1
|
Yeşilaltay A, Muz D, Erdal B, Bilgen T, Batar B, Turgut B, Topçu B, Yılmaz B, Avcı BA. Myxoma Virus Combination Therapy Enhances Lenalidomide and Bortezomib Treatments for Multiple Myeloma. Pathogens 2024; 13:72. [PMID: 38251379 PMCID: PMC10820570 DOI: 10.3390/pathogens13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the effectiveness and safety of Myxoma virus (MYXV) in MM cell lines and primary myeloma cells obtained from patients with multiple myeloma. Myeloma cells were isolated from MM patients and cultured. MYXV, lenalidomide, and bortezomib were used in MM cells. The cytotoxicity assay was investigated using WST-1. Apoptosis was assessed through flow cytometry with Annexin V/PI staining and caspase-9 concentrations using ELISA. To explore MYXV entry into MM cells, monoclonal antibodies were used. Moreover, to explore the mechanisms of MYXV entry into MM cells, we examined the level of GFP-labeled MYXV within the cells after blocking with monoclonal antibodies targeting BCMA, CD20, CD28, CD33, CD38, CD56, CD86, CD117, CD138, CD200, and CD307 in MM cells. The study demonstrated the effects of treating Myxoma virus with lenalidomide and bortezomib. The treatment resulted in reduced cell viability and increased caspase-9 expression. Only low-dose CD86 blockade showed a significant difference in MYXV entry into MM cells. The virus caused an increase in the rate of apoptosis in the cells, regardless of whether it was administered alone or in combination with drugs. The groups with the presence of the virus showed higher rates of early apoptosis. The Virus, Virus + Bortezomib, and Virus + Lenalidomide groups had significantly higher rates of early apoptosis (p < 0.001). However, the measurements of late apoptosis and necrosis showed variability. The addition of MYXV resulted in a statistically significant increase in early apoptosis in both newly diagnosed and refractory MM patients. Our results highlight that patient-based therapy should also be considered for the effective management of MM.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Department of Hematology, Faculty of Medicine, Başkent University Istanbul, Istanbul 34662, Türkiye
| | - Dilek Muz
- Department of Virology, Faculty of Veterinary, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Berna Erdal
- Department of Medical Microbiology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Türker Bilgen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahadır Batar
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burhan Turgut
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| | - Birol Topçu
- Department of Biostatistics, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahar Yılmaz
- Department of Tumor Biology and Immunology, Institute of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burcu Altındağ Avcı
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| |
Collapse
|
2
|
Nawrocki ST, Olea J, Villa Celi C, Dadrastoussi H, Wu K, Tsao-Wei D, Colombo A, Coffey M, Fernandez Hernandez E, Chen X, Nuovo GJ, Carew JS, Mohrbacher AF, Fields P, Kuhn P, Siddiqi I, Merchant A, Kelly KR. Comprehensive Single-Cell Immune Profiling Defines the Patient Multiple Myeloma Microenvironment Following Oncolytic Virus Therapy in a Phase Ib Trial. Clin Cancer Res 2023; 29:5087-5103. [PMID: 37812476 PMCID: PMC10722139 DOI: 10.1158/1078-0432.ccr-23-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Our preclinical studies showed that the oncolytic reovirus formulation pelareorep (PELA) has significant immunomodulatory anti-myeloma activity. We conducted an investigator-initiated clinical trial to evaluate PELA in combination with dexamethasone (Dex) and bortezomib (BZ) and define the tumor immune microenvironment (TiME) in patients with multiple myeloma treated with this regimen. PATIENTS AND METHODS Patients with relapsed/refractory multiple myeloma (n = 14) were enrolled in a phase Ib clinical trial (ClinicalTrials.gov: NCT02514382) of three escalating PELA doses administered on Days 1, 2, 8, 9, 15, and 16. Patients received 40 mg Dex and 1.5 mg/m2 BZ on Days 1, 8, and 15. Cycles were repeated every 28 days. Pre- and posttreatment bone marrow specimens (IHC, n = 9; imaging mass cytometry, n = 6) and peripheral blood samples were collected for analysis (flow cytometry, n = 5; T-cell receptor clonality, n = 7; cytokine assay, n = 7). RESULTS PELA/BZ/Dex was well-tolerated in all patients. Treatment-emergent toxicities were transient, and no dose-limiting toxicities occurred. Six (55%) of 11 response-evaluable patients showed decreased paraprotein. Treatment increased T and natural killer cell activation, inflammatory cytokine release, and programmed death-ligand 1 expression in bone marrow. Compared with nonresponders, responders had higher reovirus protein levels, increased cytotoxic T-cell infiltration posttreatment, cytotoxic T cells in significantly closer proximity to multiple myeloma cells, and larger populations of a novel immune-primed multiple myeloma phenotype (CD138+ IDO1+HLA-ABCHigh), indicating immunomodulation. CONCLUSIONS PELA/BZ/Dex is well-tolerated and associated with anti-multiple myeloma activity in a subset of responding patients, characterized by immune reprogramming and TiME changes, warranting further investigation of PELA as an immunomodulator.
Collapse
Affiliation(s)
- Steffan T. Nawrocki
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Julian Olea
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Claudia Villa Celi
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Homa Dadrastoussi
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Kaijin Wu
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Denice Tsao-Wei
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anthony Colombo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matt Coffey
- Oncolytics Biotech, Inc, Calgary, Alberta, Canada
| | | | - Xuelian Chen
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Gerard J. Nuovo
- The Ohio State University Comprehensive Cancer Center Columbus, Columbus, Ohio
| | - Jennifer S. Carew
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Ann F. Mohrbacher
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| | - Paul Fields
- Formerly, Adaptive Biotechnologies, Seattle, Washington; currently, Tempus Labs, Seattle, Washington
| | - Peter Kuhn
- USC Michelson Center for Convergent Biosciences and Department of Biological Sciences, University of Southern California, Los Angeles
| | - Imran Siddiqi
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kevin R. Kelly
- Division of Hematology, Health Sciences Campus, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Combined anti-tumor efficacy of somatostatin fusion protein and vaccinia virus on tumor cells with high expression of somatostatin receptors. Sci Rep 2022; 12:16885. [PMID: 36207478 PMCID: PMC9547013 DOI: 10.1038/s41598-022-21506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Somatostatin, a growth hormone-release inhibiting peptide, exerts antiproliferative and antiangiogenic effects on tumor cells. However, the short half-life of somatostatin limits its application in human therapy, and long-acting somatostatin fusion protein is also limited by its severe terminal degradation. Therefore, oncolytic virus delivery system was introduced to express somatostatin fusion protein and the anti-tumor effects of both somatostatin and oncolytic virus were combined to destroy tumor tissues. Here, a vaccinia VG9/(SST-14)2-HSA recombinant was constructed by replacing somatostatin fusion gene into TK locus of attenuated VG9 strain via homologous recombination. Results showed that vaccinia VG9/(SST-14)2-HSA possessed a combined anti-tumor effect on sstr-positive tumor cells in vitro. In the tumor burden models, BALB/c mice with complete immunity are most suitable for evaluating tumor regression and immune activation. Complete tumor regression was observed in 3 out of 10 mice treated with vaccinia VG9/TK− or VG9/(SST-14)2-HSA, and the survival of all mice in both groups was significantly prolonged. Besides, vaccinia VG9/(SST-14)2-HSA is more effective in prolonging survival than VG9/TK−. Vaccinia VG9/(SST-14)2-HSA exerts a combined anti-tumor efficacy including the oncolytic ability provided by the virus and the anti-tumor effect contributed by (SST-14)2-HSA, which is expected to become a potent therapeutic agent for cancer treatment.
Collapse
|
4
|
Mekkawy SA, Abdalla MS, Omran MM, Hassan NM, Abdelfattah R, Abdel-Salam IM. Cancer Stem Cells as a Prognostic Biomarker and Therapeutic Target Using Curcumin/ Piperine Extract for Multiple Myeloma. Asian Pac J Cancer Prev 2022; 23:3507-3515. [PMID: 36308377 PMCID: PMC9924316 DOI: 10.31557/apjcp.2022.23.10.3507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological bone marrow malignancy that can be treated but is usually fatal. Medication resistance is the major cause of relapses due to cancer stem cells (CSCs). As a result, this study aimed to identify multiple myeloma cancer stem cells (MMCSCs) in the bone marrow of twelve MM patients with pathological complete response (pCR) after chemotherapy and to investigate the potential effect of Curcumin/Piperine (C/P) extract as an anti-MMCSCs treatment in twenty newly diagnosed patients. METHODS This study included twenty bone marrow (BM) samples from newly diagnosed MM patients and twelve BM samples from pCR patients after a year of treatment. The MTT test was performed to assess the treatment's effective dosage. A flow cytometer was used to identify MMCSCs, cell cycle profile, extract's apoptotic activity, and proliferation marker in the selected samples. Also, a colony formation test and stemness protein were investigated. RESULTS In newly diagnosed MM patients, the C/P extract suppressed MMCSCs by 64.71% for CD138-/CD19- and 38.31% for CD38++. In MM patients' samples obtained after one year of treatment, the MMCSCs inhibition percentage reached 44.71% (P < 0.008) for CD138-/CD19- and 36.94% (P < 0.221) for CD38++. According to cell cycle analyses, the number of cells treated with C/P extract was significantly reduced in the S and G0/G1 phases (87.38%: 35.15%, and 4.83%: 2.17% respectively), with a rapid increase in the G2/M phases (1.1%: 2.2%.). MMCSCs apoptosis was identified using a flow cytometer and Annexin-V. Multiple myeloma stem cell (MMCSC) proliferation was inhibited. Clonogenicity was suppressed by 60%, and stemness protein expression was reduced by 70%. CONCLUSION MMCSCs in the bone marrow of MM-pCR patients can be utilized as a prognostic tool to predict recurrent multiple myeloma incidence. Also, the therapeutic potential of C/P extract as a prospective anti-MM drug targeting MMCSCs.
Collapse
Affiliation(s)
- Sara A. Mekkawy
- Molecular Biotechnology program, Faculty of Science, Helwan University, Cairo, Egypt. ,For Correspondence:
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Naglaa M. Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt.
| | - Raafat Abdelfattah
- Medical Oncology Department, National cancer institute, Cairo University, Egypt.
| | | |
Collapse
|
5
|
Villa NY, Rahman MM, Mamola J, Sharik ME, de Matos AL, Kilbourne J, Lowe K, Daggett-Vondras J, D'Isabella J, Goras E, Chesi M, Bergsagel PL, McFadden G. Transplantation of autologous bone marrow pre-loaded ex vivo with oncolytic myxoma virus is efficacious against drug-resistant Vk*MYC mouse myeloma. Oncotarget 2022; 13:490-504. [PMID: 35251496 PMCID: PMC8893797 DOI: 10.18632/oncotarget.28205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
- Division of Hematology/Oncology, School of Medicine, Emory University, Atlanta, GA 32322, USA
| | - Masmudur M. Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph Mamola
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | | | - Ana Lemos de Matos
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Juliane Daggett-Vondras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Julia D'Isabella
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Elizabeth Goras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Grant McFadden
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Sarwar A, Hashim L, Faisal MS, Haider MZ, Ahmed Z, Ahmed TF, Shahzad M, Ansar I, Ali S, Aslam MM, Anwer F. Advances in viral oncolytics for treatment of multiple myeloma - a focused review. Expert Rev Hematol 2021; 14:1071-1083. [PMID: 34428997 DOI: 10.1080/17474086.2021.1972802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Oncolytic viruses are genetically engineered viruses that target myeloma-affected cells by detecting specific cell surface receptors (CD46, CD138), causing cell death by activating the signaling pathway to induce apoptosis or by immune-mediated cellular destruction. AREAS COVERED This article summarizes oncolytic virotherapy advancements such as the therapeutic use of viruses by targeting cell surface proteins of myeloma cells as well as the carriers to deliver viruses to the target tissues safely. The major classes of viruses that have been studied for this include measles, myxoma, adenovirus, reovirus, vaccinia, vesicular-stomatitis virus, coxsackie, and others. The measles virus acts as oncolytic viral therapy by binding to the CD46 receptors on the myeloma cells to utilize its surface H protein. These H-protein and CD46 interactions lead to cellular syncytia formation resulting in cellular apoptosis. Vesicular-stomatitis virus acts by downregulation of anti-apoptotic factors (Mcl-2, BCL-2). Based upon the published literature searches till December 2020, we have summarized the data supporting the advances in viral oncolytic for the treatment of MM. EXPERT OPINION Oncolytic virotherapy is an experimental approach in multiple myeloma (MM); many issues need to be addressed for safe viral delivery to the target tissue.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Muhammad Salman Faisal
- Department of Internal Medicine, Division of Hematology, The Ohio State University Columbus Oh, USA
| | | | - Zahoor Ahmed
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | - Tehniat Faraz Ahmed
- Department of Biochemistry, Dow University of Health Sciences, Karachi, Pakistan
| | - Moazzam Shahzad
- Department of Internal Medicine, St Mary's Medical Center, Huntington, WV, USA
| | - Iqraa Ansar
- Department of Internal medicine, Riverside Methodist hospital, Columbus OH
| | - Sundas Ali
- Department of Internal medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Faiz Anwer
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Ohio, USA
| |
Collapse
|
7
|
Antwi-Amoabeng D, Ulanja MB, Beutler BD, Reddy SV. Multiple myeloma remission following COVID-19: an observation in search of a mechanism (a case report). Pan Afr Med J 2021; 39:117. [PMID: 34512853 PMCID: PMC8396390 DOI: 10.11604/pamj.2021.39.117.30000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major challenge in the management of patients with hematologic malignancies. Individuals with plasma cell dyscrasias, including multiple myeloma, are at increased risk of developing severe disease. Furthermore, immunosuppressant agents, which represent an important component of multiple myeloma treatment, may increase the risk of serious infection; thus, treatment regimens may need to be modified in some patients. The pathogenesis of COVID-19 is incompletely understood and much remains to be established regarding cancer care in the setting of this new global health threat. We report a case of multiple myeloma remission that occurred after a single cycle of chemotherapy in a patient with COVID-19. In addition, we discuss possible mechanisms underlying this surprising observation. The findings warrant further investigation and may have important implications for the management of multiple myeloma and other plasma cell dyscrasias in the age of COVID-19.
Collapse
Affiliation(s)
- Daniel Antwi-Amoabeng
- Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Mark Bilinyi Ulanja
- Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Bryce David Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA, United States of America
| | - Suresh Vodur Reddy
- Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America.,Cancer Care Specialists, Reno, Nevada, United States of America
| |
Collapse
|
8
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
9
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Targeting JAK/STAT Signaling Antagonizes Resistance to Oncolytic Reovirus Therapy Driven by Prior Infection with HTLV-1 in Models of T-Cell Lymphoma. Viruses 2021; 13:1406. [PMID: 34372612 PMCID: PMC8310324 DOI: 10.3390/v13071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects at least 10 million people worldwide and is associated with the development of T-cell lymphoma (TCL). The treatment of TCL remains challenging and new treatment options are urgently needed. With the goal of developing a novel therapeutic approach for TCL, we investigated the activity of the clinical formulation of oncolytic reovirus (Reolysin, Pelareorep) in TCL models. Our studies revealed that HTLV-1-negative TCL cells were highly sensitive to Reolysin-induced cell death, but HTLV-1-positive TCL cells were resistant. Consistent with these data, reovirus displayed significant viral accumulation in HTLV-1-negative cells, but failed to efficiently replicate in HTLV-1-positive cells. Transcriptome analyses of HTLV-1-positive vs. negative cells revealed a significant increase in genes associated with retroviral infection including interleukin-13 and signal transducer and activator of transcription 5 (STAT5). To investigate the relationship between HTLV-1 status and sensitivity to Reolysin, we infected HTLV-1-negative cells with HTLV-1. The presence of HTLV-1 resulted in significantly decreased sensitivity to Reolysin. Treatment with the JAK inhibitor ruxolitinib suppressed STAT5 phosphorylation and expression of the key anti-viral response protein MX1 and enhanced the anti-TCL activity of Reolysin in both HTLV-1-positive and negative cells. Our data demonstrate that the inhibition of the JAK/STAT pathway can be used as a novel approach to antagonize the resistance of HTLV-1-positive cells to oncolytic virus therapy.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Daniel O. Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| |
Collapse
|
10
|
Oncolytic virotherapy in hematopoietic stem cell transplantation. Hum Immunol 2021; 82:640-648. [PMID: 34119352 DOI: 10.1016/j.humimm.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative option for various hematologic malignancies. However, fatal complications, such as relapse and graft-versus-host disease (GVHD) hampered favorable HSCT outcomes. Cancer cells remained in the body following the conditioning regimen, or those contaminating the autologous graft can cause relapse. Although the relapse is much lesser in allogeneic HSCT, GVHD is still a life-threatening complication in this type of HSCT. Researchers are seeking various strategies to reduce relapse and GVHD in HSCT with minimum effects on the engraftment and immune-reconstitution. Oncolytic viruses (OVs) are emerging anti-cancer agents with promising results in battling solid tumors. OVs can selectively replicate in the malignant cells in which the antiviral immune responses have defected. Hence, they could be used as a purging agent to eradicate the tumoral contamination of autologous grafts with no damages to hematopoietic stem cells. Moreover, they have been shown to alleviate GVHD complications through modulating alloreactive T cell responses. Primary results promise using OVs as a strategy to reduce both relapse and GVHD in the HSCT without affecting hematologic and immunologic engraftment. Herein, we provide the latest findings in the field of OV therapy in HSCT and discuss their pros and cons.
Collapse
|
11
|
Müller LME, Migneco G, Scott GB, Down J, King S, Askar B, Jennings V, Oyajobi B, Scott K, West E, Ralph C, Samson A, Ilett EJ, Muthana M, Coffey M, Melcher A, Parrish C, Cook G, Lawson M, Errington-Mais F. Reovirus-induced cell-mediated immunity for the treatment of multiple myeloma within the resistant bone marrow niche. J Immunother Cancer 2021; 9:e001803. [PMID: 33741729 PMCID: PMC7986878 DOI: 10.1136/jitc-2020-001803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.
Collapse
Affiliation(s)
- Louise M E Müller
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gemma Migneco
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gina B Scott
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Jenny Down
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sancha King
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Basem Askar
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Victoria Jennings
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Babatunde Oyajobi
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karen Scott
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Emma West
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Christy Ralph
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Adel Samson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Elizabeth J Ilett
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Munitta Muthana
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Matt Coffey
- Oncolytics Biotech Inc, Calgary, Alberta, Canada
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | | | - Gordon Cook
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Michelle Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fiona Errington-Mais
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Oncolytic Virotherapy and Microenvironment in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22052259. [PMID: 33668361 PMCID: PMC7956262 DOI: 10.3390/ijms22052259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.
Collapse
|
13
|
Mohamadi A, Pagès G, Hashemzadeh MS. The Important Role of Oncolytic Viruses in Common Cancer Treatments. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200211120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oncolytic viruses (OV) are considered as promising tools in cancer treatment. In addition
to direct cytolysis, the stimulation of both innate and adaptive immune responses is the most
important mechanism in oncolytic virotherapy that finally leads to the long-standing tumor retardations
in the advanced melanoma clinical trials. The OVs have become a worthy method in cancer
treatment, due to their several biological advantages including (1) the selective replication in
cancer cells without affecting normal cells; (2) the lack of resistance to the treatment; (3) cancer
stem cell targeting; (4) the ability to be spread; and (5) the immune response induction against the
tumors. Numerous types of viruses; for example, Herpes simplex viruses, Adenoviruses, Reoviruses,
Poliovirus, and Newcastle disease virus have been studied as a possible cancer treatment
strategy. Although some viruses have a natural orientation or tropism to cancer cells, several others
need attenuation and genetic manipulation to increase the safety and tumor-specific replication activity.
Two important mechanisms are involved in OV antitumor responses, which include the tumor
cell death due to virus replication, and also induction of immunogenic cell death as a result of
the immune system responses against the tumor cells. Furthermore, the high efficiency of OV on
antitumor immune response stimulation can finally lead to a significant tumor shrinkage.
Collapse
Affiliation(s)
- Amir Mohamadi
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gilles Pagès
- Centre Antoine Lacassagne, University of Cote d’Azur, Nice, France
| | | |
Collapse
|
14
|
Villa N, Rahman MM, Mamola J, D’Isabella J, Goras E, Kilbourne J, Lowe K, Daggett-Vondras J, Torres L, Christie J, Appel N, Cox AL, Kim JB, McFadden G. Autologous Transplantation Using Donor Leukocytes Loaded Ex Vivo with Oncolytic Myxoma Virus Can Eliminate Residual Multiple Myeloma. Mol Ther Oncolytics 2020; 18:171-188. [PMID: 32695875 PMCID: PMC7364119 DOI: 10.1016/j.omto.2020.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of monoclonal plasma cells that remains incurable. Standard treatments for MM include myeloablative regimens and autologous cell transplantation for eligible patients. A major challenge of these treatments is the relapse of the disease due to residual MM in niches that become refractory to treatments. Therefore, novel therapies are needed in order to eliminate minimal residual disease (MRD). Recently, our laboratory reported that virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an allogeneic transplant mouse model. In this study, we demonstrate the capacity of donor autologous murine leukocytes, pre-armed with MYXV, to eliminate MRD in a BALB/c MM model. We report that MYXV-armed bone marrow (BM) carrier leukocytes are therapeutically superior to MYXV-armed peripheral blood mononuclear cells (PBMCs) or free virus. Importantly, when cured survivor mice were re-challenged with fresh myeloma cells, they developed immunity to the same MM that had comprised MRD. In vivo imaging demonstrated that autologous carrier cells armed with MYXV were very efficient at delivery of MYXV into the recipient tumor microenvironment. Finally, we demonstrate that treatment with MYXV activates the secretion of pro-immune molecules from the tumor bed. These results highlight the utility of exploiting autologous leukocytes to enhance tumor delivery of MYXV to treat MRD in vivo.
Collapse
Affiliation(s)
- Nancy.Y. Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Masmudur M. Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph. Mamola
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Julia D’Isabella
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Elizabeth Goras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Juliane Daggett-Vondras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Lino Torres
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - John Christie
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Nicole Appel
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Anna L. Cox
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Jae B. Kim
- PerkinElmer Inc., Waltham, MA 02451, USA
| | - Grant McFadden
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
16
|
Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:cancers12061416. [PMID: 32486227 PMCID: PMC7352817 DOI: 10.3390/cancers12061416] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic virotherapy is a promising antitumor therapeutic strategy. It is based on the ability of viruses to selectively kill cancer cells and induce host antitumor immune responses. However, the clinical outcomes of oncolytic viruses (OVs) vary widely. Therefore, we performed a meta-analysis to illustrate the efficacy and safety of oncolytic viruses. The Cochrane Library, PubMed, and EMBASE databases were searched for randomized controlled trials (RCTs) published up to 31 January 2020. The data for objective response rate (ORR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were independently extracted by two investigators from 11 studies that met the inclusion criteria. In subgroup analyses, the objective response rate benefit was observed in patients treated with oncolytic DNA viruses (odds ratio (OR) = 4.05; 95% confidence interval (CI): 1.96–8.33; p = 0.0002), but not in those treated with oncolytic RNA viruses (OR = 1.00, 95% CI: 0.66–1.52, p = 0.99). Moreover, the intratumoral injection arm yielded a statistically significant improvement (OR = 4.05, 95% CI: 1.96–8.33, p = 0.0002), but no such improvement was observed for the intravenous injection arm (OR = 1.00, 95% CI: 0.66–1.52, p = 0.99). Among the five OVs investigated in RCTs, only talimogene laherparepvec (T-VEC) effectively prolonged the OS of patients (hazard ratio (HR), 0.79; 95% CI: 0.63–0.99; p = 0.04). None of the oncolytic virotherapies improved the PFS (HR = 1.00, 95% CI: 0.85–1.19, p = 0.96). Notably, the pooled rate of severe AEs (grade ≥3) was higher for the oncolytic virotherapy group (39%) compared with the control group (27%) (risk difference (RD), 12%; risk ratio (RR), 1.44; 95% CI: 1.17–1.78; p = 0.0006). This review offers a reference for fundamental research and clinical treatment of oncolytic viruses. Further randomized controlled trials are needed to verify these results.
Collapse
|
17
|
Wenthe J, Naseri S, Hellström AC, Wiklund HJ, Eriksson E, Loskog A. Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Ther 2020; 27:948-959. [PMID: 32355275 PMCID: PMC7725669 DOI: 10.1038/s41417-020-0176-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is characterized by immune dysregulation. MM is commonly treated with immunomodulating agents, but still remains incurable. Herein, we proposed and evaluated immunostimulatory Lokon oncolytic adenoviruses (LOAd) for MM treatment. LOAd viruses are serotype 5/35 chimera, which enables infection of hematopoietic cells. Oncolysis is restricted to cells with a dysregulated retinoblastoma protein pathway, which is frequently observed in MM. Further, LOAd viruses are armed with human immunostimulatory transgenes: trimerized membrane-bound CD40L (LOAd700, LOAd703) and 4-1BBL (LOAd703). LOAd viruses were assessed in a panel of MM cell lines (ANBL-6, L363, LP-1, OPM-2, RPMI-8226, and U266-84). All cells were sensitive to infection, leading to viral replication and cell killing as analyzed by quantitative PCR and viability assay. Transgene expression was verified post infection with flow cytometry. Cell phenotypes were further altered with a downregulation of markers connected to MM progression (ICAM-1, CD70, CXCL10, CCL2, and sIL-2Rα) and an upregulation of the death receptor Fas. In a co-culture of immune and MM cells, LOAd viruses promoted activation of cytotoxic T cells as seen by higher CD69, CD107a, and IFNγ expression. This was most prominent with LOAd703. In conclusion, LOAd viruses are of interest for MM therapy.
Collapse
Affiliation(s)
- Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sedigheh Naseri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Charlotte Hellström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Jernberg Wiklund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Lokon Pharma AB, Uppsala, Sweden
| |
Collapse
|
18
|
Soekojo CY, Ooi M, de Mel S, Chng WJ. Immunotherapy in Multiple Myeloma. Cells 2020; 9:E601. [PMID: 32138182 PMCID: PMC7140529 DOI: 10.3390/cells9030601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is a complex disease and immune dysfunction has been known to play an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts in drug development have been focused on immunotherapies to modify the MM disease process. Here, we summarize the emerging immunotherapies in the MM treatment landscape.
Collapse
Affiliation(s)
| | | | | | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore; (C.Y.S.); (M.O.); (S.d.M.)
| |
Collapse
|
19
|
Müller LME, Holmes M, Michael JL, Scott GB, West EJ, Scott KJ, Parrish C, Hall K, Stäble S, Jennings VA, Cullen M, McConnell S, Langton C, Tidswell EL, Shafren D, Samson A, Harrington KJ, Pandha H, Ralph C, Kelly RJ, Cook G, Melcher AA, Errington-Mais F. Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J Immunother Cancer 2019; 7:164. [PMID: 31262361 PMCID: PMC6604201 DOI: 10.1186/s40425-019-0632-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible. METHODS This study utilized peripheral blood mononuclear cells from i) healthy donors, ii) Acute Myeloid Leukemia (AML) patients, and iii) patients taking part in the STORM clinical trial, who received intravenous CVA21; patients receiving intravenous CVA21 were consented separately in accordance with local institutional ethics review and approval. Collectively, these blood samples were used to characterize the development of innate and adaptive anti-tumor immune responses following CVA21 treatment. RESULTS An Initial characterization of peripheral blood mononuclear cells, collected from cancer patients following intravenous infusion of CVA21, confirmed that CVA21 activated immune effector cells in patients. Next, using hematological disease models which were sensitive (Multiple Myeloma; MM) or resistant (AML) to CVA21-direct oncolysis, we demonstrated that CVA21 stimulated potent anti-tumor immune responses, including: 1) cytokine-mediated bystander killing; 2) enhanced natural killer cell-mediated cellular cytotoxicity; and 3) priming of tumor-specific cytotoxic T lymphocytes, with specificity towards known tumor-associated antigens. Importantly, immune-mediated killing of both MM and AML, despite AML cells being resistant to CVA21-direct oncolysis, was observed. Upon further examination of the cellular mechanisms responsible for CVA21-induced anti-tumor immunity we have identified the importance of type I IFN for NK cell activation, and demonstrated that both ICAM-1 and plasmacytoid dendritic cells were key mediators of this response. CONCLUSION This work supports the development of CVA21 as an immunotherapeutic agent for the treatment of both AML and MM. Additionally, the data presented provides an important insight into the mechanisms of CVA21-mediated immunotherapy to aid the development of clinical biomarkers to predict response and rationalize future drug combinations.
Collapse
Affiliation(s)
- Louise M. E. Müller
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Matthew Holmes
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Joanne L. Michael
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Gina B. Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Emma J. West
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Karen J. Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | | | - Kathryn Hall
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Sina Stäble
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Victoria A. Jennings
- Translational Immunotherapy Team, The Institute of Cancer Research and Royal Marsden Hospital/Institute of Cancer Research NIHR Biomedical Research Centre, London, UK
| | - Matthew Cullen
- Haematological Malignancy Diagnostics Service, St. James’s University Hospital, Leeds, UK
| | - Stewart McConnell
- Department of Haematology, St. James’s University Hospital, Leeds, UK
| | - Catherine Langton
- Department of Haematology, St. James’s University Hospital, Leeds, UK
| | - Emma L. Tidswell
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Darren Shafren
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Adel Samson
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Kevin J. Harrington
- Translational Immunotherapy Team, The Institute of Cancer Research and Royal Marsden Hospital/Institute of Cancer Research NIHR Biomedical Research Centre, London, UK
| | - Hardev Pandha
- Surrey Cancer Research Institute, Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christy Ralph
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| | - Richard J. Kelly
- Department of Haematology, St. James’s University Hospital, Leeds, UK
| | - Gordon Cook
- Section of Experimental Haematology, LIMR, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research and Royal Marsden Hospital/Institute of Cancer Research NIHR Biomedical Research Centre, London, UK
| | - Fiona Errington-Mais
- Section of Infection and Immunity, Leeds Institute of Medical Research (LIMR), University of Leeds, St. James’s University Hospital, Level 5, Wellcome Trust Brenner Building (WTBB), Leeds, LS9 7TF UK
| |
Collapse
|