1
|
Buckley NA, Craxton A, Sun XM, Panatta E, Pinon LG, Beier S, Kalmar L, Llodrá J, Morone N, Amelio I, Melino G, Martins LM, MacFarlane M. TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis. Cell Death Dis 2024; 15:807. [PMID: 39516459 PMCID: PMC11549358 DOI: 10.1038/s41419-024-07130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function. Disruption of this axis results in a fragmented mitochondrial network and an impaired capacity for energy production via oxidative phosphorylation. Owing to the role of OPA1 in modulating cytochrome c release, TAp73-/- cells display an increased sensitivity to apoptotic cell death, e.g., via BH3-mimetics. We additionally show that the TAp73/OPA1 axis has functional relevance in the upper airway, where TAp73 expression is essential for multiciliated cell differentiation and function. Consistently, ciliated epithelial cells of Trp73-/- (global p73 knock-out) mice display decreased expression of OPA1 and perturbations of the mitochondrial network, which may drive multiciliated cell loss. In support of this, Trp73 and OPA1 gene expression is decreased in chronic obstructive pulmonary disease (COPD) patients, a disease characterised by alterations in mitochondrial dynamics. We therefore highlight a potential mechanism involving the loss of p73 in COPD pathogenesis. Our findings also add to the growing body of evidence for growth-promoting roles of TAp73 isoforms.
Collapse
Affiliation(s)
- Niall A Buckley
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Sina Beier
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Jaime Llodrá
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Division for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | |
Collapse
|
2
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
3
|
Proust B, Horvat A, Tadijan A, Vlašić I, Herak Bosnar M. Mitochondrial NME6 Influences Basic Cellular Processes in Tumor Cells In Vitro. Int J Mol Sci 2024; 25:9580. [PMID: 39273527 PMCID: PMC11395177 DOI: 10.3390/ijms25179580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
NME6 belongs to the family of nucleoside diphosphate kinase enzymes, whose major role is to transfer the terminal phosphate from NTPs, mostly ATP, to other (d)NDPs via a high-energy intermediate. Beside this basic enzymatic activity, the family, comprising 10 genes/proteins in humans, executes a number of diverse biochemical/biological functions in the cell. A few previous studies have reported that NME6 resides in the mitochondria and influences oxidative phosphorylation while interacting with RCC1L, a GTPase involved in mitochondrial ribosome assembly and translation. Considering the multifunctional role of NME family members, the goal of the present study was to assess the influence of the overexpression or silencing of NME6 on fundamental cellular events of MDA-MB-231T metastatic breast cancer cells. Using flow cytometry, Western blotting, and a wound-healing assay, we demonstrated that the overexpression of NME6 reduces cell migration and alters the expression of EMT (epithelial-mesenchymal transition) markers. In addition, NME6 overexpression influences cell cycle distribution exclusively upon DNA damage and impacts the MAPK/ERK signaling pathway, while it has no effect on apoptosis. To conclude, our results demonstrate that NME6 is involved in different cellular processes, providing a solid basis for future, more precise investigations of its role.
Collapse
Affiliation(s)
| | | | | | | | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia; (B.P.); (A.H.); (A.T.); (I.V.)
| |
Collapse
|
4
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Beghin M, De Groote A, Kestemont P. Single and combined effects of titanium (TiO 2) and zinc (ZnO) oxide nanoparticles in the rainbow trout gill cell line RTgill-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56523-56535. [PMID: 39266880 DOI: 10.1007/s11356-024-34955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Understanding the environmental impact of nanoparticle (NP) mixtures is essential to accurately assess the risk they represent for aquatic ecosystems. However, although the toxicity of individual NPs has been extensively studied, information regarding the toxicity of combined NPs is still comparatively rather scarce. Hence, this research aimed to investigate the individual and combined toxicity mechanisms of two widely consumed nanoparticles, zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs), using an in vitro model, the RTgill-W1 rainbow trout gill epithelial cell line. Sublethal concentrations of ZnO NPs (0.1 µg mL-1) and TiO2 (30 µg mL-1) and a lethal concentration of ZnO NPs causing 10% mortality (EC10, 3 µg mL-1) were selected based on cytotoxicity assays. Cells were then exposed to the NPs at the selected concentrations alone and to their combination. Cytotoxicity assays, oxidative stress markers, and targeted gene expression analyses were employed to assess the NP cellular toxicity mechanisms and their effects on the gill cells. The cytotoxicity of the mixture was identical to the one of ZnO NPs alone. Enzymatic and gene expression (nrf2, gpx, sod) analyses suggest that none of the tested conditions induced a strong redox imbalance. Metal detoxification mechanisms (mtb) and zinc transportation (znt1) were affected only in cells exposed to ZnO NPs, while tight junction proteins (zo1 and cldn1), and apoptosis protein p53 were overexpressed only in cells exposed to the mixture. Osmoregulation (Na + /K + ATPase gene expression) was not affected by the tested conditions. The overall results suggest that the toxic effects of ZnO and TiO2 NPs in the mixture were significantly enhanced and could result in the disruption of the gill epithelium integrity. This study provides new insights into the combined effects of commonly used nanoparticles, emphasizing the importance of further investigating how their toxicity may be influenced in mixtures.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| | - Alice De Groote
- Department of Pharmacy, Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| |
Collapse
|
6
|
Odetayo AF, Olayaki LA. Omega 3 fatty acids preserve testicular function by ameliorating BPF-induced dysthyroidism: role of p53/Bcl-2 signaling and proton pump activities. JBRA Assist Reprod 2024; 28:471-482. [PMID: 38801312 PMCID: PMC11349269 DOI: 10.5935/1518-0557.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Bisphenol F (BPF) is an endocrinedisrupting chemical, but information about its effect on thyroid hormones has not been fully explored. Omega 3 fatty acids (O3FA), on the other hand, are antioxidant and antiapoptotic agents. Therefore, this study explored the role and associated molecular mechanism of O3FA in BPF-induced hypothyroidism-mediated testicular dysfunction in male Wistar rats. METHODS Twenty (20) male Wistar rats were randomized into four groups (n=5/group), namely: the control group; the BPF treated group (30 mg/kg of BPF); and the intervention groups (30mg/kg BPF + 100mg/kg O3FA (BPF+O3FA-L) and 30mg/kg BPF + 300mg/kg of O3FA for 28 days). RESULTS Low and high doses of O3FA ameliorated BPF-induced hypothyroidism-mediated reduction in sperm quality, testosterone, luteinizing hormone, follicle-stimulating hormone, catalase, superoxide dismutase, total antioxidant capacity, and nuclear factor erythroid 2-related factor 2 and increases in estrogen, malondialdehyde, c-reactive protein, interleukin 1 beta, caspase 3. Furthermore, O3FA prevented BPF-induced Na+/K+-ATPase and Ca2+-ATPase dysfunction, estrogen receptor beta overexpression, and tumor protein P53 (p53)/ b-cell lymphoma 2 (Bcl-2) imbalance. CONCLUSIONS This study showed that O3FA ameliorated BPF-induced dysthyroidism-mediated testicular dysfunction by preventing proton pump dysfunction and p53/BCl-2 imbalance.
Collapse
Affiliation(s)
- Adeyemi Fatai Odetayo
- Department of Physiology, University of Ilorin, Ilorin,
Nigeria
- Department of Physiology, Federal University of Health Sciences,
Ila Orangun, Nigeria
| | | |
Collapse
|
7
|
Schaufelberger SA, Schaettin M, Azzarito G, Rosselli M, Leeners B, Dubey RK. 2-Methoxyestradiol, an Endogenous 17β-Estradiol Metabolite, Induces Antimitogenic and Apoptotic Actions in Oligodendroglial Precursor Cells and Triggers Endoreduplication via the p53 Pathway. Cells 2024; 13:1086. [PMID: 38994940 PMCID: PMC11240791 DOI: 10.3390/cells13131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative disorders. Based on its anti-carcinogenic and anti-angiogenic actions, it is undergoing phase II clinical trials. We hypothesize that 2ME may prevent glioma growth by targeting OPC growth. Here, we tested this hypothesis by assessing the impact of 2ME on the growth of an OPC line, "Oli-neu", and dissected the underlying mechanism(s). Treatment with 2ME inhibited OPC growth in a concentration-dependent manner, accompanied by significant upregulation in the expression of p21 and p27, which are negative cell-cycle regulators. Moreover, treatment with 2ME altered OPC morphology from multi-arm processes to rounded cells. At concentrations of 1uM and greater, 2ME induced apoptosis, with increased expressions of caspase 3, PARP, and caspase-7 fragments, externalized phosphatidylserine staining/APOPercentage, and increased mitochondrial activity. Flow cytometry and microscopic analysis demonstrated that 2ME triggers endoreduplication in a concentration-dependent fashion. Importantly, 2ME induced cyclin E, JNK1/2, and p53 expression, as well as OPC fusion, which are key mechanisms driving endoreduplication and whole-genome duplication. Importantly, the inhibition of p53 with pifithrin-α rescued 2ME-induced endoreduplication. The pro-apoptotic and endoreduplication actions of 2ME were accompanied by the upregulation of survivin, cyclin A, Cyclin B, Cyclin D2, and ppRB. Similar growth inhibitory, apoptotic, and endoreduplication effects of 2ME were observed in CG4 cells. Taken together, our findings provide evidence that 2ME not only inhibits OPC growth and triggers apoptosis, but also activates OPCs into survival (fight or flight) mode, leading to endoreduplication. This inherent survival characteristic of OPCs may, in part, be responsible for drug resistance in gliomas, as observed for many tubulin-interacting drugs. Importantly, the fate of OPCs after 2ME treatment may depend on the cell-cycle status of individual cells. Combining tubulin-interfering molecules with drugs such as pifithrin-α that inhibit endoreduplication may help inhibit OPC/glioma growth and limit drug resistance.
Collapse
Affiliation(s)
- Sara A Schaufelberger
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martina Schaettin
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Giovanna Azzarito
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Marinella Rosselli
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Brigitte Leeners
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raghvendra K Dubey
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
8
|
Palanivel C, Madduri LSV, Hein AL, Jenkins CB, Graff BT, Camero AL, Zhou S, Enke CA, Ouellette MM, Yan Y. PR55α-controlled protein phosphatase 2A inhibits p16 expression and blocks cellular senescence induction by γ-irradiation. Aging (Albany NY) 2024; 16:4116-4137. [PMID: 38441530 PMCID: PMC10968692 DOI: 10.18632/aging.205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lepakshe S. V. Madduri
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley L. Hein
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher B. Jenkins
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brendan T. Graff
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alison L. Camero
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Charles A. Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michel M. Ouellette
- Department of Internal Medicine - Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Yun C, Kim SH, Kwon D, Byun MR, Chung KW, Lee J, Jung YS. Doxorubicin Attenuates Free Fatty Acid-Induced Lipid Accumulation via Stimulation of p53 in HepG2 Cells. Biomol Ther (Seoul) 2024; 32:94-103. [PMID: 38148555 PMCID: PMC10762281 DOI: 10.4062/biomolther.2023.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 μg/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Shin MG, Pico AR. Using published pathway figures in enrichment analysis and machine learning. BMC Genomics 2023; 24:713. [PMID: 38007419 PMCID: PMC10676589 DOI: 10.1186/s12864-023-09816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. Here, we highlight the utility of PFOCR in disease research in comparison with popular pathway databases through an assessment of disease coverage and analytical applications. In addition to common pathway analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
Affiliation(s)
- Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
11
|
Sadeghi Moghadam M, Azimian H, Tavakol Afshari J, Bahreyni Toossi MT, Kaffash Farkhad N, Aghaee-Bakhtiari SH. Chromosomal Instability in Various Generations of Human Mesenchymal Stem Cells Following the Therapeutic Radiation. Stem Cells Int 2023; 2023:9991656. [PMID: 37674788 PMCID: PMC10480024 DOI: 10.1155/2023/9991656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 09/08/2023] Open
Abstract
Background Radiotherapy is a crucial treatment for most malignancies. However, it can cause several side effects, including the development of secondary malignancies due to radiation-induced genomic instability (RIGI). The aim of this study was to evaluate genomic instability in human mesenchymal stem cells (hMSCs) at different X-ray radiation doses. Additionally, the study aimed to examine the relative expression of certain genes involved in DNA repair, proto-oncogenes, and tumor suppressor genes. Methods After extracting, characterizing, and expanding hMSCs, they were exposed to X-ray beams at doses of 0, 0.5, 2, and 6 Gy. Nuclear alterations were evaluated through the cytokinesis-block micronucleus (CBMN) assay at 2, 10, and 15 days postirradiation. The expressions of BRCA1, BRCA2, TP53, Bax, Bcl2, and KRAS genes were analyzed 48 hr after irradiation to evaluate genomic responses to different radiation doses. Results The mean incidence of micronuclei, nucleoplasmic bridges, and nuclear buds was 4.8 ± 1.6, 47.6 ± 6, and 18 ± 2.6, respectively, in the nonirradiated group 48 hr after the fourth passage, per 1,000 binucleated cells. The incidence of micronuclei in groups exposed to 0.5, 2, and 6 Gy of radiation was 14.3 ± 4.9, 32.3 ± 6.5, and 55 ± 9.1, respectively, 48 hr after irradiation. The expression levels of the BRCA2, Bax, TP53, and KRAS genes significantly increased after exposure to 6 Gy radiation compared to the control groups. However, there was no significant increase in BRCA1 and Bcl2 gene expression in our study. Conclusion This study demonstrated significant nuclear alterations in the 10 days postirradiation due to the RIGIs that they inherited from their irradiated ancestral cells. While chromosomal instability is a prevalent event in malignant cells, so it seems necessary to optimize radiotherapy treatment protocols for tissues that contain stem cells, especially with IMRT, which delivers a low dose to a larger volume of tissues.
Collapse
Affiliation(s)
- Majid Sadeghi Moghadam
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
12
|
Zhang K, Zheng Y, Bao G, Ma W, Han B, Shi H, Zhao Z. Flt3 Activation Mitigates Mitochondrial Fragmentation and Heart Dysfunction through Rebalanced L-OPA1 Processing by Hindering the Interaction between Acetylated p53 and PHB2 in Cardiac Remodeling. Antioxidants (Basel) 2023; 12:1657. [PMID: 37759959 PMCID: PMC10525215 DOI: 10.3390/antiox12091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling. Mitochondrial fragmentation in cardiomyocytes was induced by isoprenaline (ISO) and H2O2 challenge, respectively, in vitro. Cardiac remodeling in mice was established by ligating the left anterior descending coronary artery or by chronic ISO challenge, respectively, in vivo. Our results demonstrated that the protein expression of acetylated-p53 (ac-p53) in mitochondria was significantly increased under cell stress conditions, facilitating the dissociation of PHB2-OPA1 complex by binding to prohibitin 2 (PHB2), a molecular chaperone that stabilizes OPA1 in mitochondria. This led to the degradation of the long isoform of OPA1 (L-OPA1) that facilitates mitochondrial fusion and resultant mitochondrial network fragmentation. This effect was abolished by a p53 K371R mutant that failed to bind to PHB2 and impeded the formation of the ac-p53-PHB2 complex. The activation of Flt3 significantly reduced ac-p53 expression in mitochondria via SIRT1, thereby hindering the formation of the ac-p53-PHB2 complex and potentiating the stability of the PHB2-OPA1 complex. This ultimately inhibits L-OPA1 processing and leads to the balancing of mitochondrial dynamics. These findings highlight a novel mechanism by which Flt3 activation mitigates mitochondrial fragmentation and dysfunction through the reduction of L-OPA1 processing by dampening the interaction between ac-p53 and PHB2 in cardiac maladaptive remodeling.
Collapse
Affiliation(s)
- Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yeqing Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Hongwen Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
13
|
Shin MG, Pico A. Using Published Pathway Figures in Enrichment Analysis and Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548037. [PMID: 37461614 PMCID: PMC10350053 DOI: 10.1101/2023.07.06.548037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. PFOCR content is extracted from published pathway figures currently emerging at a rate of 1000 new pathways each month. Here, we compare the pathway information contained in PFOCR against popular pathway databases with respect to overall and disease-specific coverage. In addition to common pathways analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
|
14
|
Choe JH, Kawase T, Xu A, Guzman A, Obradovic AZ, Low-Calle AM, Alaghebandan B, Raghavan A, Long K, Hwang PM, Schiffman JD, Zhu Y, Zhao R, Lee DF, Katz C, Prives C. Li-Fraumeni Syndrome-Associated Dimer-Forming Mutant p53 Promotes Transactivation-Independent Mitochondrial Cell Death. Cancer Discov 2023; 13:1250-1273. [PMID: 37067901 PMCID: PMC10287063 DOI: 10.1158/2159-8290.cd-22-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Cancer-relevant mutations in the oligomerization domain (OD) of the p53 tumor suppressor protein, unlike those in the DNA binding domain, have not been well elucidated. Here, we characterized the germline OD mutant p53(A347D), which occurs in cancer-prone Li-Fraumeni syndrome (LFS) patients. Unlike wild-type p53, mutant p53(A347D) cannot form tetramers and exists as a hyperstable dimeric protein. Further, p53(A347D) cannot bind or transactivate the majority of canonical p53 target genes. Isogenic cell lines harboring either p53(A347D) or no p53 yield comparable tumorigenic properties, yet p53(A347D) displays remarkable neomorphic activities. Cells bearing p53(A347D) possess a distinct transcriptional profile and undergo metabolic reprogramming. Further, p53(A347D) induces striking mitochondrial network aberration and associates with mitochondria to drive apoptotic cell death upon topoisomerase II inhibition in the absence of transcription. Thus, dimer-forming p53 demonstrates both loss-of-function (LOF) and gain-of-function (GOF) properties compared with the wild-type form of the protein. SIGNIFICANCE A mutant p53 (A347D), which can only form dimers, is associated with increased cancer susceptibility in LFS individuals. We found that this mutant wields a double-edged sword, driving tumorigenesis through LOF while gaining enhanced apoptogenic activity as a new GOF, thereby yielding a potential vulnerability to select therapeutic approaches. See related commentary by Stieg et al., p. 1046. See related article by Gencel-Augusto et al., p. 1230. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tatsuya Kawase
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Aleksandar Z. Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bita Alaghebandan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ananya Raghavan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kaitlin Long
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Paul M. Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Joshua D. Schiffman
- Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84112, USA
| | - Yan Zhu
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
16
|
Park D, Lee JH, Yoon SP. Anti-cancer effects of fenbendazole on 5-fluorouracil-resistant colorectal cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:377-387. [PMID: 36039738 PMCID: PMC9437363 DOI: 10.4196/kjpp.2022.26.5.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
Benzimidazole anthelmintic agents have been recently repurposed to overcome cancers resistant to conventional therapies. To evaluate the anti-cancer effects of benzimidazole on resistant cells, various cell death pathways were investigated in 5-fluorouracil-resistant colorectal cancer cells. The viability of wild-type and 5-fluorouracil-resistant SNU-C5 colorectal cancer cells was assayed, followed by Western blotting. Flow cytometry assays for cell death and cell cycle was also performed to analyze the anti-cancer effects of benzimidazole. When compared with albendazole, fenbendazole showed higher susceptibility to 5-fluorouracil-resistant SNU-C5 cells and was used in subsequent experiments. Flow cytometry revealed that fenbendazole significantly induces apoptosis as well as cell cycle arrest at G2/M phase on both cells. When compared with wild-type SNU-C5 cells, 5-fluorouracil-resistant SNU-C5 cells showed reduced autophagy, increased ferroptosis and ferroptosis-augmented apoptosis, and less activation of caspase-8 and p53. These results suggest that fenbendazole may be a potential alternative treatment in 5-fluorouracil-resistant cancer cells, and the anticancer activity of fenbendazole does not require p53 in 5-fluorouracil-resistant SNU-C5 cells.
Collapse
Affiliation(s)
- Deokbae Park
- Department of Histology, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Jung-Hee Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
17
|
Gold nanoparticles induce apoptosis in HCT-116 colon cancer cell line. Mol Biol Rep 2022; 49:7863-7871. [PMID: 35729479 DOI: 10.1007/s11033-022-07616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/08/2022]
Abstract
INTRODUCTION This study aimed to investigate the apoptotic and anti-cancer effect of gold nanoparticles (AuNPs) on apoptosis in HCT-116 colon cancer cells. MATERIALS AND METHODS The level of ROS and apoptosis were determined by fluorimetric method and flow cytometry and Hoechst 33,258 staining, respectively. Furthermore, the mRNA expression of Bax, Bcl-2, CCNB1, P53 genes was evaluated by qRT-PCR method in HCT116 cells. RESULTS The experimental results of this study showed that treatment with nanoparticles led to a significant increase in expression of Bax, P53 genes and a significant decrease in the expression of Bcl-2, CCNB1 genes at concentrations of 25 and 50 µg/ml during 48 h of incubation, compared to control cells (p < 0.05). The flow cytometric results (Annexin-pI) and Hoechst 33,258 staining also showed a significant increase in the level of apoptosis in the treated cells, depending on the concentration and time. CONCLUSIONS The results of this study showed that AuNPs cause apoptosis at the half-maximal inhibitory concentration in the HCT-116 tumor cells during 48 h of incubation.
Collapse
|
18
|
Casciati A, Tanori M, Gianlorenzi I, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Marino C, Mancuso M, Merla C. Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23063001. [PMID: 35328420 PMCID: PMC8950115 DOI: 10.3390/ijms23063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.
Collapse
Affiliation(s)
- Arianna Casciati
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mirella Tanori
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Isabella Gianlorenzi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Carmela Marino
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mariateresa Mancuso
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| | - Caterina Merla
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| |
Collapse
|
19
|
Zhang Y, Ma X, Li H, Zhuang J, Feng F, Liu L, Liu C, Sun C. Identifying the Effect of Ursolic Acid Against Triple-Negative Breast Cancer: Coupling Network Pharmacology With Experiments Verification. Front Pharmacol 2021; 12:685773. [PMID: 34858165 PMCID: PMC8631906 DOI: 10.3389/fphar.2021.685773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.
Collapse
Affiliation(s)
- Yubao Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoran Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
20
|
Chen YK, Tan YY, Yao M, Lin HC, Tsai MH, Li YY, Hsu YJ, Huang TT, Chang CW, Cheng CM, Chuang CY. Bisphenol A-induced DNA damages promote to lymphoma progression in human lymphoblastoid cells through aberrant CTNNB1 signaling pathway. iScience 2021; 24:102888. [PMID: 34401669 PMCID: PMC8350018 DOI: 10.1016/j.isci.2021.102888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Lymphoma is a group of blood cancers that develop from the immune system, and one of the main risk factors is associated with exposure to environmental chemicals. Bisphenol A (BPA) is a common chemical used in the manufacture of materials in polycarbonate and epoxy plastic products and can interfere with the immune system. BPA is considered to possibly induce lymphoma development by affecting the immune system, but its potential mechanisms have not been well established. This study performed a gene-network analysis of microarray data sets in human lymphoma tissues as well as in human cells with BPA exposure to explore module genes and construct the potential pathway for lymphomagenesis in response to BPA. This study provided evidence that BPA exposure resulted in disrupted cell cycle and DNA damage by activating CTNNB1, the initiator of the aberrant constructed CTNNB1-NFKB1-AR-IGF1-TWIST1 pathway, which may potentially lead to lymphomagenesis.
Collapse
Affiliation(s)
- Yin-Kai Chen
- Department of Hematology, National Taiwan University Cancer Center, Taipei, 106, Taiwan
| | - Yan-Yan Tan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Min Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mon-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Yun Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yih-Jen Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Tsung-Tao Huang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chia-Wei Chang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chih-Ming Cheng
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
- Mike & Clement TECH Co., Ltd., Changhua Country, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
21
|
Agarwal E, Goldman AR, Tang HY, Kossenkov AV, Ghosh JC, Languino LR, Vaira V, Speicher DW, Altieri DC. A cancer ubiquitome landscape identifies metabolic reprogramming as target of Parkin tumor suppression. SCIENCE ADVANCES 2021; 7:7/35/eabg7287. [PMID: 34433563 PMCID: PMC8386929 DOI: 10.1126/sciadv.abg7287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 05/16/2023]
Abstract
Changes in metabolism that affect mitochondrial and glycolytic networks are hallmarks of cancer, but their impact in disease is still elusive. Using global proteomics and ubiquitome screens, we now show that Parkin, an E3 ubiquitin ligase and key effector of mitophagy altered in Parkinson's disease, shuts off mitochondrial dynamics and inhibits the non-oxidative phase of the pentose phosphate pathway. This blocks tumor cell movements, creates metabolic and oxidative stress, and inhibits primary and metastatic tumor growth. Uniformly down-regulated in cancer patients, Parkin tumor suppression requires its E3 ligase function, is reversed by antioxidants, and is independent of mitophagy. These data demonstrate that cancer metabolic networks are potent oncogenes directly targeted by endogenous tumor suppression.
Collapse
Affiliation(s)
- Ekta Agarwal
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aaron R Goldman
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jagadish C Ghosh
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lucia R Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - David W Speicher
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Kong X, Yu D, Wang Z, Li S. Relationship between p53 status and the bioeffect of ionizing radiation. Oncol Lett 2021; 22:661. [PMID: 34386083 PMCID: PMC8299044 DOI: 10.3892/ol.2021.12922] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is widely used in the clinical treatment of cancer patients and it may be used alone or in combination with surgery or chemotherapy to inhibit tumor development. However, radiotherapy may at times not kill all cancer cells completely, as certain cells may develop radioresistance that counteracts the effects of radiation. The emergence of radioresistance is associated with the genetic background and epigenetic regulation of cells. p53 is an important tumor suppressor gene that is expressed at low levels in cells. However, when cells are subjected to stress-induced stimulation, the expression level of p53 increases, thereby preventing genomic disruption. This mechanism has important roles in maintaining cell stability and inhibiting carcinogenesis. However, mutation and deletion destroy the anticancer function of p53 and may induce carcinogenesis. In tumor radiotherapy, the status of p53 expression in cancer cells has a close relationship with radiotherapeutic efficacy. Therefore, understanding how p53 expression affects the cellular response to radiation is of great significance for solving the problem of radioresistance and improving radiotherapeutic outcomes. For the present review, the literature was searched for studies published between 1979 and 2021 using the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) with the following key words: Wild-type p53, mutant-type p53, long non-coding RNA, microRNA, gene mutation, radioresistance and radiosensitivity. From the relevant studies retrieved, the association between different p53 mutants and cellular radiosensitivity, as well as the molecular mechanisms of p53 affecting the radiosensitivity of cells, were summarized. The aim of the present study was to provide useful information for understanding and resolving radioresistance, to help clinical researchers develop more accurate treatment strategies and to improve radiotherapeutic outcomes for cancer patients with p53 mutations.
Collapse
Affiliation(s)
- Xiaohan Kong
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhaoyi Wang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Putri HE, Nutho B, Rungrotmongkol T, Sritularak B, Vinayanuwattikun C, Chanvorachote P. Bibenzyl analogue DS-1 inhibits MDM2-mediated p53 degradation and sensitizes apoptosis in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153534. [PMID: 33773191 DOI: 10.1016/j.phymed.2021.153534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lung cancer is a leading fatal malignancy due to the high incidence of treatment failure. Dysfunction of the tumor suppressor p53 contributes to cancer initiation, progression, and therapeutic resistance. Targeting MDM2, a negative regulator of p53, has recently attracted interest in cancer drug research as it may restore tumor suppressive function. PURPOSE The present study aimed to investigate the effect of 3,4-dihydroxy-5,4'-dimethoxybibenzyl (DS-1) on targeting MDM2 and restoring p53 function in lung cancer cells. METHODS The efficacy of DS-1 alone or in combination with cisplatin in lung cancer cells was determined by MTT, nuclear staining, and annexin V/PI assay. The expression of apoptosis-related proteins was determined by western blot analysis. To evaluate the role of DS-1 on the stabilization and degradation of p53, cycloheximide chasing assay and immunoprecipitation were conducted, and the active form of p53 was investigated by immunofluorescent staining assay. To confirm and demonstrate the site interaction between DS-1 and the MDM2 protein, in silico computational analysis was performed. RESULTS DS-1 exhibited a cytotoxic effect and sensitized lung cancer cells to cisplatin-induced apoptosis. DS-1 caused a significant increase in the cellular level of p53 protein, while the active form of p53 (phosphorylation at Ser15) was unaltered. DS-1 treatment in combination with cisplatin could enhance activated p-p53 (Ser15) and p53 downstream signaling (Bax, Bcl-2, and Akt), leading to a higher level of apoptosis. Immunoprecipitation analysis revealed that DS-1 decreased the p53-ubiquitin complex, a prerequisite step in p53 proteasomal degradation. Molecular docking simulation further evidenced that DS-1 interacts with MDM2 within the p53-binding domain by carbon-hydrogen bond interaction at Lys27, π-alkyl interactions at Ile37 and Leu30, and van der Waals interactions at Ile75, Val51, Val69, Phe67, Met38, Tyr43, Gly34, and Phe31. Treatment by DS-1 and cisplatin in patient-derivated primary lung cancer cells showed consistent effects by increasing cisplatin sensitivity. CONCLUSIONS Our findings provide evidence that DS-1 is an MDM2 inhibitor and its underlying mechanism involves MDM2 binding and p53 induction, which may benefit the development of this compound for lung cancer treatment.
Collapse
Affiliation(s)
- Hardyanti Eka Putri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
25
|
Sibuh BZ, Khanna S, Taneja P, Sarkar P, Taneja NK. Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci 2021; 273:119305. [PMID: 33675898 DOI: 10.1016/j.lfs.2021.119305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this study was to synthesize and evaluate anticancer activity of 2-hydroxy benzaldehyde and 4-hydroxy benzaldehyde thiosemicarbazone (2-HBTSc and 4-HBTSc) against MCF-7 breast cancer cell line. MATERIALS AND METHODS The ligands were prepared and characterized by UV vis, IR and NMR. MTT assay was used to assess viability of cells. RNA isolation, extraction and cDNA synthesis were done. Then all groups were subjected to RT-qPCR using Gene expression specific primers. Also, western blot protein expression and molecular docking were done. Two-way ANOVA with Tukey post-hoc test was employed to test the significance using GraphPad Prism. RESULTS The IC50 values were 3.36μg/ml and 3.60μg/ml for 2-HBTSc and 4-HBTSc treated MCF-7 tumor cells respectively. Tumor cell growth inhibition ranged from 38 to 49.27% in 4-HBTSc treated cells, and 19 to 25% in 2-HBTSc treated cells with increase in doses 5 μg/ml to 20 μg/ml. The protein and gene expression result showed a significant upregulation in tumor suppressor and apoptosis inducing genes while, oncogene activity was significantly downregulated. Specifically, BRCA2 and pRB gene showed the highest expression in 4-HBTSc and 2-HBTSc treated cells respectively. Conversely, RAS oncogene was downregulated significantly. Docking result showed that both 2-HBTSc and 4-HBTSc have the potential to inhibit Estrogen Receptor Alpha Ligand Binding Domain, Human 17-Beta-hydroxysteroid dehydrogenase type 1 mutant protein and Human Topoisomerase II alpha that are expressed more during Breast Cancer. CONCLUSION The findings of this study imply that the test compound has potential for further study.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U. P., India
| | - Sonia Khanna
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, U. P., India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U. P., India.
| | - Paratpar Sarkar
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, U. P., India
| | | |
Collapse
|
26
|
Pham TP, Bink DI, Stanicek L, van Bergen A, van Leeuwen E, Tran Y, Matic L, Hedin U, Wittig I, Dimmeler S, Boon RA. Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Front Cell Dev Biol 2021; 8:619079. [PMID: 33505972 PMCID: PMC7829583 DOI: 10.3389/fcell.2020.619079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.
Collapse
Affiliation(s)
- Tan Phát Pham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diewertje I. Bink
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Anke van Bergen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esmee van Leeuwen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvonne Tran
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ljubica Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ilka Wittig
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier A. Boon
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| |
Collapse
|
27
|
Bian Z, Huang X, Chen Y, Meng J, Feng X, Zhang M, Zhang L, Zhou J, Liang C. Fifteen-MiRNA-Based Signature Is a Reliable Prognosis-Predicting Tool for Prostate Cancer Patients. Int J Med Sci 2021; 18:284-294. [PMID: 33390797 PMCID: PMC7738977 DOI: 10.7150/ijms.49412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/09/2022] Open
Abstract
Recurrence is a major problem for prostate cancer patients, thus, identifying prognosis-related markers to evaluate clinical outcomes is essential. Here, we established a fifteen-miRNA-based recurrence-free survival (RFS) predicting signature based on the miRNA expression profile extracted from The Cancer Genome Atlas (TCGA) database by the LASSO Cox regression analysis. The median risk score generated by the signature in both the TCGA training and the external Memorial Sloan-Kettering Cancer Center (MSKCC) validation cohorts was employed and the patients were subclassified into low- and high-risk subgroups. The Kaplan-Meier plot and log-rank analyses showed significant survival differences between low- and high-risk subgroups of patients (TCGA, log-rank P < 0.001 & MSKCC, log-rank P = 0.045). In addition, the receiver operating characteristic curves of both the training and external validation cohorts indicated the good performance of our model. After predicting the downstream genes of these miRNAs, the miRNA-mRNA network was visualized by Cytoscape software. In addition, pathway analyses found that the differences between two groups were mainly enriched on tumor progression and drug resistance-related pathways. Multivariate analyses revealed that the miRNA signature is an independent indicator of RFS prognosis for prostate cancer patients with or without clinicopathological features. In summary, our novel fifteen-miRNA-based prediction signature is a reliable method to evaluate the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518000, China
| | - Yiding Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China.,Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, People's Republic of China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
28
|
Hu Y, Xu W, Zeng H, He Z, Lu X, Zuo D, Qin G, Chen W. OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation. Br J Cancer 2020; 123:1644-1655. [PMID: 32934344 PMCID: PMC7686370 DOI: 10.1038/s41416-020-01040-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Microcalcification is one of the most reliable clinical features of the malignancy risk of breast cancer, and it is associated with enhanced tumour aggressiveness and poor prognosis. However, its underlying molecular mechanism remains unclear. METHODS Clinical data were retrieved to analyse the association between calcification and bone metastasis in patients with breast cancer. Using multiple human breast cancer cell lines, the osteogenic cocktail model was established in vitro to demonstrate calcification-exacerbated metastasis. Migration and invasion characteristics were determined by wound healing and transwell migration. mRNA and protein expression were identified by quantitative PCR and western blotting. Metabolic alterations in breast cancer cells were evaluated using Seahorse Analyser. RESULTS The osteogenic differentiation of human breast cancer cells activated the classical TGF-β/Smad signalling pathway and the non-canonical MAPK pathway, which, in turn, exacerbated the progression of epithelial-mesenchymal transition (EMT). The metabolic programme switched to enhancing mitochondrial oxidative phosphorylation (OXPHOS) upon osteogenic differentiation. Rotenone was used to inhibit the OXPHOS complex during osteogenesis to block mitochondrial function, consequently reversing the EMT phenotype. CONCLUSIONS This study provides important insights into the mechanisms involved in breast cancer bone metastasis, and outlines a possible strategy to intervene in OXPHOS for the treatment of breast tumours.
Collapse
Affiliation(s)
- Yangling Hu
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Weimin Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, 510515, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
29
|
Abate G, Vezzoli M, Sandri M, Rungratanawanich W, Memo M, Uberti D. Mitochondria and cellular redox state on the route from ageing to Alzheimer's disease. Mech Ageing Dev 2020; 192:111385. [PMID: 33129798 DOI: 10.1016/j.mad.2020.111385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Several theories have been postulated, trying to explain why and how living organisms age. Despite some controversies and still huge open questions, a growing body of evidence suggest alterations of mitochondrial functionality and redox-homeostasis occur during the ageing process. Oxidative damage and mitochondrial dysfunction do not represent the cause of ageing per se but they have to be analyzed within the complexity of those series of processes occurring during lifespan. The establishment of a crosstalk among them is a shared common feature of many chronic age-related diseases, including neurodegenerative disorders, for which ageing is a major risk factor. The challenge is to understand when and how the interplay between these two systems move towards from normal ageing process to a pathological phenotype. Here in this review, we discuss the crosstalk between mitochondria and cytosolic-ROS. Furthermore, through a visual data mining approach, we attempt to describe the dynamic interplay between mitochondria and cellular redox state on the route from ageing to an AD phenotype.
Collapse
Affiliation(s)
- G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| | - M Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Sandri
- Big & Open Data Innovation Laboratory (BODaI-Lab), Department of Economics and Management, University of Brescia, Italy
| | - W Rungratanawanich
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
30
|
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci 2020; 21:ijms21217941. [PMID: 33114695 PMCID: PMC7663685 DOI: 10.3390/ijms21217941] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Collapse
|
31
|
Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, Mohd Tamrin MI. 10H-3,6-Diazaphenothiazines triggered the mitochondrial-dependent and cell death receptor-dependent apoptosis pathways and further increased the chemosensitivity of MCF-7 breast cancer cells via inhibition of AKT1 pathways. J Biochem Mol Toxicol 2020; 34:e22544. [PMID: 32619082 DOI: 10.1002/jbt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoyan Hao
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kok Pian Ang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Islahuddin Mohd Tamrin
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
32
|
Bala S, Calenda CD, Catalano D, Babuta M, Kodys K, Nasser IA, Vidal B, Szabo G. Deficiency of miR-208a Exacerbates CCl 4-Induced Acute Liver Injury in Mice by Activating Cell Death Pathways. Hepatol Commun 2020; 4:1487-1501. [PMID: 33024918 PMCID: PMC7527689 DOI: 10.1002/hep4.1540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Acute liver injury (ALI) is associated with multiple cellular events such as necrosis, apoptosis, oxidative stress and inflammation, which can lead to liver failure. In this study, we demonstrate a new role of microRNA (miR)‐208a in ALI. ALI was induced in wild‐type (WT) and miR‐208a knockout (KO) mice by CCl4 administration. Increased alanine aminotransferase and decreased hepatic miR‐208a levels were found in WT mice after acute CCl4 treatment. Histopathological evaluations revealed increased necrosis and decreased inflammation in miR‐208a KO compared with WT mice after CCl4 treatment. CCl4 treatment induced a higher alanine aminotransferase elevation and increased numbers of circulating extracellular vesicles (exosomes and microvesicles) in miR‐208a KO compared with WT mice. We found increased CCl4‐induced nuclear factor kappa B activation and tumor necrosis factor‐α induction and decreased monocyte chemoattractant protein 1 levels in miR‐208a KO compared with WT mice. Terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick‐end labeling assay indicated aggravated hepatic apoptosis and necrosis in CCl4‐treated miR‐208a KO compared with WT mice. CCl4 treatment induced a greater increase in cleaved caspase‐8, p18, and caspase‐3 in miR‐208a KO compared with WT mice. p53 is involved in various cell death pathways, including necrosis and apoptosis. Our in silico analysis revealed p53 as a predicted miR‐208a target, and we found enhanced p53 and cyclophilin D protein expressions in miR‐208a KO mice after CCl4 treatment. Increased liver injury in miR‐208a KO mice was further associated with increased Bax (B cell lymphoma 2–associated X protein) and p21 expression. Our in vitro results indicated a role of miR‐208a in cell death. We found that CCl4‐induced cytotoxicity was partially rescued by miR‐208a overexpression in RAW macrophages. Altogether, our results revealed a role of miR‐208a in ALI in mice and suggest a role for miR‐208a in regulating cell death.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Charles D Calenda
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Donna Catalano
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Mrigya Babuta
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Karen Kodys
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Imad A Nasser
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Barbara Vidal
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| | - Gyongyi Szabo
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston MA
| |
Collapse
|
33
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
34
|
Chappell WH, Candido S, Abrams SL, Akula SM, Steelman LS, Martelli AM, Ratti S, Cocco L, Cervello M, Montalto G, Nicoletti F, Libra M, McCubrey JA. Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines. Aging (Albany NY) 2020; 12:10194-10210. [PMID: 32492656 PMCID: PMC7346063 DOI: 10.18632/aging.103377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Background: TP53 plays critical roles in sensitivity to chemotherapy, and aging. Collagen is very important in aging. The molecular structure and biochemical properties of collagen changes during aging. The discoidin domain receptor (DDR1) is regulated in part by collagen. Elucidating the links between TP53 and DDR1 in chemosensitivity and aging could improve therapies against cancer and aging. Results: Restoration of WT-TP53 activity resulted in increased sensitivity to chemotherapeutic drugs and elevated expression of key components of the Raf/MEK/ERK, PI3K/Akt and DDR1 pathways. DDR1 could modulate the levels of Raf/MEK/ERK and PI3K/Akt pathways as well as sensitize the cells to chemotherapeutic drugs. In contrast, suppression of WT TP53 with a dominant negative (DN) TP53 gene, suppressed DDR1 protein levels and increased their chemoresistance. Conclusion: Restoration of WT TP53 activity or increased expression of the anti-aging DDR1 collagen receptor can result in enhanced sensitivity to chemotherapeutic drugs. Our innovative studies indicate the important links between WT TP53 and DDR1 which can modulate Raf/MEK/ERK and PI3K/Akt signaling as well as chemosensitivity and aging. Methods: We investigated the roles of wild type (WT) and mutant TP53 on drug sensitivity of prostate cancer cells and the induction of Raf/MEK/ERK, PI3K/Akt and DDR1 expression and chemosensitivity.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.,Current Address: Becton, Dickinson and Company (BD), BD Diagnostics, Franklin Lakes, NJ 07417, USA
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
35
|
Sirt3 Exerts Its Tumor-Suppressive Role by Increasing p53 and Attenuating Response to Estrogen in MCF-7 Cells. Antioxidants (Basel) 2020; 9:antiox9040294. [PMID: 32244715 PMCID: PMC7222218 DOI: 10.3390/antiox9040294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen (E2) is a major risk factor for the initiation and progression of malignancy in estrogen receptor (ER) positive breast cancers, whereas sirtuin 3 (Sirt3), a major mitochondrial NAD+-dependent deacetylase, has the inhibitory effect on the tumorigenic properties of ER positive MCF-7 breast cancer cells. Since it is unclear if this effect is mediated through the estrogen receptor alpha (ERα) signaling pathway, in this study, we aimed to determine if the tumor-suppressive function of Sirt3 in MCF-7 cells interferes with their response to E2. Although we found that Sirt3 improves the antioxidative response and mitochondrial fitness of the MCF-7 cells, it also increases DNA damage along with p53, AIF, and ERα expression. Moreover, Sirt3 desensitizes cells to the proliferative effect of E2, affects p53 by disruption of the ERα–p53 interaction, and decreases proliferation, colony formation, and migration of the cells. Our observations indicate that these tumor-suppressive effects of Sirt3 could be reversed by E2 treatment only to a limited extent which is not sufficient to recover the tumorigenic properties of the MCF-7 cells. This study provides new and interesting insights with respect to the functional role of Sirt3 in the E2-dependent breast cancers.
Collapse
|
36
|
Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction. Sci Rep 2020; 10:3612. [PMID: 32107391 PMCID: PMC7046773 DOI: 10.1038/s41598-020-60235-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in which biomolecular profiles of patients are modeled in a graph-structured space that represents gene expression relationships between patients. Then a kernel-based semi-supervised transductive algorithm is applied to the graph to explore the overall topology of the graph and to predict the phenotype/clinical outcome of patients. Experimental tests involving several publicly available datasets of patients afflicted with pancreatic, breast, colon and colorectal cancer show that our proposed method is competitive with state-of-the-art supervised and semi-supervised predictive systems. Importantly, P-Net also provides interpretable models that can be easily visualized to gain clues about the relationships between patients, and to formulate hypotheses about their stratification.
Collapse
|
37
|
Holter MM, Garibay D, Lee SA, Saikia M, McGavigan AK, Ngyuen L, Moore ES, Daugherity E, Cohen P, Kelly K, Weiss RS, Cummings BP. Hepatocyte p53 ablation induces metabolic dysregulation that is corrected by food restriction and vertical sleeve gastrectomy in mice. FASEB J 2019; 34:1846-1858. [PMID: 31914635 DOI: 10.1096/fj.201902214r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
P53 has been implicated in the pathogenesis of obesity and diabetes; however, the mechanisms and tissue sites of action are incompletely defined. Therefore, we investigated the role of hepatocyte p53 in metabolic homeostasis using a hepatocyte-specific p53 knockout mouse model. To gain further mechanistic insight, we studied mice under two complementary conditions of restricted weight gain: vertical sleeve gastrectomy (VSG) or food restriction. VSG or sham surgery was performed in high-fat diet-fed male hepatocyte-specific p53 wild-type and knockout littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Hepatocyte-specific p53 ablation in sham-operated ad libitum-fed mice impaired glucose homeostasis, increased body weight, and decreased energy expenditure without changing food intake. The metabolic deficits induced by hepatocyte-specific p53 ablation were corrected, in part by food restriction, and completely by VSG. Unlike food restriction, VSG corrected the effect of hepatocyte p53 ablation to lower energy expenditure, resulting in a greater improvement in glucose homeostasis compared with food restricted mice. These data reveal an important new role for hepatocyte p53 in the regulation of energy expenditure and body weight and suggest that VSG can improve alterations in energetics associated with p53 dysregulation.
Collapse
Affiliation(s)
- Marlena M Holter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Seon A Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mridusmita Saikia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lily Ngyuen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Elizabeth S Moore
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Erin Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Kathleen Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Blandino G, Valenti F, Sacconi A, Di Agostino S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol 2019; 98:105-117. [PMID: 31112799 DOI: 10.1016/j.semcdb.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell metabolism is one of the cancer hallmarks. Mitochondrial DNA mutations and enzyme defects, aberrant tumor suppressor or oncogenic activities cause mitochondrial dysfunction leading to deregulated cellular energetics. The tumor suppressor protein, p53 is a tetrameric transcription factor that in response to diverse genotoxic and non-genotoxic insults activates a plethora of target genes to preserve genome integrity. In the last two decades the discovery of cytoplasmic p53 localization focused intense research on its extra-nuclear functions. The ability of p53 to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm have been investigated. A role of cytoplasmic p53 in autophagy, pentose phosphate pathway, fatty acid synthesis and oxidation, and drug response has been proposed. TP53 gene is mutated in more than half of human cancers. In parallel to loss of tumor suppressive functions, mutant p53 proteins often gain new tumorigenic activities (GOF, gain of function). It has been recently shown that mutant p53 proteins mediate metabolic changes thereby promoting cancer development and metastases. Here we review the contribution of either wild-type p53 or mutant p53 proteins to the fine-tuning of mitochondrial metabolism of both normal and cancer cells. Greater knowledge at the mechanistic level might provide insights to develop new cancer therapeutic approaches.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
39
|
Liu C, Li H, Wang K, Zhuang J, Chu F, Gao C, Liu L, Feng F, Zhou C, Zhang W, Sun C. Identifying the Antiproliferative Effect of Astragalus Polysaccharides on Breast Cancer: Coupling Network Pharmacology With Targetable Screening From the Cancer Genome Atlas. Front Oncol 2019; 9:368. [PMID: 31157164 PMCID: PMC6533882 DOI: 10.3389/fonc.2019.00368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background:Astragalus polysaccharides (APS), natural plant compounds, have recently emerged as a promising strategy for cancer treatment, but little is known concerning their effects on breast cancer (BC) tumorigenesis. Methods: We obtained breast cancer genetic data from The Cancer Genome Atlas (TCGA) database, network pharmacology to further clarify its biological properties. Survival analysis and molecular docking techniques were implemented for the final screening to obtain key target information. Our experiments focused on the detection of intervention effects of APS on BC cells (MCF-7 and MDA-MB-231), and quantitative RT-PCR (qRT-PCR) was used to assess the expression of key targets. Results: A total of 1,439 differentially expressed genes (DEGs) were identified by TCGA and used to build disease networks. Module analysis, gene ontology and pathway analysis revealed characteristic of the DEGs network. Topological properties were used to identify key targets, survival analysis and molecular docking finally found that the targets of APS regulation of BC cells may be CCNB1, CDC6, and p53. Through cell viability, migration and invasion assays, we found that APS interferes with the development of breast cancer in MCF7 and MDA-MB-231 cells in a dose-dependent manner. Furthermore, qRT-PCR verification suggested that the expression of CCNB1 and CDC6 in breast cancer cells was significantly downregulated in response to APS, while expression of the tumor suppressor gene P53 was significantly increased. Conclusion: Results of this study suggest therapeutic potential for APS in BC treatment, possibly through interventions with CCNB1, CDC6, and P53. Furthermore, these findings illustrate the feasibility of using network pharmacology to connect large-scale target data as a way to discover the mechanism of natural products interfering with disease.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Wenfeng Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Weifang, China
| |
Collapse
|
40
|
Rosso M, Lapyckyj L, Besso MJ, Monge M, Reventós J, Canals F, Quevedo Cuenca JO, Matos ML, Vazquez-Levin MH. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B. Cancer Metab 2019; 7:5. [PMID: 31086659 PMCID: PMC6507066 DOI: 10.1186/s40170-019-0196-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer (BC) is the most common female cancer and the leading cause of cancer death in women worldwide. Alterations in epithelial cadherin (E-cadherin) expression and functions are associated to BC, but the underlying molecular mechanisms have not been fully elucidated. We have previously reported a novel human E-cadherin splice variant (E-cadherin variant) mRNA. Stable transfectants in MCF-7 human BC cells (MCF7Ecadvar) depicted fibroblast-like cell morphology, E-cadherin wild-type downregulation, and other molecular changes characteristic of the epithelial-to-mesenchymal transition process, reduced cell-cell adhesion, and increased cell migration and invasion. In this study, a two-dimensional differential gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS) protein identification and bioinformatics analyses were done to characterize biological processes and canonical pathways affected by E-cadherin variant expression. Results By 2D-DIGE and MS analysis, 50 proteins were found differentially expressed (≥ Δ1.5) in MCF7Ecadvar compared to control cells. Validation of transcript expression was done in the ten most overexpressed and underexpressed proteins. Bioinformatics analyses revealed that 39 of the 50 proteins identified had been previously associated to BC. Moreover, metabolic processes were the most affected, and glycolysis the canonical pathway most altered. The lactate dehydrogenase B (LDHB) was the highest overexpressed protein, and transcript levels were higher in MCF7Ecadvar than in control cells. In agreement with these findings, MCF7Ecadvar conditioned media had lower glucose and higher lactate levels than control cells. MCF7Ecadvar cell treatment with 5 mM of the glycolytic inhibitor 2-deoxy-glucose led to decreased cell viability, and modulation of LDHB expression in MCF7Ecadvar cells with a specific small interfering RNA resulted in decreased cell proliferation. Finally, a positive association between expression levels of the E-cadherin variant and LDHB transcripts was demonstrated in 21 human breast tumor tissues, and breast tumor samples with higher Ki67 expression showed higher LDHB mRNA levels. Conclusions Results from this investigation contributed to further characterize molecular changes associated to the novel E-cadherin splice variant expression in BC cells. They also revealed an association between expression of the novel variant and changes related to BC progression and aggressiveness, in particular those associated to cell metabolism.
Collapse
Affiliation(s)
- Marina Rosso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Marta Monge
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jaume Reventós
- 3Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Francesc Canals
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Oswaldo Quevedo Cuenca
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María Laura Matos
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| |
Collapse
|
41
|
Abstract
This special issue on p53 explores different aspects of the significance of p53 in normal cells and in cancer [...].
Collapse
|
42
|
McGowan EM, Lin Y, Hatoum D. Good Guy or Bad Guy? The Duality of Wild-Type p53 in Hormone-Dependent Breast Cancer Origin, Treatment, and Recurrence. Cancers (Basel) 2018; 10:cancers10060172. [PMID: 29857525 PMCID: PMC6025368 DOI: 10.3390/cancers10060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
"Lactation is at one point perilously near becoming a cancerous process if it is at all arrested", Beatson, 1896. Most breast cancers arise from the milk-producing cells that are characterized by aberrant cellular, molecular, and epigenetic translation. By understanding the underlying molecular disruptions leading to the origin of cancer, we might be able to design novel strategies for more efficacious treatments or, ambitiously, divert the cancerous process. It is an established reality that full-term pregnancy in a young woman provides a lifetime reduction in breast cancer risk, whereas delay in full-term pregnancy increases short-term breast cancer risk and the probability of latent breast cancer development. Hormonal activation of the p53 protein (encode by the TP53 gene) in the mammary gland at a critical time in pregnancy has been identified as one of the most important determinants of whether the mammary gland develops latent breast cancer. This review discusses what is known about the protective influence of female hormones in young parous women, with a specific focus on the opportune role of wild-type p53 reprogramming in mammary cell differentiation. The importance of p53 as a protector or perpetrator in hormone-dependent breast cancer, resistance to treatment, and recurrence is also explored.
Collapse
Affiliation(s)
- Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
43
|
Avagliano A, Ruocco MR, Aliotta F, Belviso I, Accurso A, Masone S, Montagnani S, Arcucci A. Power in nursing: a collaborative approach. Nurs Outlook 1984; 8:cells8050401. [PMID: 31052256 PMCID: PMC6562467 DOI: 10.3390/cells8050401] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/09/2023]
Abstract
Breast cancers are very heterogeneous tissues with several cell types and metabolic pathways together sustaining the initiation and progression of disease and contributing to evasion from cancer therapies. Furthermore, breast cancer cells have an impressive metabolic plasticity that is regulated by the heterogeneous tumour microenvironment through bidirectional interactions. The structure and accessibility of nutrients within this unstable microenvironment influence the metabolism of cancer cells that shift between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to produce adenosine triphosphate (ATP). In this scenario, the mitochondrial energetic pathways of cancer cells can be reprogrammed to modulate breast cancer’s progression and aggressiveness. Moreover, mitochondrial alterations can lead to crosstalk between the mitochondria and the nucleus, and subsequently affect cancer tissue properties. This article reviewed the metabolic plasticity of breast cancer cells, focussing mainly on breast cancer mitochondrial metabolic reprogramming and the mitochondrial alterations influencing nuclear pathways. Finally, the therapeutic strategies targeting molecules and pathways regulating cancer mitochondrial alterations are highlighted.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy.
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy.
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy.
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy.
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|