1
|
Li T, Luo C, Liu Z, Li J, Han M, Zhang R, Chen Y, Deng H. Nicotinamide mononucleotide protects STAT1 from oxidative stress-induced degradation to prevent colorectal tumorigenesis. MedComm (Beijing) 2024; 5:e70006. [PMID: 39575303 PMCID: PMC11581775 DOI: 10.1002/mco2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/24/2024] Open
Abstract
Colitis, accompanied by the accumulation of reactive oxygen species (ROS) in the intestinal tract, is a risk factor for colorectal cancer (CRC). Our previous studies indicate that nicotinamide mononucleotide (NMN) replenishment reduces chronic inflammation. In this study, we confirm that NMN supplementation reduces inflammatory cytokine levels and oxidative tissue damage in an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-associated cancer (CAC) model. Mice treated with NMN developed fewer colon tumors than untreated animals under the same AOM/DSS treatment conditions. Quantitative proteomic analysis revealed a decrease in signal transducer and activator of transcription 1 (STAT1) expression in the CAC model. We demonstrate that STAT1 overexpression induces G1 arrest by downregulating CDK6 expression and suppressing tumor cell proliferation and migration. Of note, H2O2 induced trioxidation of the STAT1 protein and promoted its degradation, which was partially reversed by NMN supplementation. Upon H2O2 treatment, Cys155 in STAT1 was oxidized to sulfonic acid, whereas the mutation of Cys155 to alanine abolished ROS-mediated STAT1 degradation. These results indicate that oxidative stress induces STAT1 degradation in tumor cells and possibly in CAC tissues, whereas supplementation with NMN protects STAT1 from oxidation-induced degradation and prevents tumorigenesis. This study provides experimental evidence for the development of NMN-mediated chemoprevention strategies for CRC.
Collapse
Affiliation(s)
- Ting Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhanChina
| | - Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
- School of Life ScienceYunnan UniversityYunnanChina
| | - Zongyuan Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Jinyu Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Chhipa AS, Boscaro V, Gallicchio M, Patel S. The curious case of type I interferon signaling in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189204. [PMID: 39477031 DOI: 10.1016/j.bbcan.2024.189204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Cytokines are the crucial signaling proteins that mediate the crosstalks between the cells of tumor microenvironment (TME). Interferon-1 (IFN-1) are the important cytokines that are widely known for their tumor suppressive roles comprising of cancer cell intrinsic and extrinsic mechanisms. Despite having known antitumor effects, IFN-1 are also reported to have tumor promoting functions under varying circumstances. This dichotomy in the functions of IFN-1 is largely attributed to the acute and chronic activation of IFN-1 signaling in TME. The chronic activation of IFN-1 signaling in tumor cells results in altered stimulation of downstream pathways that result in the expression of tumor promoting proteins, while the acute IFN-1 signaling activation maintains its tumor inhibiting functions. In the present review, we have discussed the anti- and pro-tumor actions of IFN-1 signaling under acute and chronic IFN-1 signaling activation. We have also discussed the downstream changes in signaling components that result in tumor supportive functions of a constitutive IFN-1 signaling. We have further discussed the possible strategies to overcome the detrimental effects of chronic IFN-1 pathway activation and to successfully employ IFN-1 for their beneficial anti-tumor effects.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India; Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India.
| |
Collapse
|
3
|
Rodríguez-Santiago Y, Terrazas-Valdés LI, Nava-Castro KE, Del Río-Araiza VH, Garay-Canales CA, Morales-Montor J. Sexual dimorphism of colorectal cancer in humans and colorectal tumors in a murine model. Front Oncol 2024; 14:1398175. [PMID: 39165688 PMCID: PMC11333323 DOI: 10.3389/fonc.2024.1398175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction In colorectal cancer, men exhibit a higher incidence than women, and there is a disturbance in the levels of sex steroids in serum in patients with this disease. Consistently, in animals, males have greater tumor growth than females in diverse models. Nevertheless, the role of sex steroids is not well established. For that, we analyzed the effect of the principal gonadal sex steroids in both sexes. We determined sex as a statistically risk factor for colorectal cancer with data obtained from GLOBOCAN database. Methods To induce colorectal tumors, we used the gold standard chemical method of azoxymethane and dextran sulphate of sodium. To evaluate the role of sex steroids, we gonadectomized independent males and female animals, reconstituting and substituting them with 17β estradiol and dihydrotestosterone. Finally, we determined, in vitro, the proliferation of a human cell line exposed to 17β estradiol, testosterone, or dihydrotestosterone. Sex, as a risk factor for colorectal cancer, showed a statistically significant susceptibility of men over 50 years old. Results In vivo, males develop a greater number of tumors and with a larger size than females. In males, orchiectomy prevents tumor growth, whereas in females, ovariectomy promotes the development of neoplasms. DHT acts as a protumoral agent in both sexes. 17β estradiol reduces tumor growth in females but enhances it in males, showing a dimorphic effect. In vitro studies reveal that estradiol decreases the proliferation of the HCT-116 colon cancer cell line, while testosterone boosts proliferation in these cells. Interestingly, dihydrotestosterone does not influence proliferation.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Luis Ignacio Terrazas-Valdés
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala, Tlanepantla, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala, Tlanepantla, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Del Río-Araiza
- Laboratorio de Interacciones Endocrinoinmunitarias en Enfermedades Parasitarias, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Angélica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
4
|
Pravoverov K, Fatima I, Barman S, Jühling F, Primeaux M, Baumert TF, Singh AB, Dhawan P. IL-22 regulates MASTL expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2024; 327:G123-G139. [PMID: 38771154 DOI: 10.1152/ajpgi.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Frank Jühling
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Thomas F Baumert
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
- IHU Strasbourg and Gastroenterology-Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| |
Collapse
|
5
|
Khan MT, Almas M, Malik N, Jalota A, Sharma S, Ali SA, Luthra K, Suri V, Suri A, Basak S, Seth P, Chosdol K, Sinha S. STAT1 mediated downregulation of the tumor suppressor gene PDCD4, is driven by the atypical cadherin FAT1, in glioblastoma. Cell Signal 2024; 119:111178. [PMID: 38640981 DOI: 10.1016/j.cellsig.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.
Collapse
Affiliation(s)
- Md Tipu Khan
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | - Mariyam Almas
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Centre for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Akansha Jalota
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Oncology, Albert Einstein College of Medicine, New York, USA
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sk Asif Ali
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vaishali Suri
- Neuropathalogy Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Subrata Sinha
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
6
|
Gonzalez-Ferrer S, Peñaloza HF, van der Geest R, Xiong Z, Gheware A, Tabary M, Kochin M, Dalton K, Zou H, Lou D, Lockwood K, Zhang Y, Bain WG, Mallampalli RK, Ray A, Ray P, Van Tyne D, Chen K, Lee JS. STAT1 Employs Myeloid Cell-Extrinsic Mechanisms to Regulate the Neutrophil Response and Provide Protection against Invasive Klebsiella pneumoniae Lung Infection. Immunohorizons 2024; 8:122-135. [PMID: 38289252 PMCID: PMC10832384 DOI: 10.4049/immunohorizons.2300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.
Collapse
Affiliation(s)
- Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hernán F. Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Zeyu Xiong
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Atish Gheware
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Megan Kochin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn Dalton
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Henry Zou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Dequan Lou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Karina Lockwood
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Rama K. Mallampalli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ohio State University, Columbus, OH
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Janet S. Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
7
|
Finn CM, Dhume K, Prokop E, Strutt TM, McKinstry KK. STAT1 Controls the Functionality of Influenza-Primed CD4 T Cells but Therapeutic STAT4 Engagement Maximizes Their Antiviral Impact. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1292-1304. [PMID: 36961447 PMCID: PMC10121883 DOI: 10.4049/jimmunol.2200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
It is generally accepted that influenza A virus (IAV) infection promotes a Th1-like CD4 T cell response and that this effector program underlies its protective impact. Canonical Th1 polarization requires cytokine-mediated activation of the transcription factors STAT1 and STAT4 that synergize to maximize the induction of the "master regulator" Th1 transcription factor, T-bet. Here, we determine the individual requirements for these transcription factors in directing the Th1 imprint primed by influenza infection in mice by tracking virus-specific wild-type or T-bet-deficient CD4 T cells in which STAT1 or STAT4 is knocked out. We find that STAT1 is required to protect influenza-primed CD4 T cells from NK cell-mediated deletion and for their expression of hallmark Th1 attributes. STAT1 is also required to prevent type I IFN signals from inhibiting the induction of the Th17 master regulator, Rorγt, in Th17-prone T-bet-/- cells responding to IAV. In contrast, STAT4 expression does not appreciably impact the phenotypic or functional attributes of wild-type or T-bet-/- CD4 T cell responses. However, cytokine-mediated STAT4 activation in virus-specific CD4 T cells enhances their Th1 identity in a T-bet-dependent manner, indicating that influenza infection does not promote maximal Th1 induction. Finally, we show that the T-bet-dependent protective capacity of CD4 T cell effectors against IAV is optimized by engaging both STAT1 and STAT4 during Th1 priming, with important implications for vaccine strategies aiming to generate T cell immunity.
Collapse
Affiliation(s)
- Caroline M. Finn
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Emily Prokop
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tara M. Strutt
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - K. Kai McKinstry
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
8
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
9
|
Andrade-Meza A, Arias-Romero LE, Armas-López L, Ávila-Moreno F, Chirino YI, Delgado-Buenrostro NL, García-Castillo V, Gutiérrez-Cirlos EB, Juárez-Avelar I, Leon-Cabrera S, Mendoza-Rodríguez MG, Olguín JE, Perez-Lopez A, Pérez-Plasencia C, Reyes JL, Sánchez-Pérez Y, Terrazas LI, Vaca-Paniagua F, Villamar-Cruz O, Rodríguez-Sosa M. Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. Int J Mol Sci 2023; 24:ijms24032115. [PMID: 36768437 PMCID: PMC9917340 DOI: 10.3390/ijms24032115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.
Collapse
Affiliation(s)
- Antonio Andrade-Meza
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yolanda I. Chirino
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Norma L. Delgado-Buenrostro
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Verónica García-Castillo
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Emma B. Gutiérrez-Cirlos
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sonia Leon-Cabrera
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - José L. Reyes
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Luis I. Terrazas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333
| |
Collapse
|
10
|
Sulit AK, Kolisnik T, Frizelle FA, Purcell R, Schmeier S. MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e4. [PMID: 39295912 PMCID: PMC11406379 DOI: 10.1017/gmb.2022.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 09/21/2024]
Abstract
The identification of functional processes taking place in microbiome communities augment traditional microbiome taxonomic studies, giving a more complete picture of interactions taking place within the community. While there are applications that perform functional annotation on metagenomes or metatranscriptomes, very few of these are able to link taxonomic identity to function or are limited by their input types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads, and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis, mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set enrichment analysis may then be carried out through the pipeline. A final correlation analysis between microbial species and host genes can also be performed. Finally, MetaFunc builds an R shiny application that allows users to view and interact with the microbiome results. In this paper, we showed how MetaFunc can be applied to metatranscriptomic datasets of colorectal cancer.
Collapse
Affiliation(s)
- Arielle Kae Sulit
- Department of Surgery, University of Otago, Christchurch, New Zealand
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tyler Kolisnik
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Rachel Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
11
|
Cheng S, Che L, Yang Q, Sun R, Nie Y, Shi H, Ding Y, Wang L, Du Z, Liu Z. Folic acid ameliorates N-methyl-N′-nitro-N-nitrosoguanidine-induced esophageal inflammation via modulation of the NF-κB pathway. Toxicol Appl Pharmacol 2022; 447:116087. [DOI: 10.1016/j.taap.2022.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/24/2022]
|
12
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|
13
|
Sharma BR, Karki R, Sundaram B, Wang Y, Vogel P, Kanneganti TD. The Transcription Factor IRF9 Promotes Colorectal Cancer via Modulating the IL-6/STAT3 Signaling Axis. Cancers (Basel) 2022; 14:cancers14040919. [PMID: 35205671 PMCID: PMC8869918 DOI: 10.3390/cancers14040919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, and innate immune responses and inflammation are known to affect the course of disease. Interferon (IFN) signaling in particular is critical for modulating inflammation-associated diseases including CRC. While the effects of IFN signaling in CRC have been studied, results have been conflicting. Furthermore, individual molecules in the IFN pathway that could be therapeutically targeted have distinct functions, with many of their diverse roles in CRC remaining unclear. Here, we found that IRF9 had an oncogenic effect in CRC; loss of IRF9 reduced tumorigenesis in both azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced and spontaneous CRC models. IRF9 also reduced DSS-induced colitis and inflammation in the colon, but it had no effect on the NF-κB and MAPK signaling activation. Instead, IRF9 enhanced the transcription and production of the inflammatory cytokine IL-6. By promoting IL-6 release, IRF9 drove the activation of pro-oncogenic STAT3 signaling in the colon. Overall, our study found that IRF9 promoted the development of CRC via modulation of the IL-6/STAT3 signaling axis, identifying multiple potential targets and suggesting new therapeutic strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.R.S.); (R.K.); (B.S.); (Y.W.)
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.R.S.); (R.K.); (B.S.); (Y.W.)
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.R.S.); (R.K.); (B.S.); (Y.W.)
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.R.S.); (R.K.); (B.S.); (Y.W.)
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.R.S.); (R.K.); (B.S.); (Y.W.)
- Correspondence: ; Tel.: +1-901-595-3634; Fax: +1-901-595-5766
| |
Collapse
|
14
|
Stolzer I, Schickedanz L, Chiriac MT, López-Posadas R, Grassl GA, Mattner J, Wirtz S, Winner B, Neurath MF, Günther C. STAT1 coordinates intestinal epithelial cell death during gastrointestinal infection upstream of Caspase-8. Mucosal Immunol 2022; 15:130-142. [PMID: 34497340 PMCID: PMC8732278 DOI: 10.1038/s41385-021-00450-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Intestinal homeostasis and the maintenance of the intestinal epithelial barrier are essential components of host defense during gastrointestinal Salmonella Typhimurium infection. Both require a strict regulation of cell death. However, the molecular pathways regulating epithelial cell death have not been completely understood. Here, we elucidated the contribution of central mechanisms of regulated cell death and upstream regulatory components during gastrointestinal infection. Mice lacking Caspase-8 in the intestinal epithelium are highly sensitive towards bacterial induced enteritis and intestinal inflammation, resulting in an enhanced lethality of these mice. This phenotype was associated with an increased STAT1 activation during Salmonella infection. Cell death, barrier breakdown and systemic infection were abrogated by an additional deletion of STAT1 in Casp8ΔIEC mice. In the absence of epithelial STAT1, loss of epithelial cells was abolished which was accompanied by a reduced Caspase-8 activation. Mechanistically, we demonstrate that epithelial STAT1 acts upstream of Caspase-8-dependent as well as -independent cell death and thus might play a major role at the crossroad of several central cell death pathways in the intestinal epithelium. In summary, we uncovered that transcriptional control of STAT1 is an essential host response mechanism that is required for the maintenance of intestinal barrier function and host survival.
Collapse
Affiliation(s)
- Iris Stolzer
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Laura Schickedanz
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Mircea T. Chiriac
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Rocío López-Posadas
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jochen Mattner
- grid.5330.50000 0001 2107 3311Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Stefan Wirtz
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Claudia Günther
- grid.411668.c0000 0000 9935 6525Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| |
Collapse
|
15
|
Kuang Z, Tu J, Li X. Combined Identification of Novel Markers for Diagnosis and Prognostic of Classic Hodgkin Lymphoma. Int J Gen Med 2021; 14:9951-9963. [PMID: 34955650 PMCID: PMC8694578 DOI: 10.2147/ijgm.s341557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND An effective diagnostic and prognostic marker based on the gene expression profile of classic Hodgkin lymphoma (cHL) has not yet been developed. The aim of the present study was to investigate potential markers for the diagnosis and prediction of cHL prognosis. METHODS The gene expression profiles with all available clinical features were downloaded from the Gene Expression Omnibus (GEO) database. Then, multiple machine learning algorithms were applied to develop and validate a diagnostic signature by comparing cHL with normal control. In addition, we identified prognostic genes and built a prognostic model with them to predict the prognosis for 130 patients with cHL which were treated with first-line treatment (ABVD chemotherapy or an ABVD-like regimen). RESULTS A diagnostic prediction signature was constructed and showed high specificity and sensitivity (training cohort: AUC=0.981,95% CI 0.933-0.998, P<0.001, validation cohort: AUC=0.955,95% CI 0.895-0.986, P<0.001). Additionally, nine prognostic genes (LAMP1, STAT1, MMP9, C1QB, ICAM1, CD274, CCL19, HCK and LILRB2) were screened and a prognostic prediction model was constructed with them, which had been confirmed effectively predicting prognosis (P<0.001). Furthermore, the results of the immune infiltration assessment indicated that the high scale of the fraction of CD8 + T cells, M1 macrophages, resting mast cells associated with an adverse outcome in cHL, and naive B cells related to prolonged survival. In addition, a nomogram that combined the prognostic prediction model and clinical characteristics is also suggested to have a good predictive value for the prognosis of patients. CONCLUSION The new markers found in this study may be helpful for the diagnosis and prediction of the prognosis of cHL.
Collapse
Affiliation(s)
- Zhixing Kuang
- Department of Radiation Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Jiannan Tu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Xun Li
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
16
|
Proteasome inhibitors restore the STAT1 pathway and enhance the expression of MHC class I on human colon cancer cells. J Biomed Sci 2021; 28:75. [PMID: 34758826 PMCID: PMC8579664 DOI: 10.1186/s12929-021-00769-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A new strategy, particularly a novel combination, for immunotherapy in microsatellite stable metastatic colorectal cancer (mCRC) treatment needs to be formulated. Studies on the interferon-γ (IFN-γ)/ Janus kinase (JAK)/ signal transducer and activator of transcription (STAT)1 pathway provide new directions in this regard. METHODS Our study applies three colon cancer cell lines, including microsatellite stable (MSS) cell lines, which are SW480 and SW620, and microsatellite instability-high (MSI-H) cell line, which is DLD-1. We compared the expressions of immune surface markers on colon cancer cells in response to IFN-γ. We elucidated these mechanisms, which involved the upregulation of immune surface markers. Furthermore, we examined real-world clinical samples using the PerkinElmer Opal multiplex system and NanoString analysis. RESULTS We established that the baseline expression of major histocompatibility complex (MHC) class I alleles and programmed death-ligand 1 (PD-L1) were generally low in cell line models. The immune surface markers were significantly increased after IFN-γ stimulation on SW480 but were notably unresponsive on the SW620 cell line. We discovered that STAT1 and phosphorylated STAT1 (pSTAT1) were downregulated in the SW620 cell line. We verified that the STAT1/pSTAT1 could be restored through the application of proteasome inhibitors, especially bortezomib. The expression of MHC class I as downstream signals of STAT1 was also up-regulated by proteasome inhibitors. The similar results were reproduced in DLD-1 cell line, which was also initially unresponsive to IFN-γ. In real-world samples of patients with mCRC, we found that higher STAT1 expression in tumor cells was strongly indicative of a highly immunogenic microenvironment, with significantly higher expression levels of MHC class I and PD-L1, not only on tumor cells but also on non-tumor cells. Furthermore, tumor infiltrating lymphocytes (TILs) were increased in the positive-STAT1 group. Through NanoString analysis, we confirmed that the mRNA expressions of IFN-γ, human leukocyte antigen (HLA)-A, HLA-E, and HLA-G were also significantly higher in the positive-STAT1 group than those in the negative-STAT1 group. CONCLUSION Our study provides a novel rationale for the addition of bortezomib, a proteasome inhibitor, into new immunotherapy combinations.
Collapse
|
17
|
STAT1 Is Required for Decreasing Accumulation of Granulocytic Cells via IL-17 during Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22147695. [PMID: 34299314 PMCID: PMC8306338 DOI: 10.3390/ijms22147695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.
Collapse
|
18
|
Maestri E, Duszka K, Kuznetsov VA. Immunity Depletion, Telomere Imbalance, and Cancer-Associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Short-Term Caloric Restriction. Cancers (Basel) 2021; 13:cancers13133180. [PMID: 34202278 PMCID: PMC8267928 DOI: 10.3390/cancers13133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Systems cancer biology analysis of calorie restriction (CR) mechanisms and pathways has not been carried out, leaving therapeutic benefits unclear. Using metadata analysis, we studied gene expression changes in normal mouse duodenum mucosa (DM) response to short-term (2-weeks) 25% CR as a biological model. Our results indicate cancer-associated genes consist of 26% of 467 CR responding differential expressed genes (DEGs). The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest telomeric maintenance misbalance and metabolic pathway activation playing dual (anti-cancer and pro-oncogenic) roles. The aberrant DEG profile of DM epithelial cells is found within CR-induced overexpression of Paneth cells and is coordinated significantly across GI tract tissues mucosa. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor-immune surveillance. CR induces metabolic reprogramming, suppressing immune mechanics and activating oncogenic pathways. We introduce and argue for our network pro-oncogenic model of the mucosa multicellular tissue response to CR leading to aberrant transcription and pre-malignant states. These findings change the paradigm regarding CR's anti-cancer role, initiating specific treatment target development. This will aid future work to define critical oncogenic pathways preceding intestinal lesion development and biomarkers for earlier adenoma and colorectal cancer detection.
Collapse
Affiliation(s)
- Evan Maestri
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Biology, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Bioinformatics Institute, Biomedical Sciences Institutes A*STAR, Singapore 13867, Singapore
- Correspondence:
| |
Collapse
|
19
|
STAT6 Is Critical for the Induction of Regulatory T Cells In Vivo Controlling the Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22084049. [PMID: 33919941 PMCID: PMC8070924 DOI: 10.3390/ijms22084049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6−/−) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6−/− and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6−/− mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6−/− mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.
Collapse
|
20
|
MicroRNAs in Colon Tissue of Pediatric Ulcerative Pancolitis Patients Allow Detection and Prognostic Stratification. J Clin Med 2021; 10:jcm10061325. [PMID: 33806966 PMCID: PMC8005023 DOI: 10.3390/jcm10061325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prevalence of inflammatory bowel disease has been on the rise in recent years, especially in pediatric populations. This study aimed to provide precise identification and stratification of pediatric patients with diagnosed ulcerative colitis (UC) according to the severity of their condition and the prediction for standard treatment according to the specific expression of candidate miRNAs. We enrolled consecutive, therapeutically naïve, pediatric UC patients with confirmed pancolitis. We examined formalin-fixed paraffin-embedded specimens of colonic tissue for the expression of 10 selected candidate miRNAs. We performed receiver operating characteristic curve analysis, using area under the curve and a logistic regression model to evaluate the diagnostic and predictive power of the miRNA panels. Sixty patients were included in the final analysis. As a control group, 18 children without macroscopic and microscopic signs of inflammatory bowel disease were examined. The combination of three candidate miRNAs (let-7i-5p, miR-223-3p and miR-4284) enabled accurate detection of pediatric UC patients and controls. A panel of four candidate miRNAs (miR-375-3p, miR-146a-5p, miR-223-3p and miR-200b-3p) was associated with severity of UC in pediatric patients and a combination of three miRNAs (miR-21-5p, miR-192-5p and miR-194-5p) was associated with early relapse of the disease. Nine patients out of the total were diagnosed with primary sclerosing cholangitis (PSC) simultaneously with ulcerative colitis. A panel of 6 candidate miRNAs (miR-142-3p, miR-146a-5p, miR-223-3p, let-7i-5p, miR-192-5p and miR-194-5p) identified those patients with PSC. Specific combinations of miRNAs are promising tools for potential use in precise disease identification and severity and prognostic stratification in pediatric patients with ulcerative pancolitis.
Collapse
|
21
|
Bodmer D, Kern P, Bächinger D, Monge Naldi A, Levano Huaman S. STAT1 deficiency predisposes to spontaneous otitis media. PLoS One 2020; 15:e0239952. [PMID: 32991625 PMCID: PMC7523960 DOI: 10.1371/journal.pone.0239952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - Peter Kern
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Arianne Monge Naldi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Soledad Levano Huaman
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Wei HX, Wang B, Li B. IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Front Immunol 2020; 11:1315. [PMID: 32670290 PMCID: PMC7332769 DOI: 10.3389/fimmu.2020.01315] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The barrier surfaces of the gastrointestinal tract are in constant contact with various microorganisms. Cytokines orchestrate the mucosal adaptive and innate immune cells in the defense against pathogens. IL-10 and IL-22 are the best studied members of the IL-10 family and play essential roles in maintaining mucosal homeostasis. IL-10 serves as an important regulator in preventing pro-inflammatory responses while IL-22 plays a protective role in tissue damage and contributes to pathology in certain settings. In this review, we focus on these two cytokines in the development of gastrointestinal diseases, including inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC). We summarize the recent studies and try to gain a better understanding on how they regulate immune responses to maintain equilibrium under inflammatory conditions.
Collapse
Affiliation(s)
- Hua-Xing Wei
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Baolong Wang
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Division of Life Sciences and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Chen Y, Fu H, Zhang Y, Chen P. Transmembrane and Ubiquitin-Like Domain Containing 1 Protein (TMUB1) Negatively Regulates Hepatocellular Carcinoma Proliferation via Regulating Signal Transducer and Activator of Transcription 1 (STAT1). Med Sci Monit 2019; 25:9471-9482. [PMID: 31827061 PMCID: PMC6927239 DOI: 10.12659/msm.920319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy, but the pathogenesis of HCC is unclear. TMUB1 has an inhibitory effect on normal hepatocytes, but its role in HCC has not been reported. Material/Methods We used immunohistochemistry to observe the expression of transmembrane and ubiquitin-like domain containing 1 protein (TMUB1) and signal transducer and activator of transcription 1 (STAT1) in 132 HCC tissue specimens. The expression of TMUB1, STAT1, and CCND1 in HCC cells were detected by quantitative polymerase chain reaction (qPCR) and western blotting. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) assays were used for detecting HCC cells proliferation, and Transwell assays were used for observing the invasion and migration of HCC cells. Results TMUB1 was negatively correlated with HCC pathological malignancy; low expression of TMUB1 indicated poor prognosis. TMUB1 inhibited proliferation but not metastasis in HCC cells. TMUB1 expression was positively correlated with STAT1 in 132 HCC tissues, TMUB1 promoted the expression of STAT1, and suppressed the expression of CCND1 in HCC cells. Conclusions TMUB1 negatively regulates hepatocellular carcinoma proliferation via regulating STAT1.
Collapse
Affiliation(s)
- Yin Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Gynaecology and Obstetrics, The 958th Hospital, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Hangwei Fu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Yida Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|