination of time-resolved live-cell microscopy and computational analysis techniques to characterise the p53 response in thousands of individual cells. Our results demonstrate that p53 dynamics upon ionizing radiation are temperature dependent. In the range of 33 °C to 39 °C, pulsatile p53 dynamics are modulated in their frequency. Above 40 °C, which corresponds to mild hyperthermia in a clinical setting, we observed a reversible phase transition towards sustained hyperaccumulation of p53 disrupting its canonical response to DNA double strand breaks. Moreover, we provide evidence that mild hyperthermia alone is sufficient to induce a p53 response in the absence of genotoxic stress. These insights highlight how the p53-mediated DNA damage response is affected by alterations in the physical state of a cell and how this can be exploited by appropriate timing of combination therapies to increase the efficiency of cancer treatments.
Collapse
Affiliation(s)
- Marcel Jentsch
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Petra Snyder
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Basel, Switzerland
| | - Elena Cristiano
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
22
|
Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. J Mol Neurosci 2019; 70:532-541. [PMID: 31823284 DOI: 10.1007/s12031-019-01453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Neuron and glia death after axon transection is regulated by various signaling proteins. Protein p53 is a key regulator of diverse cell functions including stress response, DNA repair, proliferation, and apoptosis. We showed that p53 was overexpressed in crayfish ganglia after bilateral axotomy. In the isolated crayfish stretch receptor, a simple natural neuroglial preparation, which consists of a single mechanoreceptor neuron (MRN) enveloped by glial cells, p53 regulated axotomy-induced death of glial cells remote from the axon transection site. In MRN, p53 immunofluorescence was highest in the nucleolus and in the narrow cytoplasmic ring around the nucleus; its levels in the nucleus and cytoplasm were lower. After axotomy, p53 accumulated in the neuronal perikaryon. Its immunofluorescence also increased in the neuronal and glial nuclei. However, p53 immunofluorescence in the most of neuronal nucleoli disappeared. Axotomy-induced apoptosis of remote glial cells increased in the presence of p53 activators WR-1065 and nutlin-3 but reduced by pifithrin-α that inhibits transcriptional activity of p53. Pifithrin-μ that inhibits p53 effect on mitochondria increased axotomy-induced apoptosis of remote glial cells but reduced their necrosis. Therefore, axotomy-induced apoptosis of remote glial cells was associated with p53 effect on transcription processes, whereas glial necrosis was rather associated with transcription-independent p53 effect on mitochondria. Apparently, the fate of remote glial cells in the axotomized crayfish stretch receptor is determined by the balance between different modalities of p53 activity.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Andrey Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Maria Pitinova
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valeria Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Mikhail Rudkovskii
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
23
|
Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019; 12:67. [PMID: 31722751 PMCID: PMC6852955 DOI: 10.1186/s13072-019-0313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.
Collapse
Affiliation(s)
- Alexandra V Goodnight
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA
| | - Isaac Kremsky
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Embryonic Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yoon Hee Jung
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - James M Billingsley
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Swiatkowska A, Dutkiewicz M, Zydowicz-Machtel P, Szpotkowska J, Janecki DM, Ciesiołka J. Translational Control in p53 Expression: The Role of 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2019; 20:E5382. [PMID: 31671760 PMCID: PMC6862623 DOI: 10.3390/ijms20215382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/05/2023] Open
Abstract
In this review, the latest research concerning the structure and function of the 5'-terminal region of p53 mRNA was discussed. Special attention was focused on defined structural motifs which are present in this region, as well as their conservation and plausible functional role in translation. It is known that the length of the 5'-terminal region and the structural environment of initiation codons can strongly modulate translation initiation. The ability of this region of p53 mRNA to bind protein factors was also described with special emphasis on general principles that govern, such RNA-protein interactions. The structural alterations within the 5'-terminal region of p53 mRNA and proteins that bind to this region have a strong impact on the rate of mRNA scanning and on translation efficiency in in vitro assays, in selected cell lines, and under stress conditions. Thus, the structural features of the 5'-terminal region of p53 mRNA seem to be very important for translation and for translation regulation mechanisms. Finally, we suggested topics that, in our opinion, should be further explored for better understanding of the mechanisms of the p53 gene expression regulation at the translational level.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Paulina Zydowicz-Machtel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Joanna Szpotkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Damian M Janecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
25
|
Bukovac A, Kafka A, Hrašćan R, Vladušić T, Pećina-Šlaus N. Nucleotide variations of TP53 exon 4 found in intracranial meningioma and in silico prediction of their significance. Mol Clin Oncol 2019; 11:563-572. [PMID: 31692929 PMCID: PMC6826266 DOI: 10.3892/mco.2019.1936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to identify TP53 exon 4 mutations in patients with meningioma and to investigate their potential association with specific tumor pathology. Nucleotide alterations were investigated in 48 meningiomas via the direct sequencing of TP53 exon 4 in patient tumor and blood samples using the DNA Sanger method with the BigDyeTerminator v3.1 Cycle Sequencing kit and Applied Biosystems 3730XL apparatus. The results revealed that TP53 exon 4 was frequently altered in meningioma, occurring in 60.4% of the patients investigated. A total of 18 different alterations were detected in the meningioma samples assessed in the current study. The majority of these appeared more than once and some were repeatedly identified in several patients. Changes at codons 72 (c.215G>C) and 62 (c.186delA) were highly prevalent, occurring in 44.8% of patients. Other changes detected via frequency analysis included: Five substitutions on codon 105 (c.315C>T); four insertions on codon 70 (c.209_210insG); three insertions on codon 64 (c.190C>G), 82 (245C>T; 245delC; 243_244insA) and 104 (c.312G>A); and two insertions on codons 108 (c.322G>C), 71 (c.213C>A), 73 (c.217G>A), 91 (c.271T>C) and 100 (c.300G>T). Codons 68 (c.202_203insT), 77 (c.229C>T), 88 (c.263C>G) and 92 (c.276C>A) were altered once. Alterations on codons 82, 91, 108, 104, 105, 70 and 92 were characterized as possibly damaging by PolyPhen-2 and Mutation Taster2 tools. The current study also demonstrated that nucleotide alterations were significantly associated with the loss of p53 expression (P=0.04) and female patients (P=0.049), particularly codon 72. The results present novel data on the mutational spectrum of TP53 in meningeal brain tumors.
Collapse
Affiliation(s)
- Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vladušić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
26
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
27
|
Garutti M, Pelizzari G, Bartoletti M, Malfatti MC, Gerratana L, Tell G, Puglisi F. Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors. Int J Mol Sci 2019; 20:E3390. [PMID: 31295913 PMCID: PMC6678596 DOI: 10.3390/ijms20143390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequent oncologic cause of death among women and the improvement of its treatments is compelling. Platinum salts (e.g., carboplatin, cisplatin, and oxaliplatin) are old drugs still used to treat BC, especially the triple-negative subgroup. However, only a subset of patients see a concrete benefit from these drugs, raising the question of how to select them properly. Therefore, predictive biomarkers for platinum salts in BC still represent an unmet clinical need. Here, we review clinical and preclinical works in order to summarize the current evidence about predictive or putative platinum salt biomarkers in BC. The association between BRCA1/2 gene mutations and platinum sensitivity has been largely described. However, beyond the mutations of these two genes, several other proteins belonging to the homologous recombination pathways have been linked to platinum response, defining the concept of BRCAness. Several works, here reviewed, have tried to capture BRCAness through different strategies, such as homologous recombination deficiency (HRD) score and genetic signatures. Moreover, p53 and its family members (p63 and p73) might also be used as predictors of platinum response. Finally, we describe the mounting preclinical evidence regarding base excision repair deficiency as a possible new platinum biomarker.
Collapse
Affiliation(s)
- Mattia Garutti
- U.O.C Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giacomo Pelizzari
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gianluca Tell
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy.
- Dipartimento di Oncologia Medica, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
28
|
Courtney NL, Mole AJ, Thomson AK, Murray LM. Reduced P53 levels ameliorate neuromuscular junction loss without affecting motor neuron pathology in a mouse model of spinal muscular atrophy. Cell Death Dis 2019; 10:515. [PMID: 31273192 PMCID: PMC6609617 DOI: 10.1038/s41419-019-1727-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
Spinal Muscular Atrophy (SMA) is a childhood motor neuron disease caused by mutations or deletions within the SMN1 gene. At endstages of disease there is profound loss of motor neurons, loss of axons within ventral roots and defects at the neuromuscular junctions (NMJ), as evidenced by pathological features such as pre-synaptic loss and swelling and post-synaptic shrinkage. Although these motor unit defects have been widely described, the time course and interdependancy of these aspects of motor unit degeneration are unclear. Recent reports have also revealed an early upregulation of transcripts associated with the P53 signalling pathway. The relationship between the upregulation of these transcripts and pathology within the motor unit is also unclear. In this study, we exploit the prolonged disease timecourse and defined pre-symptomatic period in the Smn2B/- mouse model to perform a temporal analysis of the different elements of motor unit pathology. We demonstrate that NMJ loss occurs prior to cell body loss, and coincides with the onset of symptoms. The onset of NMJ pathology also coincides with an increase in P53-related transcripts at the cell body. Finally, using a tamoxifen inducible P53 knockout, we demonstrate that post-natal reduction in P53 levels can reduce NMJ loss, but does not affect other aspects of NMJ pathology, motor neuron loss or the phenotype of the Smn2B/- mouse model. Together this work provides a detailed temporal description of pathology within motor units of an SMA mouse model, and demonstrates that NMJ loss is a P53-dependant process. This work supports the role for P53 as an effector of synaptic and axonal degeneration in a die-back neuropathy.
Collapse
Affiliation(s)
- Natalie L Courtney
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Alannah J Mole
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Alison K Thomson
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
29
|
Lin L, Wei H, Yi J, Xie B, Chen J, Zhou C, Wang L, Yang Y. Chronic CagA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J Cell Biochem 2019; 120:17635-17649. [PMID: 31209915 DOI: 10.1002/jcb.29031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
A CagA-positive Helicobacter pylori (H. pylori) infection can cause malignant transformation of human gastric mucosal epithelial cells, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a chemical carcinogen that induces gastric carcinogenesis. Whether this environmental chemocarcinogen may synergistically enhance the risk of H. pylori-infected gastric cancer remains unclear. In this study, we adopted a chronic CagA-positive H. pylori infection with or without MNNG coinduction to establish a cellular model in GES-1 cells and an animal model in C57BL/6J mice. The proliferation, cell phenotype, apoptosis, epithelial-mesenchymal transition (EMT), stemness and tumorigenicity of gastric mucosal epithelial cells were analyzed in vitro and in vivo. The results showed that chronic H. pylori-infected GES-1 cells displayed inhibited apoptosis, abnormal proliferation, enhanced invasion, and migration, increased EMT/mesenchymal phenotype, colony formation and stem cell-like properties, and enhanced tumorsphere-formatting efficiency as well as CD44 expression, a known gastric cancer stem cell (CSC) marker. MNNG synergistically promoted the above actions of chronic H. pylori infection. Further studies in chronic H. pylori-infected C57BL/6J mice models showed that an increased incidence of premalignant lesions in the gastric mucosa tissue of the H. pylori-infected mice had occurred, the mouse gastric mucosa cells exhibited similar mesenchymal and CSC-like properties in the above GES-1 cells, and precancerous lesions and EMT/CSC-like phenotypes were reinforced by the synergistic action of MNNG stimulation. H. pylori infection and/or MNNG induction were capable of causing enhanced expression and activation of Wnt2 and β-catenin, indicating that the Wnt/β-catenin pathway is involved in the actions of H. pylori and MNNG. Taken together, these findings suggest that chronic CagA-positive H. pylori infection with MNNG stimulation synergistically induces mesenchymal and CSC-like properties of gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.,Hematology Department, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Cunmin Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
30
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
31
|
Miyake N, Chikumi H, Yamaguchi K, Takata M, Takata M, Okada K, Kitaura T, Nakamoto M, Yamasaki A. Effect of Cetuximab and EGFR Small Interfering RNA Combination Treatment in NSCLC Cell Lines with Wild Type EGFR and Use of KRAS as a Possible Biomarker for Treatment Responsiveness. Yonago Acta Med 2019. [PMID: 30962749 DOI: 10.33160/yam.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background The epidermal growth factor receptor (EGFR) is a therapeutic target for patients with non-small cell lung cancer (NSCLC). Cetuximab is an anti-EGFR monoclonal antibody that inhibits EGFR signaling and proliferation of colorectal cancer and head and neck cancers. Since only few NSCLC patients benefit from cetuximab therapy, we evaluated a novel combination treatment using cetuximab and EGFR small interfering RNA (siRNA) to strongly suppress EGFR signaling and searched for a biomarker in NSCLC cell lines harboring wild-type EGFR. Methods Alterations in EGFR and its downstream genes in five NSCLC cell lines (A549, Lu99, 86-2, Sq19 and Ma10) were assessed through sequencing. The protein expression levels of these molecules were assessed through western blotting. The effect of combination treatment was determined through cell proliferation assay, caspase-3/7 assay, invasion assay, and migration assay. Results All cell lines were harboring wild-type EGFR, whereas KRAS, PTEN, TP53 and TP53 were mutated in A549 and Lu99; Lu99 and Sq19; Lu99, 86-2, Sq19 and Ma10; and A549, 86-2, and Sq19 cell lines, respectively. PTEN was not expressed in Sq19, and LKB1 was not expressed in both A549 and Sq19. TP53 was not expressed in both A549 and Lu99. The combination of cetuximab and EGFR siRNA significantly suppressed cell proliferation in 86-2, Sq19 and Ma10, which express wild-type KRAS. It induced apoptosis in A549, 86-2 and Ma10 cells, which express wild type PTEN. The combination treatment had no effect either on cell invasion nor migration in all cell lines. Conclusion EGFR targeted therapy using the combination of cetuximab and EGFR siRNA is effective in NSCLC cell lines harboring wild-type EGFR. Wild-type KRAS may act as a potential biomarker for response to combination treatment by the induction of apoptosis in cells with wild-type PTEN.
Collapse
Affiliation(s)
- Naomi Miyake
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Hiroki Chikumi
- †Division of Infectious Diseases, Tottori University Hospital, Yonago 683-8504, Japan
| | - Kosuke Yamaguchi
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Miyako Takata
- ‡Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Miki Takata
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Kensaku Okada
- †Division of Infectious Diseases, Tottori University Hospital, Yonago 683-8504, Japan
| | - Tsuyoshi Kitaura
- †Division of Infectious Diseases, Tottori University Hospital, Yonago 683-8504, Japan
| | - Masaki Nakamoto
- †Division of Infectious Diseases, Tottori University Hospital, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
32
|
Abstract
Long thought to be too big and too ubiquitous to fail, we now know that human cells can fail to make sufficient amounts of ribosomes, causing a number of diseases collectively known as ribosomopathies. The best characterized ribosomopathies, with the exception of Treacher Collins syndrome, are inherited bone marrow failure syndromes, each of which has a marked increase in cancer predisposition relative to the general population. Although rare, emerging data reveal that the inherited bone marrow failure syndromes may be underdiagnosed on the basis of classical symptomology, leaving undiagnosed patients with these syndromes at an elevated risk of cancer without adequate counselling and surveillance. The link between the inherited ribosomopathies and cancer has led to greater awareness that somatic mutations in factors involved in ribosome biogenesis may also be drivers in sporadic cancers. Our goal here is to compare and contrast the pathophysiological mechanisms underpinning ribosomopathies to gain a better understanding of the mechanisms that predispose these disorders to cancer.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Steven R Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
33
|
Emerging Role of Eukaryote Ribosomes in Translational Control. Int J Mol Sci 2019; 20:ijms20051226. [PMID: 30862090 PMCID: PMC6429320 DOI: 10.3390/ijms20051226] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of "specialized ribosomes", which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today.
Collapse
|
34
|
Abstract
This special issue on p53 explores different aspects of the significance of p53 in normal cells and in cancer [...].
Collapse
|
35
|
Penzo M, Montanaro L, Treré D, Derenzini M. The Ribosome Biogenesis-Cancer Connection. Cells 2019; 8:cells8010055. [PMID: 30650663 PMCID: PMC6356843 DOI: 10.3390/cells8010055] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: (1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, (2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and (3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer. This review summarizes the research milestones regarding these relevant relationships between ribosome biogenesis and cancer. The structure and function of the nucleolus will also be briefly described.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | | |
Collapse
|
36
|
Li S, Hu L, Li J, Zhu J, Zeng F, Huang Q, Qiu L, Du R, Cao R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur J Med Chem 2019; 162:666-678. [DOI: 10.1016/j.ejmech.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
37
|
Li Y, Zhang MC, Xu XK, Zhao Y, Mahanand C, Zhu T, Deng H, Nevo E, Du JZ, Chen XQ. Functional Diversity of p53 in Human and Wild Animals. Front Endocrinol (Lausanne) 2019; 10:152. [PMID: 30915036 PMCID: PMC6422910 DOI: 10.3389/fendo.2019.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
The common understanding of p53 function is a genome guardian, which is activated by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest. Increasing evidence has demonstrated p53 new cellular functions involved in abundant endocrine and metabolic response for maintaining homeostasis. However, TP53 is frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an "evil" cancer-assistant. Mut-p53-induced epithelial-mesenchymal transition (EMT) plays a crucial role in the invasion and metastasis of endocrine carcinomas, and Mut-p53 is involved in cancer immune evasion by upregulating PD-L1 expression. Therefore, Mut-p53 is a valuable treatment target for malignant tumors. Targeting Mut-p53 in correcting sequence and conformation are increasingly concerned. Interestingly, in wild animals, p53 variations contribute to cancer resistant and high longevity. This review has discussed the multiple functions of p53 in health, diseases, and nature evolution, summarized the frequently mutant sites of p53, and the mechanisms of Mut-p53-mediated metastasis and immune evasion in endocrine cancers. We have provided a new insight for multiple roles of p53 in human and wild animals.
Collapse
Affiliation(s)
- Yi Li
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Meng-Chen Zhang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Xiao-Kang Xu
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Chatoo Mahanand
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Deng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eviatar Nevo
- Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Haifa, Israel
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue-Qun Chen
| |
Collapse
|
38
|
Szpotkowska J, Swiatkowska A, Ciesiołka J. Length and secondary structure of the 5' non-coding regions of mouse p53 mRNA transcripts - mouse as a model organism for p53 gene expression studies. RNA Biol 2018; 16:25-41. [PMID: 30518296 DOI: 10.1080/15476286.2018.1556084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcription initiation sites of Trp53 gene in mice were determined using the 5'RACE method. Based on sequence alignment of the 5'-terminal regions of p53 mRNA in mammals, the site for the most abundant transcript turned out to be essentially identical with that determined for human TP53 gene and slightly differed for the longest transcripts, in mice and humans. Secondary structures of the 5' -terminal regions of the shorter, most abundant and the longest mouse transcripts were determined in vitro and the shorter transcript was also mapped in transfected mouse cells. For the first time, secondary structure models of the 5' terminus of two mouse p53 mRNAs were proposed. Comparing these models with the conservativeness of the nucleotide sequence of the 5'-terminal region of mRNA in mouse and other mammals, the possible function of the selected structural domains of this region was discussed. To elucidate the translation mechanisms, the two studied mRNAs were translated in the presence of an increasing concentration of the cap analog. For the longest transcript, the data suggested that IRES element(s) was/were involved in translation initiation. Additionally, changes in p53 synthesis under genotoxic and endoplasmic reticulum stress conditions in mouse cells were analyzed.
Collapse
Affiliation(s)
- Joanna Szpotkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Agata Swiatkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Jerzy Ciesiołka
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| |
Collapse
|
39
|
Targeting the DNA-PK complex: Its rationale use in cancer and HIV-1 infection. Biochem Pharmacol 2018; 160:80-91. [PMID: 30529192 DOI: 10.1016/j.bcp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
The DNA-PK complex is the major component of the predominant mechanism of DSB repair in humans. In addition, this complex is involved in many other processes such as DNA recombination, genome maintenance, apoptosis and transcription regulation. Several studies have linked the decrease of the DNA-PK activity with cancer initiation, due to defects in the repair. On another hand, higher DNA-PK expression and activity have been observed in various other tumor cells and have been linked with a decrease of the efficiency of anti-tumor drugs. It has also been shown that DNA-PK is critical for the integration of the HIV-1 DNA into the cell host genome and promotes replication and transcription of the virus. Targeting this complex makes therefore sense to treat these two pathologies. However, according to the status of HIV-1 replication (active versus latent replication) or to the tumor grade cells (initiation versus metastasis), the way to target this DNA-PK complex might be rather different. In this review, we discuss the importance of DNA-PK complex in two major pathologies i.e. HIV-1 infection and cancer, and the rationale use of therapies aiming to target this complex.
Collapse
|
40
|
Visualizing the Role of 2'-OH rRNA Methylations in the Human Ribosome Structure. Biomolecules 2018; 8:biom8040125. [PMID: 30366442 PMCID: PMC6316459 DOI: 10.3390/biom8040125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023] Open
Abstract
Chemical modifications of RNA have recently gained new attention in biological sciences. They occur notably on messenger RNA (mRNA) and ribosomal RNA (rRNA) and are important for various cellular functions, but their molecular mechanism of action is yet to be understood in detail. Ribosomes are large ribonucleoprotein assemblies, which synthesize proteins in all organisms. Human ribosomes, for example, carry more than 200 modified nucleotides, which are introduced during biogenesis. Chemically modified nucleotides may appear to be only scarcely different from canonical nucleotides, but modifications such as methylations can in fact modulate their chemical and topological properties in the RNA and alter or modulate the overall translation efficiency of the ribosomes resulting in dysfunction of the translation machinery. Recent functional analysis and high-resolution ribosome structures have revealed a large repertoire of modification sites comprising different modification types. In this review, we focus on 2′-O-methylations (2′-O-Me) and discuss the structural insights gained through our recent cryo electron microscopy (cryo-EM) high-resolution structural analysis of the human ribosome, such as their locations and their influence on the secondary and tertiary structures of human rRNAs. The detailed analysis presented here reveals that ribose conformations of the rRNA backbone differ when the 2′-OH hydroxyl position is methylated, with 3′-endo conformations being the default and the 2′-endo conformations being characteristic in that the associated base is flipped-out. We compare currently known 2′-O-Me sites in human rRNAs evaluated using RiboMethSeq and cryo-EM structural analysis and discuss their involvement in several human diseases.
Collapse
|