1
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
2
|
Tessier N, Ducrozet M, Dia M, Badawi S, Chouabe C, Crola Da Silva C, Ovize M, Bidaux G, Van Coppenolle F, Ducreux S. TRPV1 Channels Are New Players in the Reticulum-Mitochondria Ca 2+ Coupling in a Rat Cardiomyoblast Cell Line. Cells 2023; 12:2322. [PMID: 37759544 PMCID: PMC10529771 DOI: 10.3390/cells12182322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, we focused on the transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel and a polymodal nociceptor. We found TRPV1 channels in the reticular membrane, including some at MAMs, in a rat cardiomyoblast cell line (SV40-transformed H9c2) by Western blotting, immunostaining, cell fractionation, and proximity ligation assay. We used chemical and genetic probes to perform Ca2+ imaging in four cellular compartments: the endoplasmic reticulum (ER), cytoplasm, mitochondrial matrix, and mitochondrial surface. Our results showed that the ER Ca2+ released through TRPV1 channels is detected at the mitochondrial outer membrane and transferred to the mitochondria. Finally, we observed that prolonged TRPV1 modulation for 30 min alters the intracellular Ca2+ equilibrium and influences the MAM structure or the hypoxia/reoxygenation-induced cell death. Thus, our study provides the first evidence that TRPV1 channels contribute to MAM Ca2+ exchanges.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Mallory Ducrozet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sally Badawi
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Christophe Chouabe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Hôpital Louis Pradel, Services d’Explorations Fonctionnelles Cardiovasculaires et CIC de Lyon, 69394 Lyon, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Fabien Van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| |
Collapse
|
3
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|
4
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Landry DA, Yakubovich E, Cook DP, Fasih S, Upham J, Vanderhyden BC. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. SCIENCE ADVANCES 2022; 8:eabq1475. [PMID: 36054356 PMCID: PMC10848964 DOI: 10.1126/sciadv.abq1475] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.
Collapse
Affiliation(s)
- David A. Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edward Yakubovich
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sijyl Fasih
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
The role of α-klotho in human cancer: molecular and clinical aspects. Oncogene 2022; 41:4487-4497. [PMID: 36038662 DOI: 10.1038/s41388-022-02440-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Klotho is a well-established longevity hormone. Its most prominent function is the regulation of phosphate homeostasis. However, klotho possesses multiple pleiotropic activities, including inhibition of major signaling pathways, reducing oxidative stress and suppressing inflammation. These activities are tightly associated with cancer, and klotho was discovered as a universal tumor suppressor. We review here novel molecular aspects of klotho activity in cancer, focusing on its structure-function relationships and clinical aspects regarding its expression, blood levels, clinical risk, and prognostic value in the clinical setting. In addition, the potential benefit of klotho treatment combined with chemotherapy, biological therapy, or immunotherapy, are discussed. Finally, as klotho was shown in preclinical models to inhibit cancer development and growth, we discuss various approaches to developing klotho-based therapies.
Collapse
|
7
|
Hua F, Chen X. β-Klotho inhibits CSF-1 secretion and delays the development of endometrial cancer. Cell Cycle 2022; 21:2132-2144. [PMID: 35762530 DOI: 10.1080/15384101.2022.2092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Senescent cells can drive tumors development by promoting chronic inflammation. There is a significant correlation between β-Klotho expression profiles and endometrial cancer (EC). However, how β-Klotho regulates the occurrence and development of uterine EC remains to be further studied. Our research found that compared with normal endometrial tissues, β-Klotho expression levels in EC tissues were significantly reduced; overexpression of β-Klotho significantly inhibited aging, proliferation and migration but promoted apoptosis of EC cells cultured in vitro. In normal endometrial cells, results confirmed that reduced levels of β-Klotho promoted CSF-1 secretion, and the migration ability of macrophages was significantly enhanced when co-cultured with normal endometrial cells. In contrast, the expression of CSF-1 was significantly reduced after overexpression of β-Klotho in EC cells, and the macrophage migration ability is significantly weakened when co-cultured with EC cells. Therefore, we believe that β-Klotho influences macrophage migration by regulating the expression of CSF-1, thereby interfering with the progression of EC. We investigated in depth the mechanism of β-Klotho regulating CSF-1 secretion and found that β-Klotho inhibits the phosphorylation of p65, which blocked the nuclear translocation of p65, thereby inhibiting the secretion of CSF-1 by EC cells. The above results indicate that β-Klotho-mediated inhibition of CSF-1 secretion reduces the migration of macrophages to tumor tissue and delays the progression of EC.
Collapse
Affiliation(s)
- Fu Hua
- Department of Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaogang Chen
- Department of Orthopedics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
8
|
Zhu Y, Prata LGL, Gerdes EOW, Netto JME, Pirtskhalava T, Giorgadze N, Tripathi U, Inman CL, Johnson KO, Xue A, Palmer AK, Chen T, Schaefer K, Justice JN, Nambiar AM, Musi N, Kritchevsky SB, Chen J, Khosla S, Jurk D, Schafer MJ, Tchkonia T, Kirkland JL. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine 2022; 77:103912. [PMID: 35292270 PMCID: PMC9034457 DOI: 10.1016/j.ebiom.2022.103912] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | | | - Erin O. Wissler Gerdes
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | | | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Christina L. Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Allyson K. Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kalli Schaefer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Jamie N. Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anoop M. Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Munoz K, Wasnik S, Abdipour A, Bi H, Wilson SM, Tang X, Ghahramanpouri M, Baylink DJ. The Effects of Insulin-Like Growth Factor I and BTP-2 on Acute Lung Injury. Int J Mol Sci 2021; 22:ijms22105244. [PMID: 34063554 PMCID: PMC8170877 DOI: 10.3390/ijms22105244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1β, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.
Collapse
Affiliation(s)
- Kevin Munoz
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - Amir Abdipour
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Division of Nephrology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hongzheng Bi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China;
| | - Sean M. Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Mahdis Ghahramanpouri
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - David J. Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Correspondence: ; Tel.: +909-558-4000-49796; Fax: +(909)-558-0428
| |
Collapse
|
10
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Takegahara K, Usuda J, Inoue T, Sonokawa T, Matsui T, Matsumoto M. Antiaging gene Klotho regulates epithelial-mesenchymal transition and increases sensitivity to pemetrexed by inducing lipocalin-2 expression. Oncol Lett 2021; 21:418. [PMID: 33841579 PMCID: PMC8020392 DOI: 10.3892/ol.2021.12679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is considered to serve an important role in the metastatic/invasive ability of cancer cells, in the acquisition of drug resistance, and in metabolic reprogramming. In the present study, it was hypothesized that the Klotho gene is involved in the metastatic/invasive ability of lung cancer. We previously reported an association between Klotho expression and overall survival in patients with small cell lung cancer and large cell neuroendocrine cancer. We also found that Klotho expression was associated with EMT-related molecules in lung squamous cell carcinoma. The present study aimed to analyze the function of the Klotho gene and to elucidate its relevance to the regulation of the EMT. For this purpose, GFP-Klotho plasmids were transfected into lung adenocarcinoma cells (A549) and cell lines with stable expression (A549/KL-1 and A549/KL-2) were established. A549/KL-1 cells expressed higher levels of Klotho protein by western blot analysis compared with A549/KL-2 cells. In western blotting of A549 and A549/KL-1 cells, the expression of the mesenchymal marker N-cadherin was found to be completely inhibited in A549/KL-1 cells suggesting that Klotho expression may regulate the EMT in cancer cells via the inhibition of N-cadherin. The results of the sensitivity tests demonstrated that A549/KL-1 cells were significantly more sensitive to pemetrexed compared with A549 cells (IC50 A549/KL-1 vs. A549 cells, 0.1 µM vs. 0.7 µM). The results of the microarray analysis demonstrated that a very high level of lipocalin-2 (LCN2) expression was induced in the A549/KL-1 cells. Klotho overexpression completely suppressed the expression of mesenchymal markers, such as N-cadherin and Snail1 (Snail). The results of the present study suggested that there may be a new mechanism of action for the antitumor effects of pemetrexed, namely, LCN2-mediated modulation of N-cadherin expression. Klotho expression during cancer treatment has great potential as a predictor for efficacy of pemetrexed and as a factor in the selection of personalized medicine for postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takuma Matsui
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
12
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Sachdeva A, Gouge J, Kontovounisios C, Nikolaou S, Ashworth A, Lim K, Chong I. Klotho and the Treatment of Human Malignancies. Cancers (Basel) 2020; 12:cancers12061665. [PMID: 32585905 PMCID: PMC7352559 DOI: 10.3390/cancers12061665] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Klotho was first discovered as an anti-ageing protein linked to a number of age-related disease processes, including cardiovascular, renal, musculoskeletal, and neurodegenerative conditions. Emerging research has also demonstrated a potential therapeutic role for Klotho in cancer biology, which is perhaps unsurprising given that cancer and ageing share similar molecular hallmarks. In addition to functioning as a tumour suppressor in numerous solid tumours and haematological malignancies, Klotho represents a candidate therapeutic target for patients with these diseases, the majority of whom have limited treatment options. Here, we examine contemporary evidence evaluating the anti-neoplastic effects of Klotho and describe the modulation of downstream oncogenic signalling pathways, including Wnt/β-catenin, FGF, IGF1, PIK3K/AKT, TGFβ, and the Unfolded Protein Response. We also discuss possible approaches to developing therapeutic Klotho and consider technological advances that may facilitate the delivery of Klotho through gene therapy.
Collapse
Affiliation(s)
- Aishani Sachdeva
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK;
| | - Christos Kontovounisios
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Stella Nikolaou
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Kenneth Lim
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA;
| | - Irene Chong
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- The Institute of Cancer Research, London SW3 6JB, UK
- Correspondence:
| |
Collapse
|
14
|
Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity. Oncogene 2020; 39:4636-4649. [PMID: 32398866 DOI: 10.1038/s41388-020-1313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho's tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.
Collapse
|
15
|
Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. Cells 2020; 9:cells9020261. [PMID: 31972978 PMCID: PMC7072557 DOI: 10.3390/cells9020261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/25/2022] Open
Abstract
Immunosenescence in monocytes has been shown to be associated with several biochemical and functional changes, including development of senescence-associated secretory phenotype (SASP), which may be inhibited by klotho protein. To date, it was believed that SASP activation is associated with accumulating DNA damage. However, some literature data suggest that endoplasmic reticulum and Golgi stress pathways may be involved in SASP development. Thus, the aim of this study was to investigate the role of klotho protein in the regulation of immunosenescence-associated Golgi apparatus and ER stress response induced by bacterial antigens in monocytes. We provide evidence that initiation of immunosenescent-like phenotype in monocytes is accompanied by activation of CREB34L and TFE3 Golgi stress response and ATF6 and IRE1 endoplasmic reticulum stress response, while klotho overexpression prevents these changes. Further, these changes are followed by upregulated secretion of proinflammatory cytokines, which final modification takes place exclusively in the Golgi apparatus. In conclusion, we provide for the first time evidence of klotho involvement in the crosstalk on the line ER-Golgi, which may, in turn, affect activation of SASP. This data may be useful for a novel potential target for therapy in age-related and chronic inflammatory conditions.
Collapse
|
16
|
Yang L, Chen S, Luo P, Yan W, Wang C. Liposarcoma: Advances in Cellular and Molecular Genetics Alterations and Corresponding Clinical Treatment. J Cancer 2020; 11:100-107. [PMID: 31892977 PMCID: PMC6930414 DOI: 10.7150/jca.36380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liposarcoma is a malignant tumor of mesenchymal origin with significant tissue diversity. It is composed of adipocytes with different degrees of differentiation and different degrees of heteromorphosis. It is not sensitive to traditional radiotherapy and chemotherapy and has a poor prognosis. In recent years, with the rapid development of basic immunology, molecular genetics and tumor molecular biology, the histological classification of liposarcoma has become increasingly clear. More and more new methods and technologies, such as gene expression profile analysis, the whole genome sequencing, miRNA expression profile analysis and RNA sequencing, have been successfully applied to liposarcoma, bringing about a deeper understanding of gene expression changes and molecular pathogenic mechanisms in the occurrence and development of liposarcoma. This study reviews the present research status and progress of cellular and molecular alterations of liposarcoma and corresponding clinical treatment progress.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqi Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Luo
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|