1
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
2
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Singh S, Deshetty UM, Ray S, Oladapo A, Horanieh E, Buch S, Periyasamy P. Non-Coding RNAs in HIV Infection, NeuroHIV, and Related Comorbidities. Cells 2024; 13:898. [PMID: 38891030 PMCID: PMC11171711 DOI: 10.3390/cells13110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
NeuroHIV affects approximately 30-60% of people living with HIV-1 (PLWH) and is characterized by varying degrees of cognitive impairments, presenting a multifaceted challenge, the underlying cause of which is chronic, low-level neuroinflammation. Such smoldering neuroinflammation is likely an outcome of lifelong reliance on antiretrovirals coupled with residual virus replication in the brains of PLWH. Despite advancements in antiretroviral therapeutics, our understanding of the molecular mechanism(s) driving inflammatory processes in the brain remains limited. Recent times have seen the emergence of non-coding RNAs (ncRNAs) as critical regulators of gene expression, underlying the neuroinflammatory processes in HIV infection, NeuroHIV, and their associated comorbidities. This review explores the role of various classes of ncRNAs and their regulatory functions implicated in HIV infection, neuropathogenesis, and related conditions. The dysregulated expression of ncRNAs is known to exacerbate the neuroinflammatory responses, thus contributing to neurocognitive impairments in PLWH. This review also discusses the diagnostic and therapeutic potential of ncRNAs in HIV infection and its comorbidities, suggesting their utility as non-invasive biomarkers and targets for modulating neuroinflammatory pathways. Understanding these regulatory roles could pave the way for novel diagnostic strategies and therapeutic interventions in the context of HIV and its comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| |
Collapse
|
4
|
Rodriguez NR, Fortune T, Hegde E, Weinstein MP, Keane AM, Mangold JF, Swartz TH. Oxidative phosphorylation in HIV-1 infection: impacts on cellular metabolism and immune function. Front Immunol 2024; 15:1360342. [PMID: 38529284 PMCID: PMC10962326 DOI: 10.3389/fimmu.2024.1360342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to the immune system, predominantly characterized by CD4+ T cell depletion, leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy (ART) effectively suppresses the viral load in people with HIV (PWH), leading to a state of chronic infection that is associated with inflammation. This review explores the complex relationship between oxidative phosphorylation, a crucial metabolic pathway for cellular energy production, and HIV-1, emphasizing the dual impact of HIV-1 infection and the metabolic and mitochondrial effects of ART. The review highlights how HIV-1 infection disrupts oxidative phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral replication. ART can exacerbate metabolic dysregulation despite controlling viral replication, impacting mitochondrial DNA synthesis and enhancing reactive oxygen species production. These effects collectively contribute to significant changes in oxidative phosphorylation, influencing immune cell metabolism and function. Adenosine triphosphate (ATP) generated through oxidative phosphorylation can influence the metabolic landscape of infected cells through ATP-detected purinergic signaling and contributes to immunometabolic dysfunction. Future research should focus on identifying specific targets within this pathway and exploring the role of purinergic signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities, addressing both viral infection and its metabolic consequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Talia H. Swartz
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Xu L, Kong X, Li X, Zhang B, Deng Y, Wang J, Duan C, Zhang D, Liu W. Current Status of Novel Multifunctional Targeted Pt(IV) Compounds and Their Reductive Release Properties. Molecules 2024; 29:746. [PMID: 38398498 PMCID: PMC10892972 DOI: 10.3390/molecules29040746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Platinum-based drugs are widely used in chemotherapy for various types of cancer and are considered crucial. Tetravalent platinum (Pt(IV)) compounds have gained significant attention and have been extensively researched among these drugs. Traditionally, Pt(IV) compounds are reduced to divalent platinum (Pt(II)) after entering cells, causing DNA lesions and exhibiting their anti-tumor effect. However, the available evidence indicates that some Pt(IV) derivatives may differ from the traditional mechanism and exert their anti-tumor effect through their overall structure. This review primarily focuses on the existing literature regarding targeted Pt(II) and Pt(IV) compounds, with a specific emphasis on their in vivo mode of action and the properties of reduction release in multifunctional Pt(IV) compounds. This review provides a comprehensive summary of the design and synthesis strategies employed for Pt(II) derivatives that selectively target various enzymes (glucose receptor, folate, telomerase, etc.) or substances (mitochondria, oleic acid, etc.). Furthermore, it thoroughly examines and summarizes the rational design, anti-tumor mechanism of action, and reductive release capacity of novel multifunctional Pt(IV) compounds, such as those targeting p53-MDM2, COX-2, lipid metabolism, dual drugs, and drug delivery systems. Finally, this review aims to provide theoretical support for the rational design and development of new targeted Pt(IV) compounds.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Jinhu Wang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Chonggang Duan
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China; (L.X.); (X.K.); (X.L.); (B.Z.); (Y.D.); (J.W.); (C.D.)
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
6
|
Zhang J, Yuan Z, Li X, Wang F, Wei X, Kang Y, Mo C, Jiang J, Liang H, Ye L. Activation of the JNK/COX-2/HIF-1α axis promotes M1 macrophage via glycolytic shift in HIV-1 infection. Life Sci Alliance 2023; 6:e202302148. [PMID: 37798121 PMCID: PMC10556724 DOI: 10.26508/lsa.202302148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic inflammation is recognized as a major risk factor for the severity of HIV infection. Whether metabolism reprogramming of macrophages caused by HIV-1 is related to chronic inflammatory activation, especially M1 polarization of macrophages, is inconclusive. Here, we show that HIV-1 infection induces M1 polarization and enhanced glycolysis in macrophages. Blockade of glycolysis inhibits M1 polarization of macrophages, indicating that HIV-1-induced M1 polarization is supported by enhanced glycolysis. Moreover, we find that this immunometabolic adaptation is dependent on hypoxia-inducible factor 1α (HIF-1α), a strong inducer of glycolysis. HIF-1α-target genes, including HK2, PDK1, and LDHA, are also involved in this process. Further research discovers that COX-2 regulates HIF-1α-dependent glycolysis. However, the elevated expression of COX-2, enhanced glycolysis, and M1 polarization of macrophages could be reversed by inactivation of JNK in the context of HIV-1 infection. Our study mechanistically elucidates that the JNK/COX-2/HIF-1α axis is activated to strengthen glycolysis, thereby promoting M1 polarization in macrophages in HIV-1 infection, providing a new idea for resolving chronic inflammation in clinical AIDS patients.
Collapse
Affiliation(s)
- Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuanrong Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xueqin Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
10
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
11
|
Nolan DJ, Rose R, Zhang R, Leong A, Fogel GB, Scholte LLS, Bethony JM, Bracci P, Lamers SL, McGrath MS. The Persistence of HIV Diversity, Transcription, and Nef Protein in Kaposi's Sarcoma Tumors during Antiretroviral Therapy. Viruses 2022; 14:v14122774. [PMID: 36560778 PMCID: PMC9782636 DOI: 10.3390/v14122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epidemic Kaposi's sarcoma (KS), defined by co-infection with Human Herpes Virus 8 (HHV-8) and the Human Immunodeficiency Virus (HIV), is a major cause of mortality in sub-Saharan Africa. Antiretroviral therapy (ART) significantly reduces the risk of developing KS, and for those with KS, tumors frequently resolve with ART alone. However, for unknown reasons, a significant number of KS cases do not resolve and can progress to death. To explore how HIV responds to ART in the KS tumor microenvironment, we sequenced HIV env-nef found in DNA and RNA isolated from plasma, peripheral blood mononuclear cells, and tumor biopsies, before and after ART, in four Ugandan study participants who had unresponsive or progressive KS after 180-250 days of ART. We performed immunohistochemistry experiments to detect viral proteins in matched formalin-fixed tumor biopsies. Our sequencing results showed that HIV diversity and RNA expression in KS tumors are maintained after ART, despite undetectable plasma viral loads. The presence of spliced HIV transcripts in KS tumors after ART was consistent with a transcriptionally active viral reservoir. Immunohistochemistry staining found colocalization of HIV Nef protein and tissue-resident macrophages in the KS tumors. Overall, our results demonstrated that even after ART reduced plasma HIV viral load to undetectable levels and restored immune function, HIV in KS tumors continues to be transcriptionally and translationally active, which could influence tumor maintenance and progression.
Collapse
Affiliation(s)
- David J. Nolan
- Bioinfoexperts, LLC, Thibodaux, LA 70301, USA
- Correspondence:
| | | | - Rongzhen Zhang
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | - Alan Leong
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | | | - Larissa L. S. Scholte
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, CA 94110, USA
| | | | - Michael S. McGrath
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
12
|
Mendez Valdez MJ, Lu VM, Kim E, Rivas SR, Govindarajan V, Ivan M, Komotar R, Nath A, Heiss JD, Shah AH. Glioblastoma multiforme in patients with human immunodeficiency virus: an integrated review and analysis. J Neurooncol 2022; 159:571-579. [PMID: 35857248 DOI: 10.1007/s11060-022-04095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION As lifespans for persons living with HIV (PLWH) have improved over the last decade, there has been a simultaneous increase in non-AIDS-related cancer in that group. However, there is a paucity of data regarding the incidence of glioblastoma multiforme (GBM) in PLWH. Better understanding of the oncogenesis, natural history, and treatment outcomes of GBM in PLWH should lead to improved treatment strategies. METHODS We performed a comprehensive literature search of six electronic databases to identify eligible cases of GBM among PLWH. Kaplan-Meier estimates, Fisher's exact test, and logistic regression were used to interrogate the data. Epidemiologic data on global HIV prevalence was obtained from the 2016 UNAIDS incidence report, and CNS cancer incidence was obtained from the GDB 2016 Brain and Other CNS Cancer Collaborators. RESULTS There is an inverse relationship between the incidence of HIV and CNS cancer globally. Median overall survival (OS) from GBM diagnosis was 8 months. Estimates for survival at 1 and 2 years were 28 and 5%, respectively. There were no statistically significant predictors of OS in this setting. There was a significant difference (p < 0.01) in OS in PLWH and GBM when compared to TCGA age matched cohorts. CONCLUSION The diagnosis of GBM in PLWH is severely underreported in the literature. Despite maximal treatment, OS in this patient population is significantly less than in HIV-negative people. There was a poor prognosis of GBM in PLWH, which is inconsistent with previous reports. Further investigation is required for PLWH and concomitant GBM. Analyses must consider if HAART is maintained in PLWH during GBM treatment.
Collapse
Affiliation(s)
| | - Victor M Lu
- Miller School of Medicine, University of Miami, Miami, USA
| | - Enoch Kim
- College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Sarah R Rivas
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Michael Ivan
- Miller School of Medicine, University of Miami, Miami, USA
| | | | - Avindra Nath
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - John D Heiss
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ashish H Shah
- Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
13
|
Mowla S, Ahmed R. HIV infection and the risk of cancer: tumorigenicity of HIV-1 auxiliary proteins. Future Virol 2022. [DOI: 10.2217/fvl-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, Western Cape, 7925, South Africa
| | - Riyaadh Ahmed
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, Western Cape, 7925, South Africa
| |
Collapse
|
14
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
15
|
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD. HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. J Neuroimmune Pharmacol 2022; 17:181-194. [PMID: 33834418 PMCID: PMC8497638 DOI: 10.1007/s11481-021-09995-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.
Collapse
Affiliation(s)
| | | | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicole Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Jonathan D. Geiger
- Address correspondence to: Jonathan D. Geiger, Ph.D., Chester Fritz Distinguished Professor, Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Room #110, Grand Forks, North Dakota 58203, (701) 777-2183 (P), (701) 777-0387 (F),
| |
Collapse
|
16
|
Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE. Metabolic Reprogramming in HIV-Associated Neurocognitive Disorders. Front Cell Neurosci 2022; 16:812887. [PMID: 35418836 PMCID: PMC8997587 DOI: 10.3389/fncel.2022.812887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
A significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production. We have investigated cellular processes upstream of the mitochondrial functions and discovered that gp120 causes metabolic reprogramming. Effectively, the addition of gp120 protein to neuronal cells disrupted the glycolysis pathway at the pyruvate level. Looking for the players involved, we found that gp120 promotes increased expression of polypyrimidine tract binding protein 1 (PTBP1), causing the splicing of pyruvate kinase M (PKM) into PKM1 and PKM2. We have also shown that these events lead to the accumulation of advanced glycation end products (AGEs) and prevent the cleavage of pro-brain-derived neurotrophic factor (pro-BDNF) protein into mature brain-derived neurotrophic factor (BDNF). The accumulation of proBDNF results in signaling that increases the expression of the inducible cAMP early repressor (ICER) protein which then occupies the cAMP response element (CRE)-binding sites within the BDNF promoters II and IV, thus altering normal synaptic plasticity. We reversed these events by adding Tepp-46, which stabilizes the tetrameric form of PKM2. Therefore, we concluded that gp120 reprograms cellular metabolism, causing changes linked to disrupted memory in HIV-infected patients and that preventing the disruption of the metabolism presents a potential cure against HAND progression.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Claudio De Lucia
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
17
|
Zamanian C, Bhandarkar AR, Monie DD, Moinuddin FM, Vile RG, Quiñones-Hinojosa A, Bydon M. Systems neuroimmunology: a review of multiomics methodologies to characterize neuroimmunological interactions in spinal and cranial diseases. Neurosurg Focus 2022; 52:E9. [PMID: 35104798 DOI: 10.3171/2021.11.focus21571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023]
Abstract
Neuroimmunology plays a critical role in our understanding of the pathophysiological processes that underlie a variety of diseases treated by neurosurgeons, including degenerative disc disease (DDD), glioblastoma (GBM), aneurysmal subarachnoid hemorrhage (aSAH), and others. Compared with traditional methods in neuroimmunology, which study one pathway or gene at a time, emerging multiomics methodologies allow for holistic interrogation of multiple immune-signaling pathways to test hypotheses and the effects of therapeutics at a systems level. In this review, the authors summarize key concepts for gathering and analyzing multiomics data so that neurosurgeons can contribute to the emerging field of systems neuroimmunology. Additionally, they describe 3 use cases, based on original research published by their group and others, that utilize transcriptomic, metabolomic, and proteomic analyses to study immune-signaling pathways in DDD, aSAH, and GBM. Through these use cases, techniques for performing machine learning and network-based analyses to generate new clinical insights from multiomics data are shared. The authors hope that neurosurgeons might use this review as a summary of common tools and principles in systems immunology to better engage in creating the immunotherapies of tomorrow.
Collapse
Affiliation(s)
| | - Archis R Bhandarkar
- 1Neuro-Informatics Laboratory.,2Department of Neurosurgery.,5Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Dileep D Monie
- 2Department of Neurosurgery.,4Department of Immunology, and.,5Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - F M Moinuddin
- 1Neuro-Informatics Laboratory.,2Department of Neurosurgery
| | | | | | - Mohamad Bydon
- 1Neuro-Informatics Laboratory.,2Department of Neurosurgery
| |
Collapse
|
18
|
Rinaldi S, Pallikkuth S, De Armas L, Richardson B, Pan L, Pahwa R, Williams S, Cameron M, Pahwa S. Distinct Molecular Signatures of Aging in Healthy and HIV-Infected Individuals. J Acquir Immune Defic Syndr 2022; 89:S47-S55. [PMID: 35015745 PMCID: PMC8751284 DOI: 10.1097/qai.0000000000002864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Virally suppressed chronic HIV-infected individuals on antiretroviral therapy experience similar immune impairments as HIV-uninfected elderly. However, they manifest symptoms of premature immune aging such as suboptimal responses to vaccination at a younger age. Mechanisms underlying premature immune aging are unclear. SETTING The study site was University of Miami Miller School of Medicine. METHODS In this study, we aimed to identify molecular signatures of aging in HIV-infected (HIV) individuals compared with age-matched healthy control (HC) participants. Transcriptomic profiles of peripheral blood mononuclear cells collected cross-sectionally from study participants were evaluated using RNA sequencing, and genes and pathways associated with age and HIV status were identified and compared between study groups. Generalized linear modeling was used to identify transcriptional signatures associated with age. RESULTS Despite that fewer differentially expressed genes between young (<40 yrs) and old (>59 yrs) were observed in the HIV group, metabolic and innate immune activation pathways were associated with increasing age in both HIV and HC. Age was also associated with pathways involved with T-cell immune activation in HC and with interferon signaling pathways in HIV. We observed signs of precocious immune aging at the transcriptional level in HIV and defined a transcriptional perturbation associated with innate immunity and glucose metabolism induced by aging in both HC and HIV. CONCLUSION In this study, we identified distinct molecular signatures predictive of age in HIV versus HC, which suggest precocious immune aging in HIV. Overall, our results highlight the molecular pathways of immune aging in both HC and HIV that may be targeted for additional mechanistic insights or in a therapeutic setting.
Collapse
Affiliation(s)
- Stefano Rinaldi
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
- Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| | - Lesley De Armas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Brian Richardson
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH.
| | - Li Pan
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Rajendra Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Sion Williams
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
- Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| | - Mark Cameron
- Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH.
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
- Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
19
|
Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption. Alcohol 2021; 94:25-41. [PMID: 33864851 DOI: 10.1016/j.alcohol.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.
Collapse
|
20
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
21
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
22
|
Rodrigues LF, Camacho AHDS, Spohr TCLDSE. Secondary glioblastoma metastasis outside the central nervous system in a young HIV-infected patient. Ther Adv Med Oncol 2020; 12:1758835920923432. [PMID: 32489434 PMCID: PMC7238297 DOI: 10.1177/1758835920923432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the most common adult primary brain tumor that occurs in the
central nervous system and is characterized by rapid growth and diffuse
invasiveness with respect to the adjacent brain parenchyma, which renders
surgical resection inefficient. Although it is a highly infiltrative tumor, it
is rarely disseminated beyond the central nervous system, wherein extracranial
metastasis is a unique but rare manifestation of this kind of tumor. It is very
common for acquired immunodeficiency syndrome (AIDS) patients to be infected
with the human immunodeficiency virus (HIV), which suggests that a possible
association between HIV infection and tumor development exists. In this paper,
we present a new case of a young patient’s HIV-associated glioblastoma, with
glioblastoma metastasis within the T9 vertebral body and lymph nodes in the
anterior neck tissue. Initially, the patient was diagnosed with a grade III
plastic astrocytoma. The patient lived a normal life for a year while being
treated with temozolomide, radiotherapy, and highly active antiretroviral
therapy. However, the tumor quickly evolved into a glioblastoma. We believe that
the drastic progression of the tumor from a grade III anaplastic astrocytoma to
a metastatic glioblastoma is due to the HIV infection that the patient had
acquired, which contributed to a weakened immune system, thus accelerating
progression of the cancer.
Collapse
|
23
|
Rinaldi S, Pallikkuth S, Cameron M, de Armas LR, Cotugno N, Dinh V, Pahwa R, Richardson B, Saini SR, Rocca S, Lain MG, Williams SL, Palma P, Pahwa S. Impact of Early Antiretroviral Therapy Initiation on HIV-Specific CD4 and CD8 T Cell Function in Perinatally Infected Children. THE JOURNAL OF IMMUNOLOGY 2019; 204:540-549. [PMID: 31889024 DOI: 10.4049/jimmunol.1900856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
Early initiation of antiretroviral therapy (ART) in vertically HIV-infected children limits the size of the virus reservoir, but whether the time of treatment initiation (TI) can durably impact host immune responses associated with HIV infection is still unknown. This study was conducted in PBMC of 20 HIV-infected virally suppressed children on ART (mean age 9.4 y), classified as early treated (ET; age at ART initiation ≤0.5 y, n = 14) or late treated (LT; age at ART initiation 1-10 y, n = 6). Frequencies and functions of Ag-specific CD4 (CD40L+) and CD8 (CD69+) T cells were evaluated by intracellular IL-2, IFN-γ, and TNF-α production with IL-21 in CD4 or CD107a, granzyme B and perforin in CD8 T cells following stimulation with HIV gp140 protein (ENV) or GAG peptides by multiparameter flow cytometry. ET showed a higher proportion of cytokine-producing ENV- and GAG-specific CD4 and CD8 T cells compared with LT. In particular, ET were enriched in polyfunctional T cells. RNA sequencing analysis showed upregulation of immune activation pathways in LT compared with ET. Our results suggest that timing of TI in HIV-infected children has a long-term and measurable impact on the quality of the HIV-specific T cell immune responses and transcriptional profiles of PBMC, reinforcing the importance of early TI.
Collapse
Affiliation(s)
- Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Nicola Cotugno
- Research Unit of Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, 00165 Rome, Italy
| | - Vinh Dinh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Shelly R Saini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Salvatore Rocca
- Research Unit of Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, 00165 Rome, Italy
| | - Maria G Lain
- Fundação Ariel Glaser Contra O Sida Pediátrico, 1100 Maputo, Mozambique; and
| | - Sion L Williams
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Paolo Palma
- Research Unit of Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, 00165 Rome, Italy
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136;
| |
Collapse
|
24
|
Bayurova E, Jansons J, Skrastina D, Smirnova O, Mezale D, Kostyusheva A, Kostyushev D, Petkov S, Podschwadt P, Valuev-Elliston V, Sasinovich S, Korolev S, Warholm P, Latanova A, Starodubova E, Tukhvatulin A, Latyshev O, Selimov R, Metalnikov P, Komarov A, Ivanova O, Gorodnicheva T, Kochetkov S, Gottikh M, Strumfa I, Ivanov A, Gordeychuk I, Isaguliants M. HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6016278. [PMID: 31885806 PMCID: PMC6915010 DOI: 10.1155/2019/6016278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of "non-AIDS-defining" malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Juris Jansons
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dzeina Mezale
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Anastasia Kostyusheva
- National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow, Russia
| | - Dmitry Kostyushev
- National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sviataslau Sasinovich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Korolev
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Per Warholm
- Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Anastasia Latanova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta Starodubova
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amir Tukhvatulin
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Oleg Latyshev
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Renat Selimov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Pavel Metalnikov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Alexander Komarov
- Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Olga Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Gottikh
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
- Department of Pathology, Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|