1
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
2
|
Niu Z, Kozminsky M, Day KC, Broses LJ, Henderson ML, Patsalis C, Tagett R, Qin Z, Blumberg S, Reichert ZR, Merajver SD, Udager AM, Palmbos PL, Nagrath S, Day ML. Characterization of circulating tumor cells in patients with metastatic bladder cancer utilizing functionalized microfluidics. Neoplasia 2024; 57:101036. [PMID: 39173508 PMCID: PMC11387905 DOI: 10.1016/j.neo.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Assessing the molecular profiles of bladder cancer (BC) from patients with locally advanced or metastatic disease provides valuable insights, such as identification of invasive markers, to guide personalized treatment. Currently, most molecular profiling of BC is based on highly invasive biopsy or transurethral tumor resection. Liquid biopsy takes advantage of less-invasive procedures to longitudinally profile disease. Circulating tumor cells (CTCs) isolated from blood are one of the key analytes of liquid biopsy. In this study, we developed a protein and mRNA co-analysis workflow for BC CTCs utilizing the graphene oxide (GO) microfluidic chip. The GO chip was conjugated with antibodies against both EpCAM and EGFR to isolate CTCs from 1 mL of blood drawn from BC patients. Following CTC capture, protein and mRNA were analyzed using immunofluorescent staining and ion-torrent-based whole transcriptome sequencing, respectively. Elevated CTC counts were significantly associated with patient disease status at the time of blood draw. We found a count greater than 2.5 CTCs per mL was associated with shorter overall survival. The invasive markers EGFR, HER2, CD31, and ADAM15 were detected in CTC subpopulations. Whole transcriptome sequencing showed distinct RNA expression profiles from patients with or without tumor burden at the time of blood draw. In patients with advanced metastatic disease, we found significant upregulation of metastasis-related and chemotherapy-resistant genes. This methodology demonstrates the capability of GO chip-based assays to identify tumor-related RNA signatures, highlighting the prognostic potential of CTCs in metastatic BC patients.
Collapse
Affiliation(s)
- Zeqi Niu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Molly Kozminsky
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marian L Henderson
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher Patsalis
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Tagett
- Bioinformatics Core, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Blumberg
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachery R Reichert
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Verhoog NJD, Spies LML. The anti-aromatase and anti-estrogenic activity of plant products in the treatment of estrogen receptor-positive breast cancer. J Steroid Biochem Mol Biol 2024; 243:106581. [PMID: 38997071 DOI: 10.1016/j.jsbmb.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.
Collapse
Affiliation(s)
| | - Lee-Maine Lorin Spies
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch, 7601, South Africa
| |
Collapse
|
4
|
Gu T, Vasilatos SN, Yin J, Qin Y, Zhang L, Davidson NE, Huang Y. Restoration of TFPI2 by LSD1 inhibition suppresses tumor progression and potentiates antitumor immunity in breast cancer. Cancer Lett 2024; 600:217182. [PMID: 39154703 PMCID: PMC11384719 DOI: 10.1016/j.canlet.2024.217182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is frequently overexpressed in triple negative breast cancer (TNBC), which is associated with worse clinical outcome in TNBC patients. However, the underlying mechanisms by which LSD1 promotes TNBC progression remain to be identified. We recently established a genetically engineered murine model by crossing mammary gland conditional LSD1 knockout mice with Brca1-deficient mice to explore the role of LSD1 in TNBC pathogenesis. Cre-mediated Brca1 loss led to higher incidence of tumor formation in mouse mammary glands, which was hindered by concurrent depletion of LSD1, indicating a critical role of LSD1 in promoting Brca1-deficient tumors. We also demonstrated that the silencing of a tumor suppressor gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), is functionally associated with LSD1-mediated TNBC progression. Mouse Brca1-deficient tumors exhibited elevated LSD1 expression and decreased TFPI2 level compared to normal mammary tissues. Analysis of TCGA database revealed that TFPI2 expression is significantly lower in aggressive ER-negative or basal-like BC. Restoration of TFPI2 through LSD1 inhibition increased H3K4me2 enrichment at the TFPI2 promoter, suppressed tumor progression, and enhanced antitumor efficacy of chemotherapeutic agent. Induction of TFPI2 by LSD1 ablation downregulates activity of matrix metalloproteinases (MMPs) that in turn increases the level of cytotoxic T lymphocyte attracting chemokines in tumor environment, leading to enhanced tumor infiltration of CD8+ T cells. Moreover, induction of TFPI2 potentiates antitumor effect of LSD1 inhibitor and immune checkpoint blockade in poorly immunogenic TNBC. Together, our study identifies previously unrecognized roles of TFPI2 in LSD1-mediated TNBC progression, therapeutic response, and immunogenic effects.
Collapse
Affiliation(s)
- Tiezheng Gu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shauna N Vasilatos
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Yin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ye Qin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, USA
| | - Yi Huang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Cai WL, Cheng M, Wang Y, Xu PH, Yang X, Sun ZW, Wang-Jun Yan. Prediction and related genes of cancer distant metastasis based on deep learning. Comput Biol Med 2024; 168:107664. [PMID: 38000245 DOI: 10.1016/j.compbiomed.2023.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.
Collapse
Affiliation(s)
- Wei-Luo Cai
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, China
| | - Mo Cheng
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Pei-Hang Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China.
| | - Zheng-Wang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, China.
| | - Wang-Jun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, China.
| |
Collapse
|
6
|
Jamshidi S, Rostami A, Shojaei S, Taherkhani A, Taherkhani H. Exploring natural anthraquinones as potential MMP2 inhibitors: A computational study. Biosystems 2024; 235:105103. [PMID: 38123060 DOI: 10.1016/j.biosystems.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Matrix metalloproteinase-2 (MMP2) plays a significant role in cleaving extracellular matrix components, leading to many cancer cells' progression and invasion behavior. Therefore, MMP2 inhibition may hold promise for cancer treatment. Anthraquinones have shown antineoplastic effects, some of which have been used in clinical practice as anticancer drugs. This study used a computational drug discovery approach to assess the possible inhibitory effects of selected anthraquinones on MMP2. The results were then compared with that of Captopril, which was considered a standard drug. METHODS This study used the AutoDock 4.0 tool to evaluate the binding affinity of 21 anthraquinones to the MMP2 catalytic domain. The most favorable scores based on the Gibbs free binding energy scores were given to the highest-ranked ligands. The Discovery Studio Visualizer tool illustrated interactions between MMP2 residues and top-ranked anthraquinones. RESULTS A total of 12 anthraquinones were identified with ΔGbinding scores less than - 10 kcal/mol. Pulmatin (Chrysophanol-8-glucoside) was the most potent MMP2 inhibitor, with a ΔGbinding score of - 12.91 kcal/mol. This anthraquinone was able to restrict MMP2 activity within a picomolar range. CONCLUSION MMP2 inhibition by anthraquinones, notably Pulmatin, may be a useful therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Rostami
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Heshmatollah Taherkhani
- Department of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Kulesza M, Kicman A, Motyka J, Guszczyn T, Ławicki S. Importance of Metalloproteinase Enzyme Group in Selected Skeletal System Diseases. Int J Mol Sci 2023; 24:17139. [PMID: 38138968 PMCID: PMC10743273 DOI: 10.3390/ijms242417139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue is a dynamic structure that is involved in maintaining the homeostasis of the body due to its multidirectional functions, such as its protective, endocrine, or immunological role. Specialized cells and the extracellular matrix (ECM) are responsible for the remodeling of specific bone structures, which alters the biomechanical properties of the tissue. Imbalances in bone-forming elements lead to the formation and progression of bone diseases. The most important family of enzymes responsible for bone ECM remodeling are matrix metalloproteinases (MMPs)-enzymes physiologically present in the body's tissues and cells. The activity of MMPs is maintained in a state of balance; disruption of their activity is associated with the progression of many groups of diseases, including those of the skeletal system. This review summarizes the current understanding of the role of MMPs in bone physiology and the pathophysiology of bone tissue and describes their role in specific skeletal disorders. Additionally, this work collects data on the potential of MMPs as bio-markers for specific skeletal diseases.
Collapse
Affiliation(s)
- Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15267 Bialystok, Poland;
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Bialystok, 15274 Bialystok, Poland;
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| |
Collapse
|
8
|
Alrumaihi F. A cheminformatics-biophysics correlate to identify promising lead molecules against matrix metalloproteinase-2 (MMP-2) enzyme: A promising anti-cancer target. Saudi Pharm J 2023; 31:1244-1253. [PMID: 37284415 PMCID: PMC10239696 DOI: 10.1016/j.jsps.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is an endopeptidase enzyme that is devoted to extracellular matrix proteins degradation. The enzyme is warranted as promising drugs target for different light threating diseases such as arthritis, cancer and fibrosis. Herein, in this study, three drug molecules: CMNPD8322, CMNPD8320, and CMNPD8318 were filtered as high affinity binding compounds with binding energy score of -9.75 kcal/mol, -9.11 kcal/mol, -9.05 kcal/mol, respectively. The control binding energy score was -9.01 kcal/mol. The compounds docked deeply inside the pocket interacting with S1 pocket residues. The docked complexes dynamics in real time at cellular environment was then done to decipher the stable binding conformation and intermolecular interactions network. The compounds complexes achieved very stable dynamics with root mean square deviation (RMSD) with mean value of around 2-3 Å compared to control complex that showed higher fluctuations of 5 Å. The simulation trajectories frames based binding free energy demonstrated all the compounds-MMP-2 complexes reported highly stable energy, particularly the van der Waals energy dominate the overall net energy. Similarly, the complexes revalidation of WaterSwap based energies also disclosed the complexes highly stable in term docked conformation. Also, the compounds illustrated the compounds favorable pharmacokinetics and were non-toxic and non-mutagenic. Thus, the compounds might be used thorough experimental assays to confirm compounds selective biological potency against MMP-2 enzyme.
Collapse
|
9
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
10
|
Xu HB, Chen XZ, Wang X, Pan J, Yi-Zhuo Z, Zhou CH. Xihuang pill in the treatment of cancer: TCM theories, pharmacological activities, chemical compounds and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2023:116699. [PMID: 37257709 DOI: 10.1016/j.jep.2023.116699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xihuang pill as a famous traditional Chinese formula has long been used as an adjuvant therapy for cancer. AIM OF THE STUDY This study is aimed at summarizing recent advances in research of Xihuang pill's anti-cancer efficacies from the theoretical basis of traditional Chinese medicine, pharmacological activities, chemical components and its clinical application. MATERIALS AND METHODS The literature information was obtained from several authoritative databases including PubMed, Embase, Cochrane Library, CNKI and Wan Fang before April 30, 2023. We also analyzed the representatively chemical compounds of Xihuang pill in vivo experiments using HPLC-Q/TOF-MS. RESULTS The present study indicated that Xihuang pill, a classic anti-tumor prescription, had efficacies of strengthening body resistance, clearing heat and detoxification, and promoting blood circulation for removing blood stasis. Modern basic researches showed that Xihuang pill played anti-cancer roles through inducing cancer cell apoptosis, inhibiting cell proliferation, migration, invasion and angiogenesis, improving immune function and tumor microenvironment, and regulating related signaling pathways. Its chemical components are primarily consisted of amino acids, terpenoids, fatty acids, fatty acid esters, phenolics, bile acids, bile pigments and volatile oil. Clinically, Xihuang pill, as an adjuvant drug for cancer treatment, was mostly combined with chemotherapy, which could prolong survival, enhance response rate, improve patients' life quality, regulate immune function and alleviate chemotherapy-induced toxicities. CONCLUSIONS This present study suggests that Xihuang pill may be a promising adjuvant therapy for cancer, and proposes the possibility of future research directions for Xihuang pill based on the current research status.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China; Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Pan
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Yi-Zhuo
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Daniluk K, Lange A, Wójcik B, Zawadzka K, Bałaban J, Kutwin M, Jaworski S. Effect of Melittin Complexes with Graphene and Graphene Oxide on Triple-Negative Breast Cancer Tumors Grown on Chicken Embryo Chorioallantoic Membrane. Int J Mol Sci 2023; 24:ijms24098388. [PMID: 37176095 PMCID: PMC10179033 DOI: 10.3390/ijms24098388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
One of the components of bee venom is melittin (M), which has strong lysing properties on membranes. M has high toxicity to cancer cells, but it also affects healthy cells, making it necessary to use methods for targeted delivery to ensure treatment. This research is a continuation of previous studies using graphene nanomaterials as M carriers to breast cancer cells. The studies described below are conducted on a more organized biological structure than what is found in vitro cells, namely, cancerous tumors grown on a chicken embryo chorioallantoic membrane. Caspase 3 and 8 levels are analyzed, and the level of oxidative stress markers and changes in protein expression for cytokines are examined. The results show that M complexes with nanomaterials reduce the level of oxidative stress more than M alone does, but the use of graphene (GN) as a carrier increases the level of DNA damage to a greater extent than the increase caused by M alone. An analysis of cytokine levels shows that the use of the M and GN complex increases the level of proteins responsible for inhibiting tumor progression to a greater extent than the increase occasioned by a complex with graphene oxide (GO). The results suggest that the use of GN as an M carrier may increase the toxic effect of M on structures located inside a cell.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jaśmina Bałaban
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
12
|
Wu C, Sun C, Han X, Ye Y, Qin Y, Liu S. Sanyin Formula Enhances the Therapeutic Efficacy of Paclitaxel in Triple-Negative Breast Cancer Metastases through the JAK/STAT3 Pathway in Mice. Pharmaceuticals (Basel) 2022; 16:9. [PMID: 36678509 PMCID: PMC9867389 DOI: 10.3390/ph16010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sanyin formula (SYF) is used as a complementary treatment for triple-negative breast cancer (TNBC). The purpose of this study was to identify the potential functional components and clarify the underlying molecular mechanisms of SYF in TNBC. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to identify the main components of SYF extracts. Network pharmacology and bioinformatic analyses were carried out to identify potential candidate targets of SYF in TNBC. Cell proliferation was determined with a Celigo imaging cytometer. Wound-healing and Transwell assays were adopted to evaluate cell migration. A Transwell cell-invasion assay was performed with Matrigel-coated membranes. In vivo bioluminescence imaging (BLI) and pathological analyses illustrated the effect of SYF on cancer cell metastasis in tumour-bearing mice. The inhibitory mechanism of SYF was investigated via quantitative PCR (qPCR) and Western blotting. We found that 3,4-dihydroxyphenyllactic acid, kaempferol, p-coumaric acid, and vanillic acid may be the active components of SYF. Molecular docking confirmed that kaempferol, p-coumaric acid, vanillic acid, and 3,4-dihydroxyphenyllactic acid bound stably to proteins such as AKR1C3, MMPs, and STAT3. SYF extract suppressed TNBC cell proliferation, migration, invasion, and metastasis by inhibiting JAK/STAT3 signalling and then regulating downstream genes, such as MMP-2/MMP-9. SYF regulates the expression of genes involved in cell proliferation, migration, and invasion by regulating the JAK/STAT3 signalling pathway and finally inhibits tumour cell metastasis in TNBC. The present study clarifies the mechanism by which SYF inhibits TNBC metastasis and lays an experimental foundation for the continued clinical development of SYF targeting the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Chenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Liu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
13
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
14
|
Emerging roles and potential clinical applications of long non-coding RNAs in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113327. [PMID: 35779423 DOI: 10.1016/j.biopha.2022.113327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common highly malignant tumors in humans, as well as the leading cause of cancer-related death worldwide. Growing evidence has indicated that lncRNAs are implicated in different molecular mechanisms, including interactions with DNA, RNA, or protein, so that to regulate the gene expression at epigenetic, transcriptional, or posttranscriptional level. Moreover, the mechanism of action of lncRNA is closely related to its subcellular localization. An increasing number of studies have certified that lncRNA plays a significant biological function in the occurrence and development of hepatocellular carcinoma, such as involving in cell proliferation, metastasis, apoptosis, ferroptosis, autophagy, and reprogramming of energy metabolism. As a result, lncRNA has great potential as a novel biomarker for diagnosis or therapeutics of hepatocellular carcinoma. In this review, we highlight the correlation between subcellular localization of lncRNA and its mechanism of action, discuss the biological roles of lncRNA and the latest research advances in hepatocellular carcinoma, and emphasize the potential of lncRNA as a therapeutic target for advanced patients of hepatocellular carcinoma.
Collapse
|
15
|
Distinct Gene Expression Profiles of Matched Primary and Metastatic Triple-Negative Breast Cancers. Cancers (Basel) 2022; 14:cancers14102447. [PMID: 35626050 PMCID: PMC9139196 DOI: 10.3390/cancers14102447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Although triple-negative breast cancer (TNBC) is associated with an increased risk of recurrence and metastasis, the molecular mechanisms underlying metastasis in TNBC remain unknown. To identify transcriptional changes and genes regulating metastatic progression in TNBC, we compared the transcriptomic profiles of primary and matched metastatic tumors using massively parallel RNA sequencing. Methods: We performed gene expression profiling using formalin-fixed paraffin-embedded (FFPE) TNBC tissues of patients from two cohorts: the Zurich cohort (n = 31) and the Stavanger cohort (n = 5). Among the 31 patients in the Zurich cohort, 18 had primary TNBC tumors that did not metastasize, and 13 had primary tumors that metastasized (11 paired primary and locoregional recurrences). The Stavanger cohort included five matched primary and metastatic TNBC tumors. Significantly differentially expressed genes (DEGs; absolute fold change ≥2, p < 0.05) were identified and subjected to functional analyses. We investigated if there was any overlap between DEGs from both the cohorts with epithelial-to-mesenchymal-to-amoeboid transition (EMAT) gene signature. xCell was used to estimate relative fractions of 64 immune and stromal cell types in each RNA-seq sample. Results: In the Zurich cohort, we identified 1624 DEGs between primary TNBC tumors and matched metastatic lesions. xCell analysis revealed a significantly higher immune scores for metastatic lesions compared to paired primary tumors in the Zurich cohort. We also found significant upregulation of three MammaPrint signature genes (HRASLS, TGFB3 and RASSF7) in primary tumors that metastasized compared to primary tumors that remained metastasis-free. In the Stavanger cohort, we identified 818 DEGs between primary tumors and matched metastatic lesions. No significant differences in xCell immune scores were observed. We found that 21 and 14 DEGs from Zurich and Stavanger cohort, respectively, overlapped with the EMAT gene signature. In both cohorts, genes belonging to the MMP, FGF, and PDGFR families were upregulated in primary tumors compared to matched metastatic lesions. Conclusions: Our results suggest that distinct gene expression patterns exist between primary TNBCs and matched metastatic tumors. Further studies are warranted to explore whether these discrete expression profiles underlie or result from disease status.
Collapse
|
16
|
Abd Al Moaty MN, El Ashry ESH, Awad LF, Ibrahim NA, Abu-Serie MM, Barakat A, Altowyan MS, Teleb M. Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents. Molecules 2022; 27:molecules27082422. [PMID: 35458618 PMCID: PMC9026109 DOI: 10.3390/molecules27082422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - El Sayed Helmy El Ashry
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
- Correspondence: (L.F.A.); (A.B.)
| | - Nihal Ahmed Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Marwa Muhammad Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (L.F.A.); (A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| |
Collapse
|
17
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
18
|
MicroRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030729. [PMID: 35158995 PMCID: PMC8833828 DOI: 10.3390/cancers14030729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Bone metastasis is a frequent complication in patients with advanced breast cancer. Once in the bone, cancer cells disrupt the tightly regulated cellular balance within the bone microenvironment, leading to excessive bone destruction and further tumor growth. Physiological and pathological interactions in the bone marrow are mediated by cell-cell contacts and secreted molecules that include soluble proteins as well as RNA molecules. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally interfere with their target messenger RNA (mRNA) and subsequently reduce protein abundance. Since their discovery, miRNAs have been identified as critical regulators of physiological and pathological processes, including breast cancer and associated metastatic bone disease. Depending on their targets, miRNAs can exhibit pro-tumorigenic or anti-tumorigenic functions and serve as diagnostic and prognostic biomarkers. These properties have encouraged pre-clinical and clinical development programs to investigate miRNAs as biomarkers and therapeutic targets in various diseases, including metastatic cancers. In this review, we discuss the role of miRNAs in metastatic bone disease with a focus on breast cancer and the bone microenvironment and elaborate on their potential use for diagnostic and therapeutic purposes in metastatic bone disease and beyond.
Collapse
|
19
|
Application value of the treatment of breast cancer bone metastases with radioactive seed 125I implantation under CT-guidance. BMC Med Imaging 2022; 22:3. [PMID: 34983423 PMCID: PMC8725351 DOI: 10.1186/s12880-021-00726-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the application value of the treatment of breast cancer bone metastases with radioactive seed 125I implantation under CT-guidance. Methods A total of 90 patients with breast cancer admitted to our hospital from January 2017 to January 2018 were selected as the research objects and were divided into control group and experimental group according to random grouping, with 45 cases in each group. Conventional treatment was used in the control group, while the treatment of radioactive seed 125I implantation under CT-guidance was used in the experimental group. The clinical efficacy, pain intensity and levels of carcinoembryonic antigen (CEA), carcinoembryonic antigen 153 (CA153), carbohydrate antigen (CA125) in the two groups were compared. Results As for the pain intensity, it was evidently lower in the experimental group after treatment than that in the control group (P < 0.05); as for the total effective rate, it was obviously higher in the experimental group after treatment than that in the control group (P < 0.05); as for the levels of CEA, CA153 and CA125, the data in the experimental group after treatment were much lower than the control group (P < 0.05). Conclusion Radioactive seed 125I implantation under CT-guidance can effectively improve the effect of the treatment of breast cancer bone metastases. It has curative efficacy and it is worth promoting and using.
Collapse
|
20
|
Ivanov VN, Agamennone M, Iusupov IR, Laghezza A, Novoselov AM, Manasova EV, Altieri A, Tortorella P, Shtil AA, Kurkin AV. Het(aryl)isatin to het(aryl)aminoindoline scaffold hopping: A route to selective inhibitors of matrix metalloproteinases. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
Liu Y, Zhang Y, Ding Y, Zhuang R. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Crit Rev Oncol Hematol 2021; 167:103502. [PMID: 34662726 DOI: 10.1016/j.critrevonc.2021.103502] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that platelets play an essential role in cancer metastasis. The interactions between platelets and circulating tumor cells (CTCs) promote cancer metastasis. CTCs induce platelet activation and aggregation, and activated platelets gather and protect CTCs from shear stress and natural killer cells. Finally, platelets stimulate CTC anoikis resistance, epithelial-to-mesenchymal transition, angiogenesis, extravasation, and eventually, metastasis. Cell adhesion molecules (CAMs) have been identified as active players during the interaction of CTCs with platelets, but the specific mechanism underlying the contribution of platelet-associated CAMs to CTC metastasis remains unclear. In this review, we introduce the mechanism of platelet-related tumor metastasis and particularly focus on the role of CAMs in it.
Collapse
Affiliation(s)
- Yitian Liu
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, the Fourth Military Medical University, #1 Xinsi Road, Xi'an, Shaanxi, 710032, China
| | - Ran Zhuang
- Department of Immunology, the Fourth Military Medical University, #169 Changlexilu Road, Xi'an, Shaanxi, 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 Youyixilu Road, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
22
|
Bahrami N, Jabeen S, Tahiri A, Sauer T, Ødegård HP, Geisler SB, Gravdehaug B, Reitsma LC, Selsås K, Kristensen V, Geisler J. Lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients: the potential role of the adipokine leptin. Breast Cancer Res Treat 2021; 190:435-449. [PMID: 34554372 PMCID: PMC8558290 DOI: 10.1007/s10549-021-06399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE The aromatase inactivator exemestane may cause clinical disease stabilization following progression on non-steroidal aromatase inhibitors like letrozole in patients with metastatic breast cancer, indicating that additional therapeutic effects, not necessarily related to estrogen-suppression, may be involved in this well-known "lack of cross-resistance". METHODS Postmenopausal women with ER positive, HER-2 negative, locally advanced breast cancer were enrolled in the NEOLETEXE-trial and randomized to sequential treatment starting with either letrozole (2.5 mg o.d.) or exemestane (25 mg o.d.) followed by the alternative aromatase inhibitor. Serum levels of 54 cytokines, including 12 adipokines were assessed using Luminex xMAP technology (multiple ELISA). RESULTS Serum levels of leptin were significantly decreased during treatment with exemestane (p < 0.001), regardless whether exemestane was given as first or second neoadjuvant therapy. In contrast, letrozole caused a non-significant increase in serum leptin levels in vivo. CONCLUSIONS Our findings suggest an additional and direct effect of exemestane on CYP-19 (aromatase) synthesis presumably due to effects on the CYP19 promoter use that is not present during therapy with the non-steroidal aromatase inhibitor letrozole. Our findings provide new insights into the influence of clinically important aromatase inhibitors on cytokine levels in vivo that contribute to the understanding of the clinically observed lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients. TRIAL REGISTRATION Registered on March 23rd 2015 in the National trial database of Norway (Registration number: REK-SØ-84-2015).
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shakila Jabeen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Knut Selsås
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Argote Camacho AX, González Ramírez AR, Pérez Alonso AJ, Rejón García JD, Olivares Urbano MA, Torné Poyatos P, Ríos Arrabal S, Núñez MI. Metalloproteinases 1 and 3 as Potential Biomarkers in Breast Cancer Development. Int J Mol Sci 2021; 22:ijms22169012. [PMID: 34445715 PMCID: PMC8396449 DOI: 10.3390/ijms22169012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%–>50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control–case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Torné Poyatos
- Department of Surgery and Its Specialties, University of Granada, 18012 Granada, Spain;
| | - Sandra Ríos Arrabal
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute, ibs.Granada, 18012 Granada, Spain
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| |
Collapse
|
24
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
25
|
Knapinska AM, Singh C, Drotleff G, Blanco D, Chai C, Schwab J, Herd A, Fields GB. Matrix Metalloproteinase 13 Inhibitors for Modulation of Osteoclastogenesis: Enhancement of Solubility and Stability. ChemMedChem 2021; 16:1133-1142. [PMID: 33331147 PMCID: PMC8035250 DOI: 10.1002/cmdc.202000911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Indexed: 11/08/2022]
Abstract
Matrix metalloproteinase 13 (MMP-13) activity has been correlated to breast cancer bone metastasis. It has been proposed that MMP-13 contributes to bone metastasis through the promotion of osteoclastogenesis. To explore the mechanisms of MMP-13 action, we previously described a highly efficacious and selective MMP-13 inhibitor, RF036. Unfortunately, further pursuit of RF036 as a probe of MMP-13 in vitro and in vivo activities was not practical due to the limited solubility and stability of the inhibitor. Our new study has explored replacing the RF036 backbone sulfur atom and terminal methyl group to create inhibitors with more favorable pharmacokinetic properties. One compound, designated inhibitor 3, in which the backbone sulfur and terminal methyl group of RF036 were replaced by nitrogen and oxetane, respectively, had comparable activity, selectivity, and membrane permeability to RF036, while exhibiting greatly enhanced solubility and stability. Inhibitor 3 effectively inhibited MMP-13-mediated osteoclastogenesis but spared collagenolysis, and thus represents a next-generation MMP-13 probe applicable for in vivo studies of breast cancer metastasis.
Collapse
Affiliation(s)
- Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Chandani Singh
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Gary Drotleff
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Daniela Blanco
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Cedric Chai
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Jason Schwab
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Anu Herd
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
26
|
Li X, Jin L, Tan Y. Different roles of matrix metalloproteinase 2 in osteolysis of skeletal dysplasia and bone metastasis (Review). Mol Med Rep 2020; 23:70. [PMID: 33236155 PMCID: PMC7716421 DOI: 10.3892/mmr.2020.11708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinase 2 (MMP2) is a well-characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late-stage cancers, while its loss-of-function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin-mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Collapse
Affiliation(s)
- Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Libin Jin
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanbin Tan
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
27
|
Catharanthus roseus L. extract downregulates the expression profile of motility-related genes in highly invasive human breast cancer cell line MDA-MB-231. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00641-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Akbaribazm M, Khazaei MR, Khazaei F, Khazaei M. Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr 2020; 8:5557-5570. [PMID: 33133558 PMCID: PMC7590334 DOI: 10.1002/fsn3.1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Trifolium pratense L. (Red clover-T. pratense) commonly consumed as a healthy beverage has been demonstrated to have various biological activities including antioxidant and anticancer effects. The aim of this study was to investigate the antimetastasis effects of doxorubicin (DOX) and T. pratense extract in 4T1 tumor-bearing BALB/c mice. In this study, 56 female BALB/c mice were randomly divided into seven groups (n = 8/group) to receive DOX and T. pratense extract in three different doses (100, 200, and 400 mg/kg/day) for 35 days. On day 36 after starting treatments, serum cytokines (IL-8 and IL-6) were measured. Immunohistochemical (IHC) staining was performed for GATA-3 in the brain and lung, and for CK5/6 in tumor tissues. Metastasis-related gene (matrix metalloproteinase-2 [MMP-2] and sirtuin-1 [SIRT-1]) expressions were also measured by real-time PCR. Our results showed that cotreatment with DOX and T. pratense extract improved stereological parameters (i.e., reduction in the volume of metastatic tumors) in the lung and brain and decreased the serum levels of inflammatory cytokines (IL-8 and IL-6). DOX and T. pratense extract synergistically down-regulated MMP-2 and up-regulated SIRT-1 genes, decreased the number of CK5/6-positive cells in tumor tissues, and inhibited metastasis of GATA-3-positive cells into the lung and brain. The combination of T. pratense extract and DOX synergistically inhibited the metastasis of 4T1 xenograft cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Khazaei
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
29
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
30
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
31
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
32
|
Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals (Basel) 2020; 13:ph13060113. [PMID: 32492898 PMCID: PMC7344628 DOI: 10.3390/ph13060113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes involved at different stages of cancer progression and metastasis. We previously identified a novel class of bisphosphonic inhibitors, selective for MMPs crucial for bone remodeling, such as MMP-2. Due to the increasing relevance of specific MMPs at various stages of tumor malignancy, we focused on improving potency towards certain isoforms. Here, we tackled MMP-9 because of its confirmed role in tumor invasion, metastasis, angiogenesis, and immuno-response, making it an ideal target for cancer therapy. Using a computational analysis, we designed and characterized potent MMP-2/MMP-9 inhibitors. This is a promising approach to develop and clinically translate inhibitors that could be used in combination with standard care therapy for the treatment of skeletal malignancies.
Collapse
|
33
|
Wang W, Li D, Xiang L, Lv M, Tao L, Ni T, Deng J, Gu X, Masatara S, Liu Y, Zhou Y. TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. Cell Adh Migr 2020; 13:273-284. [PMID: 31293204 PMCID: PMC6629184 DOI: 10.1080/19336918.2019.1639303] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer has a common cause of morbidity and mortality. Therefore, it is urgent to detect reliable biomarkers to predict prognosis in CRC. Here, we determined the expression of TIMP-2 and MMP-9 in a CRC tissue microarray by immunohistochemistry. We found that lower TIMP-2 or/and higher MMP-9 expression in cancer tissues was correlated with poorer overall survival (OS). TIMP-2 or MMP-9 expression was independent prognostic factors for CRC. Furthermore, TIMP-2 and MMP-9 expression had a synergistic role as efficient prognostic indicators for CRC patients. In vitro and in vivo, TIMP-2 could inhibit HCT 116 cells invasion and migration by regulating MMP-9. In sum, a combined expression of TIMP-2 and MMP-9 as efficient prognostic indicators was found for the first time.
Collapse
Affiliation(s)
- Weimin Wang
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China.,c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| | - Dan Li
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China.,c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| | - Liangliang Xiang
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China
| | - Mengying Lv
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China
| | - Li Tao
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China
| | - Tengyang Ni
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China
| | - Jianliang Deng
- c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| | - Xiancheng Gu
- c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| | - Sunagawa Masatara
- d Department of Physiology , School of Medicine, Showa University , Tokyo , Japan
| | - Yanqing Liu
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China.,c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| | - Yan Zhou
- a Institute of Traslational Medicine , Medical College, Yangzhou University , Yangzhou , PR China.,b The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine , Yangzhou , PR China.,c Department of Oncology , Yixing Hospital Affiliated to Medical College of Yangzhou University , Yixing , Jiangsu , PR China
| |
Collapse
|
34
|
Luo F, Zhao Y, Liu J. Cell adhesion molecule 4 suppresses cell growth and metastasis by inhibiting the Akt signaling pathway in non-small cell lung cancer. Int J Biochem Cell Biol 2020; 123:105750. [PMID: 32325280 DOI: 10.1016/j.biocel.2020.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
Cell adhesion molecule 4 (CADM4) is downregulated in many human cancers. However, CADM4 expression levels in human non-small cell lung cancer (NSCLC) tissues and its roles in NSCLC progression remain unknown. Our study aims to address these issues. We examined CADM4 levels in NSCLC tissues using real-time PCR and western blot. A549 and NCI-H1299 cells were then transfected with pcDNA3.1-CADM4 plasmid or siCADM4 to overexpress or knock down CADM4. Cell proliferation, cell cycle distribution, migration, and invasion were evaluated. NSCLC cells transfected with pcDNA3.1-CADM4 plasmid or siCADM4 were treated with SC79 or LY294002, respectively, to investigate the involvement of the Akt signaling pathway. Male nude mice were subcutaneously injected with stably transfected cells (1 × 106 cells/mice) to observe tumor growth. Stable transfectants were injected into nude mice (1 × 106 cells/mice) via tail vein to observe tumor metastasis. The results showed that CADM4 gene and protein levels in NSCLC tissues were significantly lower than those in corresponding adjacent tissues. CADM4 overexpression markedly inhibited cell proliferation, migration, and invasion. We also found that matrix metalloproteinase 9 (MMP-9) and MMP-2 activities were reduced. Moreover, CADM4 overexpression arrested the cell cycle at G1 phase, with the changes in expression of cell cycle regulators. The Akt signaling pathway was inhibited by CADM4 overexpression. In contrast, CADM4 knockdown showed the opposite effects. Additionally, SC79 and LY294002 reversed the effects of CADM4 overexpression and CADM4 knockdown in vitro, respectively. In xenograft models, CAMD4 overexpression suppressed, while CADM4 knockdown promoted tumor growth, accompanied by changes in Ki67 expression. In in vivo metastasis assay, CADM4 overexpression decreased, while CADM4 knockdown increased numbers of metastatic nodules in lung and liver. These evidences suggest that CADM4 may regulate NSCLC progression via the Akt signaling pathway. CADM4 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fang Luo
- Department of Oncology, The First Clinical College, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yi Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|
35
|
SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells. Sci Rep 2020; 10:2262. [PMID: 32042016 PMCID: PMC7010743 DOI: 10.1038/s41598-020-59057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In several carcinomas, the SET Domain Containing 3, Actin Histidine Methyltransferase (SETD3) is associated with oncogenesis. However, there is little knowledge about the role of SETD3 in the progression and prognosis of breast cancer. In this study, we first analyzed the prognostic value of SETD3 in breast cancer patients using the database of the public Kaplan-Meier plotter. Moreover, in vitro assays were performed to assess the role of SETD3 in the viability and capacity of invasion of human breast cancer cell lines. We observed that the high expression of SETD3 was associated with better relapse-free survival (RFS) of the whole collective of 3,951 patients, of Estrogen Receptor-positive, and of Luminal A-type breast cancer patients. However, in patients lacking expression of estrogen-, progesterone- and HER2-receptor, and those affected by a p53-mutation, SETD3 was associated with poor RFS. In vitro analysis showed that SETD3 siRNA depletion affects the viability of triple-negative cells as well as the cytoskeletal function and capacity of invasion of highly invasive MDA-MB-231 cells. Interestingly, SETD3 regulates the expression of other genes associated with cancer such as β-actin, FOXM1, FBXW7, Fascin, eNOS, and MMP-2. Our study suggests that SETD3 expression can act as a subtype-specific biomarker for breast cancer progression and prognosis.
Collapse
|
36
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Geng H, Li S, Xu M. Long Noncoding RNA SNHG6 Functions as an Oncogene in Non-Small Cell Lung Cancer via Modulating ETS1 Signaling. Onco Targets Ther 2020; 13:921-930. [PMID: 32099396 PMCID: PMC6996613 DOI: 10.2147/ott.s235336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a great threat to human health and the biology of the NSCLC still remains largely unknown. Aberrantly expressed long non-coding RNA (lncRNA) Small nucleolar RNA host gene 6 (SNHG6) was involved in the tumorigenesis and progression of various cancers. The aim of this study is to investigate the roles of SNHG6 in NSCLC. Methods qRT-PCR and Western blot assays were applied to detect gene expressions. Cell proliferation and migration assays were used to analyze the gene functions. Luciferase reporter assay, RNA Immunoprecipitation assay and Chromatin immunoprecipitation assay were performed to investigate the molecular mechanism. Results We found that SNHG6 expression was significantly increased in NSCLC tissues and cell lines and its high expression was correlated with malignant features of NSCLC. In in vitro assays, knockdown of SNHG6 significantly depressed the proliferation vitality and migration activity of NSCLC cells. Research on mechanisms revealed that SNHG6 exerted its tumorigenesis role by promoting ETS1 expression via competitively binding with miR-944 and miR-181d-5p. We also demonstrated that ETS1 enhanced the expression of WIPF1 via binding to its promoter and SNHG6 could thereby regulate the expression of ETS1 target genes including WIPF1, MMP2 and MMP9. Conclusion Our study illustrates that SNHG6 is an oncogene in NSCLC and involved in NSCLC tumorigenesis by regulating ETS1 signaling via miR-944 and miR-181d-5p.
Collapse
Affiliation(s)
- Hua Geng
- Department of Pathology, Tianjin Chest Hospital, Tianjin 300222, People's Republic of China
| | - Shixiong Li
- Department of Pathology, Tianjin Chest Hospital, Tianjin 300222, People's Republic of China
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin 300222, People's Republic of China
| |
Collapse
|
38
|
Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and Future Molecular Targets for Acute Myeloid Leukemia Therapy. Curr Treat Options Oncol 2020; 21:3. [PMID: 31933183 DOI: 10.1007/s11864-019-0694-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) disease prognosis is poor and there is a high risk of chemo-resistant relapse for both young and old patients. Thus, there is a demand for alternative and target-specific drugs to improve the 5-year survival rate. Current treatment mainstays include chemotherapy, or mutation-specific targeting molecules including FLT3 inhibitors, IDH inhibitors, and monoclonal antibodies. Efforts to devise new, targeted therapy have included recent advances in methods for high-throughput genomic screening and the availability of computer-assisted techniques for the design of novel agents predicted to specifically inhibit mutant molecules involved in leukemogenesis. Crosstalk between the leukemia cells and the bone marrow microenvironment through cell surface molecules, such as the integrins αvβ3 and αvβ5, might influence drug response and AML progression. This review article focuses on current AML treatment options, new AML targeted therapies, the role of integrins in AML progression, and a potential therapeutic agent-integrin αvβ3 antagonist.
Collapse
Affiliation(s)
- Shaheedul A Sami
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Noureldien H E Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.,Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amanda N M Barile
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
39
|
Radiation and Stemness Phenotype May Influence Individual Breast Cancer Outcomes: The Crucial Role of MMPs and Microenvironment. Cancers (Basel) 2019; 11:cancers11111781. [PMID: 31726667 PMCID: PMC6896076 DOI: 10.3390/cancers11111781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most common cancer in women. Radiotherapy (RT) is one of the mainstay treatments for cancer but in some cases is not effective. Cancer stem cells (CSCs) within the tumor can be responsible for recurrence and metastasis after RT. Matrix metalloproteases (MMPs), regulated mainly by tissue inhibitors of metalloproteinases (TIMPs) and histone deacetylases (HDACs), may also contribute to tumor development by modifying its activity after RT. The aim of this work was to study the effects of RT on the expression of MMPs, TIMPs and HDACs on different cell subpopulations in MCF-7, MDA-MB-231 and SK-BR-3 cell lines. We assessed the in vitro expression of these genes in different 3D culture models and induced tumors in female NSG mice by orthotopic xenotransplants. Our results showed that gene expression is related to the cell subpopulation studied, the culture model used and the single radiation dose administered. Moreover, the crucial role played by the microenvironment in terms of cell interactions and CSC plasticity in tumor growth and RT outcome is also shown, supporting the use of higher doses (6 Gy) to achieve better control of tumor development.
Collapse
|
40
|
Proença S, Antunes B, Guedes RC, Ramilo-Gomes F, Cabral MF, Costa J, Fernandes AS, Castro M, Oliveira NG, Miranda JP. Pyridine-Containing Macrocycles Display MMP-2/9 Inhibitory Activity and Distinct Effects on Migration and Invasion of 2D and 3D Breast Cancer Models. Int J Mol Sci 2019; 20:E5109. [PMID: 31618886 PMCID: PMC6829403 DOI: 10.3390/ijms20205109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The role of metalloproteinases (MMPs) on the migration and invasion of cancer cells has been correlated with tumor aggressiveness, namely with the up-regulation of MMP-2 and 9. Herein, two pyridine-containing macrocyclic compounds, [15]pyN5 and [16]pyN5, were synthesized, chemically characterized and evaluated as potential MMP inhibitors for breast cancer therapy using 3D and 2D cellular models. [15]pyN5 and [16]pyN5 (5-20 µM) showed a marked inhibition of MMPs activity (100% at concentrations ≥ 7.5 μM) when compared to ARP-100, a known MMP inhibitor. The inhibitory activity of [15]pyN5 and [16]pyN5 was further supported through in silico docking studies using Goldscore and ChemPLP scoring functions. Moreover, although no significant differences were observed in the invasion studies in the presence of all MMPs inhibitors, cell migration was significantly inhibited by both pyridine-containing macrocycles at concentrations above 5 μM in 2D cells (p < 0.05). In spheroids, the same effect was observed, but only with [16]pyN5 at 20 μM and ARP-100 at 40 μM. Overall, [15]pyN5 and [16]pyN5 led to impaired breast cancer cell migration and revealed to be potential inhibitors of MMPs 2 and 9.
Collapse
Affiliation(s)
- Susana Proença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands.
| | - Bernardo Antunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Filipa Ramilo-Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - M Fátima Cabral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | | | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| |
Collapse
|
41
|
Olivares-Urbano MA, Griñán-Lisón C, Zurita M, Del Moral R, Ríos-Arrabal S, Artacho-Cordón F, Arrebola JP, González AR, León J, Antonio Marchal J, Núñez MI. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: A pilot study. J Cell Mol Med 2019; 24:139-148. [PMID: 31568637 PMCID: PMC6933337 DOI: 10.1111/jcmm.14671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/14/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is the most common tumour in women and one of the most important causes of cancer death worldwide. Radiation therapy (RT) is widely used for BC treatment. Some proteins have been identified as prognostic factors for BC (Ki67, p53, E‐cadherin, HER2). In the last years, it has been shown that variations in the expression of MMPs and TIMPs may contribute to the development of BC. The aim of this pilot work was to study the effects of RT on different MMPs (‐1, ‐2, ‐3, ‐7, ‐8, ‐9, ‐10, ‐12 and ‐13) and TIMPs (‐1 to ‐4), as well as their relationship with other variables related to patient characteristics and tumour biology. A group of 20 BC patients treated with RT were recruited. MMP and TIMP serum levels were analysed by immunoassay before, during and after RT. Our pilot study showed a slight increase in the levels of most MMP and TIMP with RT. However, RT produced a significantly decrease in TIMP‐1 and TIMP‐3 levels. Significant correlations were found between MMP‐3 and TIMP‐4 levels, and some of the variables studied related to patient characteristics and tumour biology. Moreover, MMP‐9 and TIMP‐3 levels could be predictive of RT toxicity. For this reason, MMP‐3, MMP‐9, TIMP‐3 and TIMP‐4 could be used as potential prognostic and predictive biomarkers for BC patients treated with RT.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | - Mercedes Zurita
- Department of Radiation Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Rosario Del Moral
- Department of Radiation Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Sandra Ríos-Arrabal
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Francisco Artacho-Cordón
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs.Granada, Granada, Spain
| | - Juan Pedro Arrebola
- Biosanitary Research Institute, ibs.Granada, Granada, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Granada, Spain
| | - Amanda Rocío González
- Bio-Health Research Foundation of Eastern Andalusia - Alejandro Otero (FIBAO), Granada, Spain
| | - Josefa León
- Biosanitary Research Institute, ibs.Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs.Granada, Granada, Spain
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs.Granada, Granada, Spain
| |
Collapse
|
42
|
Henriet P, Emonard H. Matrix metalloproteinase-2: Not (just) a "hero" of the past. Biochimie 2019; 166:223-232. [PMID: 31362036 DOI: 10.1016/j.biochi.2019.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The 72-kDa type IV collagenase or gelatinase A is the second member of the matrix metalloproteinase family, MMP-2. Since the discovery of its first two substrates within components of the extracellular matrix, denatured interstitial type I collagen and native type IV collagen, the roles and various levels of regulation of MMP-2 have been intensively studied, mainly in vitro. Its (over)expression in most if not all tumors was considered a hallmark of cancer aggressiveness and boosted investigations aiming at its inhibition. Unfortunately, the enthusiasm subsided like a soufflé after clinical trial failures, mostly because of insufficient knowledge of in vivo MMP-2 activities and detrimental side effects of broad-spectrum MMP inhibition. Nowadays, MMP-2 remains a major topic of interest in research, the second in the MMP family after MMP-9. This review presents a broad overview of the major features of this protease. This knowledge is crucial to identify diagnostic or therapeutic strategies focusing on MMP-2. In this sense, recent publications and clinical trials underline the potential value of measuring circulating or tissular MMP-2 levels as diagnostic or prognostic tools, or as a useful secondary outcome for therapies against other primary targets. Direct MMP-2 inhibition has benefited from substantial progress in the design of more specific inhibitors but their in vivo application remains challenging but certainly worth the efforts it receives.
Collapse
Affiliation(s)
- Patrick Henriet
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS and Université de Reims Champagne-Ardenne, UMR 7369, 51100, Reims, France.
| |
Collapse
|
43
|
Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019; 11:cancers11071020. [PMID: 31330786 PMCID: PMC6678871 DOI: 10.3390/cancers11071020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Bone is a preferential site for cancer metastases, including multiple myeloma, prostate, and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it an attractive site for cancer cell colonization and survival. The bone ECM is composed of living cells embedded within a matrix composed of both organic and inorganic components. Among the organic components, type I collagen provides the tensile strength of bone. Inorganic components, including hydroxyapatite crystals, are an integral component of bone and provide bone with its rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and response to biophysical signals from the ECM. However, under pathological conditions, including osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell proliferation and lesion outgrowth. Models to study the complex interactions between the bone matrix and metastatic cancer cells are limited. Advances in understanding the interactions between the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent metastatic cancer cell growth in bone.
Collapse
Affiliation(s)
- Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
44
|
Burlaka AA. ADIPOSE TISSUE AND ITS ROLE IN MICROENVIRONMENT OF THE COLORECTAL ADENOCARCINOMA CANCER CELL. INTERNATIONAL JOURNAL OF MEDICINE AND MEDICAL RESEARCH 2019. [DOI: 10.11603/ijmmr.2413-6077.2019.1.9819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction. The mechanisms of adipose-tissue’s influence on tumor progression has been studied a lot, but the way of interaction of adipocytes with tumor cells have not been well defined until now.
Objective. The aim of this study was to evaluate the mechanisms of adipocytes and tumor cells interaction under the influence of radiation and chemo-radiation therapy in locally advanced rectal cancer (LARC) patients.
Material and methods. A prospective randomized single-center study was conducted. It involved 110 patients with LARC and pre-obesity. The patients were randomized into a main group A (radiation therapy and oxaliplatin-based chemotherapy) and a comparison group B (radiation therapy and fluoropyrimidine-based mono-chemotherapy). Superoxide free radicals and NO levels generated by mitochondria of adipocytes were evaluated In both groups’. Also, there was estimated the indices of MMP-2, MMP-9, 8-oxoG, and free fatty acids (FFA) level.
Results and discussion. Level of superoxide radicals in tumor-adjacent adipose tissue was 0.58±0.15 (main group) and 0.70±0.12 nmol/g·min (comparison group) (p<0.001). Blood levels of FFA increased in group A up to 2.05±0.15, and in group B up to 2.48±0.20 mmol/l (while in it was 0.57±0.11 mmol/L). 8-oxoG levels in tumor-adjacent adipose tissue had no statistically significant differences.
Conclusions. The tumor-adjacent adipose tissue is an energy depot that can act as a promoter of tumor progression supplying the locally advanced rectal cancer with an energy substrate FFA. It has been established that the level MMP-2 activity significantly reduces the degree of intercellular matrix remodeling by the XELOX chemotherapy.
Collapse
|
45
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
46
|
Chen Z, Tong LJ, Tang BY, Liu HY, Wang X, Zhang T, Cao XW, Chen Y, Li HL, Qian XH, Xu YF, Xie H, Ding J. C11, a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor, suppresses breast cancer metastasis and angiogenesis. Acta Pharmacol Sin 2019; 40:823-832. [PMID: 30487650 DOI: 10.1038/s41401-018-0191-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
The fibroblast growth factor receptors (FGFRs) are increasingly considered attractive targets for therapeutic cancer intervention due to their roles in tumor metastasis and angiogenesis. Here, we identified a new selective FGFR inhibitor, C11, and assessed its antitumor activities. C11 was a selective FGFR1 inhibitor with an IC50 of 19 nM among a panel of 20 tyrosine kinases. C11 inhibited cell proliferation in various tumors, particularly bladder cancer and breast cancer. C11 also inhibited breast cancer MDA-MB-231 cell migration and invasion via suppression of FGFR1 phosphorylation and its downstream signaling pathway. Suppression of matrix metalloproteinases 2/9 (MMP2/9) was associated with the anti-motility activity of C11. Furthermore, the anti-angiogenesis activity of C11 was verified in endothelial cells and chicken chorioallantoic membranes (CAMs). C11 inhibited the migration and tube formation of HMEC-1 endothelial cells and inhibited angiogenesis in a CAM assay. In sum, C11 is a novel selective FGFR1 inhibitor that exhibits potent activity against breast cancer metastasis and angiogenesis.
Collapse
|
47
|
Tabrez S, Jabir NR, Khan MI, Khan MS, Shakil S, Siddiqui AN, Zaidi SK, Ahmed BA, Kamal MA. Association of autoimmunity and cancer: An emphasis on proteolytic enzymes. Semin Cancer Biol 2019; 64:19-28. [PMID: 31100322 DOI: 10.1016/j.semcancer.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
Cancer and autoimmune diseases are the two devastating conditions that together constitute a leading health problem worldwide. The rising burden of these disorders in the developing world demands a multifaceted approach to address the challenges it poses. Understanding the root causes and specific molecular mechanisms by which the progression of the diseases takes place is need of the hour. A strong inflammatory background and common developmental pathways, such as activation of immune cells, proliferation, increased cell survival and migration which are controlled by growth factors and inflammatory cytokines have been considered as the critical culprits in the progression and complications of these disorders. Enzymes are the potential immune modulators which regulate various inflammatory events and can break the circulating immune complexes via macrophages production. In the current manuscript, we have uncovered the possible role of proteolytic enzymes in the pathogenesis and progression of cancer and autoimmune diseases. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards the role of proteolytic enzymes in the modulation of inflammatory responses in cancer and autoimmune diseases together.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Imran Khan
- Protein Research Chair, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
48
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
49
|
Rieunier G, Wu X, Macaulay VM, Lee AV, Weyer-Czernilofsky U, Bogenrieder T. Bad to the Bone: The Role of the Insulin-Like Growth Factor Axis in Osseous Metastasis. Clin Cancer Res 2019; 25:3479-3485. [PMID: 30745299 DOI: 10.1158/1078-0432.ccr-18-2697] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
Bone metastases are a frequent complication of cancer that are associated with considerable morbidity. Current treatments may temporarily palliate the symptoms of bone metastases but often fail to delay their progression. Bones provide a permissive environment because they are characterized by dynamic turnover, secreting factors required for bone maintenance but also stimulating the establishment and growth of metastases. Insulin-like growth factors (IGF) are the most abundant growth factors in bone and are required for normal skeletal development and function. Via activation of the IGF-1 receptors (IGF-1R) and variant insulin receptors, IGFs promote cancer progression, aggressiveness, and treatment resistance. Of specific relevance to bone biology, IGFs contribute to the homing, dormancy, colonization, and expansion of bone metastases. Furthermore, preclinical evidence suggests that tumor cells can be primed to metastasize to bone by a high IGF-1 environment in the primary tumor, suggesting that bone metastases may reflect IGF dependency. Therapeutic targeting of the IGF axis may therefore provide an effective method for treating bone metastases. Indeed, anti-IGF-1R antibodies, IGF-1R tyrosine kinase inhibitors, and anti-IGF-1/2 antibodies have demonstrated antitumor activity in preclinical models of prostate and breast cancer metastases, either alone or in combination with other agents. Several studies suggest that such treatments can inhibit bone metastases without affecting growth of the primary tumor. Although previous trials of anti-IGF-1R drugs have generated negative results in unselected patients, these considerations suggest that future clinical trials of IGF-targeted agents may be warranted in patients with bone metastases.
Collapse
Affiliation(s)
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Thomas Bogenrieder
- RCV Medicine, Boehringer Ingelheim RCV, Vienna, Austria.,Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
50
|
Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, Keating KA, Davis PJ. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018; 6:biomedicines6030089. [PMID: 30135398 PMCID: PMC6165185 DOI: 10.3390/biomedicines6030089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Acting at a cell surface receptor on the extracellular domain of integrin αvβ3, thyroid hormone analogues regulate downstream the expression of a large panel of genes relevant to cancer cell proliferation, to cancer cell survival pathways, and to tumor-linked angiogenesis. Because αvβ3 is involved in the cancer cell metastatic process, we examine here the possibility that thyroid hormone as l-thyroxine (T4) and the thyroid hormone antagonist, tetraiodothyroacetic acid (tetrac), may respectively promote and inhibit metastasis. Actions of T4 and tetrac that are relevant to cancer metastasis include the multitude of synergistic effects on molecular levels such as expression of matrix metalloproteinase genes, angiogenesis support genes, receptor tyrosine kinase (EGFR/ERBB2) genes, specific microRNAs, the epithelial–mesenchymal transition (EMT) process; and on the cellular level are exemplified by effects on macrophages. We conclude that the thyroid hormone-αvβ3 interaction is mechanistically linked to cancer metastasis and that modified tetrac molecules have antimetastatic activity with feasible therapeutic potential.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA 92093, USA.
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031 Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|